Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
N
ngraph
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
ngraph
Commits
b5414ba5
Commit
b5414ba5
authored
Mar 08, 2018
by
fenglei.tian
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
clang format
:
parent
6204a154
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
605 additions
and
583 deletions
+605
-583
gpu_external_function.cpp
src/ngraph/runtime/gpu/gpu_external_function.cpp
+605
-583
No files found.
src/ngraph/runtime/gpu/gpu_external_function.cpp
View file @
b5414ba5
...
...
@@ -165,118 +165,113 @@ namespace ngraph
{
namespace
gpu
{
static
const
OpMap
dispatcher
{
{
TI
(
ngraph
::
op
::
Add
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
Add
>
},
{
TI
(
ngraph
::
op
::
Dot
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
Dot
>
},
{
TI
(
ngraph
::
op
::
Multiply
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
Multiply
>
},
{
TI
(
ngraph
::
op
::
Parameter
),
&
GPU_Emitter
::
nop
},
{
TI
(
ngraph
::
op
::
Abs
),
&
GPU_Emitter
::
EmitUnaryElementwise
},
{
TI
(
ngraph
::
op
::
Concat
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
Concat
>
},
{
TI
(
ngraph
::
op
::
Divide
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
Divide
>
},
{
TI
(
ngraph
::
op
::
Equal
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
Equal
>
},
{
TI
(
ngraph
::
op
::
GetOutputElement
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
GetOutputElement
>
},
{
TI
(
ngraph
::
op
::
Greater
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
Greater
>
},
{
TI
(
ngraph
::
op
::
GreaterEq
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
GreaterEq
>
},
{
TI
(
ngraph
::
op
::
Less
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
Less
>
},
{
TI
(
ngraph
::
op
::
LessEq
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
LessEq
>
},
{
TI
(
ngraph
::
op
::
Log
),
&
GPU_Emitter
::
EmitUnaryElementwise
},
{
TI
(
ngraph
::
op
::
Maximum
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
Maximum
>
},
{
TI
(
ngraph
::
op
::
Minimum
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
Minimum
>
},
{
TI
(
ngraph
::
op
::
Negative
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
Negative
>
},
{
TI
(
ngraph
::
op
::
NotEqual
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
NotEqual
>
},
{
TI
(
ngraph
::
op
::
Power
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
Power
>
},
{
TI
(
ngraph
::
op
::
Select
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
Select
>
},
{
TI
(
ngraph
::
op
::
Subtract
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
Subtract
>
},
{
TI
(
ngraph
::
op
::
Broadcast
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
Broadcast
>
},
{
TI
(
ngraph
::
op
::
Convert
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
Convert
>
},
{
TI
(
ngraph
::
op
::
Constant
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
Constant
>
},
{
TI
(
ngraph
::
op
::
Reshape
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
Reshape
>
},
{
TI
(
ngraph
::
op
::
FunctionCall
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
FunctionCall
>
},
{
TI
(
ngraph
::
op
::
Reduce
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
Reduce
>
},
{
TI
(
ngraph
::
op
::
Sign
),
&
GPU_Emitter
::
EmitUnaryElementwise
},
{
TI
(
ngraph
::
op
::
Slice
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
Slice
>
},
{
TI
(
ngraph
::
op
::
Sum
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
Sum
>
},
{
TI
(
ngraph
::
op
::
Exp
),
&
GPU_Emitter
::
EmitUnaryElementwise
},
{
TI
(
ngraph
::
op
::
Sin
),
&
GPU_Emitter
::
EmitUnaryElementwise
},
{
TI
(
ngraph
::
op
::
Sinh
),
&
GPU_Emitter
::
EmitUnaryElementwise
},
{
TI
(
ngraph
::
op
::
Cos
),
&
GPU_Emitter
::
EmitUnaryElementwise
},
{
TI
(
ngraph
::
op
::
Cosh
),
&
GPU_Emitter
::
EmitUnaryElementwise
},
{
TI
(
ngraph
::
op
::
Tan
),
&
GPU_Emitter
::
EmitUnaryElementwise
},
{
TI
(
ngraph
::
op
::
Tanh
),
&
GPU_Emitter
::
EmitUnaryElementwise
},
{
TI
(
ngraph
::
op
::
Asin
),
&
GPU_Emitter
::
EmitUnaryElementwise
},
{
TI
(
ngraph
::
op
::
Acos
),
&
GPU_Emitter
::
EmitUnaryElementwise
},
{
TI
(
ngraph
::
op
::
Atan
),
&
GPU_Emitter
::
EmitUnaryElementwise
},
{
TI
(
ngraph
::
op
::
ReplaceSlice
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
ReplaceSlice
>
},
{
TI
(
ngraph
::
op
::
OneHot
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
OneHot
>
},
{
TI
(
ngraph
::
op
::
Floor
),
&
GPU_Emitter
::
EmitUnaryElementwise
},
{
TI
(
ngraph
::
op
::
Ceiling
),
&
GPU_Emitter
::
EmitUnaryElementwise
},
{
TI
(
ngraph
::
op
::
Sqrt
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
Sqrt
>
},
{
TI
(
ngraph
::
op
::
Convolution
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
Convolution
>
},
{
TI
(
ngraph
::
op
::
ConvolutionBackpropFilters
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
ConvolutionBackpropFilters
>
},
{
TI
(
ngraph
::
op
::
ConvolutionBackpropData
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
ConvolutionBackpropData
>
},
{
TI
(
ngraph
::
op
::
Not
),
&
GPU_Emitter
::
EmitUnaryElementwise
},
{
TI
(
ngraph
::
op
::
MaxPool
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
MaxPool
>
},
{
TI
(
ngraph
::
op
::
Reverse
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
Reverse
>
},
{
TI
(
ngraph
::
op
::
Result
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
Result
>
},
{
TI
(
ngraph
::
op
::
ReduceWindow
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
ReduceWindow
>
},
{
TI
(
ngraph
::
op
::
SelectAndScatter
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
SelectAndScatter
>
},
{
TI
(
ngraph
::
op
::
AvgPool
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
AvgPool
>
},
{
TI
(
ngraph
::
op
::
AvgPoolBackprop
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
AvgPoolBackprop
>
},
{
TI
(
ngraph
::
op
::
Pad
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
Pad
>
},
{
TI
(
ngraph
::
op
::
BatchNorm
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
BatchNorm
>
},
{
TI
(
ngraph
::
op
::
BatchNormBackprop
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
BatchNormBackprop
>
},
{
TI
(
ngraph
::
op
::
MaxPoolBackprop
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
MaxPoolBackprop
>
},
{
TI
(
ngraph
::
op
::
Product
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
Product
>
},
{
TI
(
ngraph
::
op
::
Max
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
Max
>
},
{
TI
(
ngraph
::
op
::
Min
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
Min
>
},
{
TI
(
ngraph
::
op
::
Relu
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
Relu
>
},
{
TI
(
ngraph
::
op
::
ReluBackprop
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
ReluBackprop
>
},
{
TI
(
ngraph
::
op
::
Softmax
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
Softmax
>
},
};
GPU_ExternalFunction
::
GPU_ExternalFunction
(
const
shared_ptr
<
ngraph
::
Function
>&
function
,
bool
release_function
)
:
ngraph
::
runtime
::
ExternalFunction
(
function
,
release_function
)
,
m_compiled_function
(
nullptr
)
,
m_emit_timing
(
std
::
getenv
(
"NGRAPH_GPU_EMIT_TIMING"
)
!=
nullptr
)
{
}
static
const
OpMap
dispatcher
{
{
TI
(
ngraph
::
op
::
Add
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
Add
>
},
{
TI
(
ngraph
::
op
::
Dot
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
Dot
>
},
{
TI
(
ngraph
::
op
::
Multiply
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
Multiply
>
},
{
TI
(
ngraph
::
op
::
Parameter
),
&
GPU_Emitter
::
nop
},
{
TI
(
ngraph
::
op
::
Abs
),
&
GPU_Emitter
::
EmitUnaryElementwise
},
{
TI
(
ngraph
::
op
::
Concat
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
Concat
>
},
{
TI
(
ngraph
::
op
::
Divide
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
Divide
>
},
{
TI
(
ngraph
::
op
::
Equal
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
Equal
>
},
{
TI
(
ngraph
::
op
::
GetOutputElement
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
GetOutputElement
>
},
{
TI
(
ngraph
::
op
::
Greater
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
Greater
>
},
{
TI
(
ngraph
::
op
::
GreaterEq
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
GreaterEq
>
},
{
TI
(
ngraph
::
op
::
Less
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
Less
>
},
{
TI
(
ngraph
::
op
::
LessEq
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
LessEq
>
},
{
TI
(
ngraph
::
op
::
Log
),
&
GPU_Emitter
::
EmitUnaryElementwise
},
{
TI
(
ngraph
::
op
::
Maximum
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
Maximum
>
},
{
TI
(
ngraph
::
op
::
Minimum
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
Minimum
>
},
{
TI
(
ngraph
::
op
::
Negative
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
Negative
>
},
{
TI
(
ngraph
::
op
::
NotEqual
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
NotEqual
>
},
{
TI
(
ngraph
::
op
::
Power
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
Power
>
},
{
TI
(
ngraph
::
op
::
Select
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
Select
>
},
{
TI
(
ngraph
::
op
::
Subtract
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
Subtract
>
},
{
TI
(
ngraph
::
op
::
Broadcast
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
Broadcast
>
},
{
TI
(
ngraph
::
op
::
Convert
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
Convert
>
},
{
TI
(
ngraph
::
op
::
Constant
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
Constant
>
},
{
TI
(
ngraph
::
op
::
Reshape
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
Reshape
>
},
{
TI
(
ngraph
::
op
::
FunctionCall
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
FunctionCall
>
},
{
TI
(
ngraph
::
op
::
Reduce
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
Reduce
>
},
{
TI
(
ngraph
::
op
::
Sign
),
&
GPU_Emitter
::
EmitUnaryElementwise
},
{
TI
(
ngraph
::
op
::
Slice
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
Slice
>
},
{
TI
(
ngraph
::
op
::
Sum
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
Sum
>
},
{
TI
(
ngraph
::
op
::
Exp
),
&
GPU_Emitter
::
EmitUnaryElementwise
},
{
TI
(
ngraph
::
op
::
Sin
),
&
GPU_Emitter
::
EmitUnaryElementwise
},
{
TI
(
ngraph
::
op
::
Sinh
),
&
GPU_Emitter
::
EmitUnaryElementwise
},
{
TI
(
ngraph
::
op
::
Cos
),
&
GPU_Emitter
::
EmitUnaryElementwise
},
{
TI
(
ngraph
::
op
::
Cosh
),
&
GPU_Emitter
::
EmitUnaryElementwise
},
{
TI
(
ngraph
::
op
::
Tan
),
&
GPU_Emitter
::
EmitUnaryElementwise
},
{
TI
(
ngraph
::
op
::
Tanh
),
&
GPU_Emitter
::
EmitUnaryElementwise
},
{
TI
(
ngraph
::
op
::
Asin
),
&
GPU_Emitter
::
EmitUnaryElementwise
},
{
TI
(
ngraph
::
op
::
Acos
),
&
GPU_Emitter
::
EmitUnaryElementwise
},
{
TI
(
ngraph
::
op
::
Atan
),
&
GPU_Emitter
::
EmitUnaryElementwise
},
{
TI
(
ngraph
::
op
::
ReplaceSlice
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
ReplaceSlice
>
},
{
TI
(
ngraph
::
op
::
OneHot
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
OneHot
>
},
{
TI
(
ngraph
::
op
::
Floor
),
&
GPU_Emitter
::
EmitUnaryElementwise
},
{
TI
(
ngraph
::
op
::
Ceiling
),
&
GPU_Emitter
::
EmitUnaryElementwise
},
{
TI
(
ngraph
::
op
::
Sqrt
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
Sqrt
>
},
{
TI
(
ngraph
::
op
::
Convolution
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
Convolution
>
},
{
TI
(
ngraph
::
op
::
ConvolutionBackpropFilters
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
ConvolutionBackpropFilters
>
},
{
TI
(
ngraph
::
op
::
ConvolutionBackpropData
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
ConvolutionBackpropData
>
},
{
TI
(
ngraph
::
op
::
Not
),
&
GPU_Emitter
::
EmitUnaryElementwise
},
{
TI
(
ngraph
::
op
::
MaxPool
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
MaxPool
>
},
{
TI
(
ngraph
::
op
::
Reverse
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
Reverse
>
},
{
TI
(
ngraph
::
op
::
Result
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
Result
>
},
{
TI
(
ngraph
::
op
::
ReduceWindow
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
ReduceWindow
>
},
{
TI
(
ngraph
::
op
::
SelectAndScatter
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
SelectAndScatter
>
},
{
TI
(
ngraph
::
op
::
AvgPool
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
AvgPool
>
},
{
TI
(
ngraph
::
op
::
AvgPoolBackprop
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
AvgPoolBackprop
>
},
{
TI
(
ngraph
::
op
::
Pad
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
Pad
>
},
{
TI
(
ngraph
::
op
::
BatchNorm
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
BatchNorm
>
},
{
TI
(
ngraph
::
op
::
BatchNormBackprop
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
BatchNormBackprop
>
},
{
TI
(
ngraph
::
op
::
MaxPoolBackprop
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
MaxPoolBackprop
>
},
{
TI
(
ngraph
::
op
::
Product
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
Product
>
},
{
TI
(
ngraph
::
op
::
Max
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
Max
>
},
{
TI
(
ngraph
::
op
::
Min
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
Min
>
},
{
TI
(
ngraph
::
op
::
Relu
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
Relu
>
},
{
TI
(
ngraph
::
op
::
ReluBackprop
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
ReluBackprop
>
},
{
TI
(
ngraph
::
op
::
Softmax
),
&
GPU_Emitter
::
emit
<
ngraph
::
op
::
Softmax
>
},
};
GPU_ExternalFunction
::
GPU_ExternalFunction
(
const
shared_ptr
<
ngraph
::
Function
>&
function
,
bool
release_function
)
:
ngraph
::
runtime
::
ExternalFunction
(
function
,
release_function
)
,
m_compiled_function
(
nullptr
)
,
m_emit_timing
(
std
::
getenv
(
"NGRAPH_GPU_EMIT_TIMING"
)
!=
nullptr
)
{
}
void
GPU_ExternalFunction
::
compile
()
{
if
(
m_is_compiled
)
{
return
;
}
void
GPU_ExternalFunction
::
compile
()
{
if
(
m_is_compiled
)
{
return
;
}
string
function_name
=
m_function
->
get_name
();
string
dump_filename
=
file_util
::
path_join
(
s_output_dir
,
function_name
+
"_ops.txt"
);
string
function_name
=
m_function
->
get_name
();
string
dump_filename
=
file_util
::
path_join
(
s_output_dir
,
function_name
+
"_ops.txt"
);
pass
::
Manager
pass_manager
;
// pass_manager.register_pass<pass::TopologicalSort>();
// For now, just make everyone row-major.
pass_manager
.
register_pass
<
pass
::
AssignLayout
<
descriptor
::
layout
::
DenseTensorViewLayout
>>
();
pass_manager
.
register_pass
<
pass
::
Liveness
>
();
pass_manager
.
register_pass
<
pass
::
MemoryLayout
>
(
64
);
pass_manager
.
register_pass
<
pass
::
DumpSorted
>
(
dump_filename
);
pass_manager
.
run_passes
(
m_function
);
pass
::
Manager
pass_manager
;
// pass_manager.register_pass<pass::TopologicalSort>();
// For now, just make everyone row-major.
pass_manager
.
register_pass
<
pass
::
AssignLayout
<
descriptor
::
layout
::
DenseTensorViewLayout
>>
();
pass_manager
.
register_pass
<
pass
::
Liveness
>
();
pass_manager
.
register_pass
<
pass
::
MemoryLayout
>
(
64
);
pass_manager
.
register_pass
<
pass
::
DumpSorted
>
(
dump_filename
);
pass_manager
.
run_passes
(
m_function
);
codegen
::
CodeWriter
writer
;
codegen
::
CodeWriter
writer
;
writer
+=
R"(// Generated by the NGraph GPU backend
writer
+=
R"(// Generated by the NGraph GPU backend
#include <cublas_v2.h>
#include <cuda.h>
#include <cuda_runtime.h>
...
...
@@ -302,532 +297,560 @@ void GPU_ExternalFunction::compile()
#include "ngraph/util.hpp"
)"
;
string
pch_header_source
=
writer
.
get_code
();
string
pch_header_source
=
writer
.
get_code
();
writer
+=
R"(
writer
+=
R"(
using namespace ngraph;
using namespace std;
)"
;
if
(
m_emit_timing
)
{
writer
<<
"// Declare debug timers
\n
"
;
vector
<
string
>
names
;
for
(
shared_ptr
<
Function
>
current_function
:
pass_manager
.
get_state
().
get_functions
())
{
for
(
shared_ptr
<
Node
>
node
:
current_function
->
get_ordered_ops
())
{
if
(
!
node
->
is_parameter
()
&&
!
node
->
is_constant
())
if
(
m_emit_timing
)
{
names
.
push_back
(
node
->
get_name
());
writer
<<
"// Declare debug timers
\n
"
;
vector
<
string
>
names
;
for
(
shared_ptr
<
Function
>
current_function
:
pass_manager
.
get_state
().
get_functions
())
{
for
(
shared_ptr
<
Node
>
node
:
current_function
->
get_ordered_ops
())
{
if
(
!
node
->
is_parameter
()
&&
!
node
->
is_constant
())
{
names
.
push_back
(
node
->
get_name
());
}
}
}
for
(
const
string
&
s
:
names
)
{
writer
<<
"ngraph::stopwatch timer_"
<<
s
<<
";
\n
"
;
}
writer
<<
"extern
\"
C
\"
size_t get_debug_timer_count() { return "
<<
names
.
size
()
<<
"; }
\n
"
;
writer
<<
"extern
\"
C
\"
const char* get_debug_timer_name(size_t index)
\n
"
;
writer
<<
"{
\n
"
;
writer
.
indent
++
;
writer
<<
"const char* rc;
\n
"
;
writer
<<
"switch(index)
\n
"
;
writer
<<
"{
\n
"
;
for
(
size_t
i
=
0
;
i
<
names
.
size
();
i
++
)
{
writer
<<
"case "
<<
i
<<
": rc =
\"
"
<<
names
[
i
]
<<
"
\"
; break;
\n
"
;
}
writer
<<
"default: rc =
\"\"
;
\n
"
;
writer
<<
"}
\n
"
;
writer
<<
"return rc;
\n
"
;
writer
.
indent
--
;
writer
<<
"}
\n
"
;
writer
<<
"extern
\"
C
\"
const size_t get_debug_timer_microseconds(size_t index)
\n
"
;
writer
<<
"{
\n
"
;
writer
.
indent
++
;
writer
<<
"size_t rc;
\n
"
;
writer
<<
"switch(index)
\n
"
;
writer
<<
"{
\n
"
;
for
(
size_t
i
=
0
;
i
<
names
.
size
();
i
++
)
{
writer
<<
"case "
<<
i
<<
": rc = timer_"
<<
names
[
i
]
<<
".get_total_microseconds(); break;
\n
"
;
}
writer
<<
"default: rc = 0;
\n
"
;
writer
<<
"}
\n
"
;
writer
<<
"return rc;
\n
"
;
writer
.
indent
--
;
writer
<<
"}
\n
"
;
writer
<<
"extern
\"
C
\"
const size_t get_debug_timer_call_count(size_t index)
\n
"
;
writer
<<
"{
\n
"
;
writer
.
indent
++
;
writer
<<
"size_t rc;
\n
"
;
writer
<<
"switch(index)
\n
"
;
writer
<<
"{
\n
"
;
for
(
size_t
i
=
0
;
i
<
names
.
size
();
i
++
)
{
writer
<<
"case "
<<
i
<<
": rc = timer_"
<<
names
[
i
]
<<
".get_call_count(); break;
\n
"
;
}
writer
<<
"default: rc = 0;
\n
"
;
writer
<<
"}
\n
"
;
writer
<<
"return rc;
\n
"
;
writer
.
indent
--
;
writer
<<
"}
\n
"
;
writer
<<
"
\n
"
;
}
// // The "dso_handle" symbol is required by __cxa_atexit()
// // which is enabled because the JIT uses it as the default mechanism
// // to register cleanup handlers. We use it, and not atexit(), because
// // atexit() happens too late, when the JIT is no longer alive
writer
<<
"void *__dso_handle = 0;
\n\n
"
;
writer
<<
"// Declare all constants
\n
"
;
for
(
shared_ptr
<
Function
>
current_function
:
pass_manager
.
get_state
().
get_functions
())
{
for
(
shared_ptr
<
Node
>
node
:
current_function
->
get_ordered_ops
())
{
const
op
::
Constant
*
c
=
dynamic_cast
<
ngraph
::
op
::
Constant
*>
(
node
.
get
());
if
(
c
)
{
shared_ptr
<
descriptor
::
TensorView
>
tv
=
node
->
get_outputs
()[
0
].
get_tensor_view
();
auto
c_value_strings
=
c
->
get_value_strings
();
writer
<<
"static "
<<
tv
->
get_tensor
().
get_element_type
().
c_type_string
()
<<
" "
<<
tv
->
get_tensor
().
get_name
()
<<
"_cpu["
<<
c_value_strings
.
size
()
<<
"] =
\n
"
;
writer
<<
"{
\n
"
;
writer
.
indent
++
;
writer
<<
emit_string_array
(
c_value_strings
,
100
-
writer
.
indent
*
4
);
writer
.
indent
--
;
writer
<<
"
\n
};
\n\n
"
;
writer
<<
"static "
<<
tv
->
get_tensor
().
get_element_type
().
c_type_string
()
<<
" *"
<<
tv
->
get_tensor
().
get_name
()
<<
";
\n
"
;
m_variable_name_map
[
tv
->
get_tensor
().
get_name
()]
=
tv
->
get_tensor
().
get_name
();
}
}
}
}
}
for
(
const
string
&
s
:
names
)
{
writer
<<
"ngraph::stopwatch timer_"
<<
s
<<
";
\n
"
;
}
writer
<<
"extern
\"
C
\"
size_t get_debug_timer_count() { return "
<<
names
.
size
()
<<
"; }
\n
"
;
writer
<<
"extern
\"
C
\"
const char* get_debug_timer_name(size_t index)
\n
"
;
writer
<<
"{
\n
"
;
writer
.
indent
++
;
writer
<<
"const char* rc;
\n
"
;
writer
<<
"switch(index)
\n
"
;
writer
<<
"{
\n
"
;
for
(
size_t
i
=
0
;
i
<
names
.
size
();
i
++
)
{
writer
<<
"case "
<<
i
<<
": rc =
\"
"
<<
names
[
i
]
<<
"
\"
; break;
\n
"
;
}
writer
<<
"default: rc =
\"\"
;
\n
"
;
writer
<<
"}
\n
"
;
writer
<<
"return rc;
\n
"
;
writer
.
indent
--
;
writer
<<
"}
\n
"
;
writer
<<
"extern
\"
C
\"
const size_t get_debug_timer_microseconds(size_t index)
\n
"
;
writer
<<
"{
\n
"
;
writer
.
indent
++
;
writer
<<
"size_t rc;
\n
"
;
writer
<<
"switch(index)
\n
"
;
writer
<<
"{
\n
"
;
for
(
size_t
i
=
0
;
i
<
names
.
size
();
i
++
)
{
writer
<<
"case "
<<
i
<<
": rc = timer_"
<<
names
[
i
]
<<
".get_total_microseconds(); break;
\n
"
;
}
writer
<<
"default: rc = 0;
\n
"
;
writer
<<
"}
\n
"
;
writer
<<
"return rc;
\n
"
;
writer
.
indent
--
;
writer
<<
"}
\n
"
;
writer
<<
"extern
\"
C
\"
const size_t get_debug_timer_call_count(size_t index)
\n
"
;
writer
<<
"{
\n
"
;
writer
.
indent
++
;
writer
<<
"size_t rc;
\n
"
;
writer
<<
"switch(index)
\n
"
;
writer
<<
"{
\n
"
;
for
(
size_t
i
=
0
;
i
<
names
.
size
();
i
++
)
{
writer
<<
"case "
<<
i
<<
": rc = timer_"
<<
names
[
i
]
<<
".get_call_count(); break;
\n
"
;
}
writer
<<
"default: rc = 0;
\n
"
;
writer
<<
"}
\n
"
;
writer
<<
"return rc;
\n
"
;
writer
.
indent
--
;
writer
<<
"}
\n
"
;
writer
<<
"
\n
"
;
}
// // The "dso_handle" symbol is required by __cxa_atexit()
// // which is enabled because the JIT uses it as the default mechanism
// // to register cleanup handlers. We use it, and not atexit(), because
// // atexit() happens too late, when the JIT is no longer alive
writer
<<
"void *__dso_handle = 0;
\n\n
"
;
writer
<<
"// Declare all constants
\n
"
;
for
(
shared_ptr
<
Function
>
current_function
:
pass_manager
.
get_state
().
get_functions
())
{
for
(
shared_ptr
<
Node
>
node
:
current_function
->
get_ordered_ops
())
{
const
op
::
Constant
*
c
=
dynamic_cast
<
ngraph
::
op
::
Constant
*>
(
node
.
get
());
if
(
c
)
{
shared_ptr
<
descriptor
::
TensorView
>
tv
=
node
->
get_outputs
()[
0
].
get_tensor_view
();
auto
c_value_strings
=
c
->
get_value_strings
();
writer
<<
"static "
<<
tv
->
get_tensor
().
get_element_type
().
c_type_string
()
<<
" "
<<
tv
->
get_tensor
().
get_name
()
<<
"_cpu["
<<
c_value_strings
.
size
()
<<
"] =
\n
"
;
writer
<<
"{
\n
"
;
writer
.
indent
++
;
writer
<<
emit_string_array
(
c_value_strings
,
100
-
writer
.
indent
*
4
);
writer
.
indent
--
;
writer
<<
"
\n
};
\n\n
"
;
writer
<<
"static "
<<
tv
->
get_tensor
().
get_element_type
().
c_type_string
()
<<
" *"
<<
tv
->
get_tensor
().
get_name
()
<<
";
\n
"
;
m_variable_name_map
[
tv
->
get_tensor
().
get_name
()]
=
tv
->
get_tensor
().
get_name
();
}
}
}
writer
<<
"// Declare all functions
\n
"
;
for
(
shared_ptr
<
Function
>
f
:
pass_manager
.
get_state
().
get_functions
())
{
writer
<<
"extern
\"
C
\"
void "
<<
f
->
get_name
()
<<
"(void** inputs, void** outputs, "
"cublasHandle_t& cublas_handle, "
"cudnnHandle_t& cudnn_handle);
\n
"
;
}
writer
<<
"
\n
"
;
writer
<<
"// Declare all functions
\n
"
;
for
(
shared_ptr
<
Function
>
f
:
pass_manager
.
get_state
().
get_functions
())
{
writer
<<
"extern
\"
C
\"
void "
<<
f
->
get_name
()
<<
"(void** inputs, void** outputs, "
"cublasHandle_t& cublas_handle, "
"cudnnHandle_t& cudnn_handle);
\n
"
;
}
unordered_map
<
Node
*
,
string
>
match_functions
;
for
(
shared_ptr
<
Function
>
current_function
:
pass_manager
.
get_state
().
get_functions
())
{
bool
temporaries_used
=
false
;
size_t
worst_case_tmp_size
=
0
;
writer
<<
"
\n
"
;
set
<
string
>
output_names
;
for
(
shared_ptr
<
Node
>
op
:
current_function
->
get_results
())
{
shared_ptr
<
descriptor
::
TensorView
>
tv
=
op
->
get_output_tensor_view
();
output_names
.
insert
(
tv
->
get_tensor
().
get_name
());
}
const
list
<
shared_ptr
<
Node
>>&
tmp
=
current_function
->
get_ordered_ops
();
if
(
tmp
.
size
()
<
2
)
{
// Since we are comparing ops there must be at least two ops to proceed.
continue
;
}
vector
<
shared_ptr
<
Node
>>
op_list
{
tmp
.
begin
(),
tmp
.
end
()};
for
(
size_t
i
=
0
;
i
<
op_list
.
size
()
-
1
;
i
++
)
{
if
(
op_list
[
i
]
->
is_constant
()
||
op_list
[
i
]
->
is_parameter
())
{
continue
;
}
if
(
contains_key
(
match_functions
,
op_list
[
i
].
get
()))
{
continue
;
}
string
match_function_name
;
for
(
size_t
j
=
i
+
1
;
j
<
op_list
.
size
();
j
++
)
{
if
(
0
)
//op_list[i]->is_functionally_identical(*op_list[j]))
unordered_map
<
Node
*
,
string
>
match_functions
;
for
(
shared_ptr
<
Function
>
current_function
:
pass_manager
.
get_state
().
get_functions
())
{
if
(
match_function_name
.
empty
())
bool
temporaries_used
=
false
;
size_t
worst_case_tmp_size
=
0
;
set
<
string
>
output_names
;
for
(
shared_ptr
<
Node
>
op
:
current_function
->
get_results
())
{
match_function_name
=
"func_"
+
op_list
[
i
]
->
get_name
();
match_functions
.
insert
({
op_list
[
i
].
get
(),
match_function_name
}
);
shared_ptr
<
descriptor
::
TensorView
>
tv
=
op
->
get_output_tensor_view
();
output_names
.
insert
(
tv
->
get_tensor
().
get_name
()
);
}
match_functions
.
insert
({
op_list
[
j
].
get
(),
match_function_name
});
}
}
if
(
!
match_function_name
.
empty
())
{
writer
<<
"static void "
<<
match_function_name
<<
"("
;
writer
.
indent
++
;
// Work around a compiler warning (*node inside typeid may have effects
// with shared pointers, which is fine here but clang doesn't like it.)
auto
&
n
=
*
op_list
[
i
];
auto
handler
=
dispatcher
.
find
(
type_index
(
typeid
(
n
)));
vector
<
GPU_TensorViewWrapper
>
in
;
size_t
arg_index
=
0
;
set
<
string
>
arg_names
;
for
(
const
descriptor
::
Input
&
input
:
n
.
get_inputs
())
{
const
descriptor
::
Output
&
output
=
input
.
get_output
();
shared_ptr
<
descriptor
::
TensorView
>
tv
=
output
.
get_tensor_view
();
GPU_TensorViewWrapper
tvw
{
tv
,
"_arg"
+
to_string
(
arg_index
)};
if
(
!
contains
(
arg_names
,
tvw
.
get_name
()))
const
list
<
shared_ptr
<
Node
>>&
tmp
=
current_function
->
get_ordered_ops
();
if
(
tmp
.
size
()
<
2
)
{
arg_names
.
insert
(
tvw
.
get_name
());
if
(
arg_index
++
>
0
)
// Since we are comparing ops there must be at least two ops to proceed.
continue
;
}
vector
<
shared_ptr
<
Node
>>
op_list
{
tmp
.
begin
(),
tmp
.
end
()};
for
(
size_t
i
=
0
;
i
<
op_list
.
size
()
-
1
;
i
++
)
{
if
(
op_list
[
i
]
->
is_constant
()
||
op_list
[
i
]
->
is_parameter
())
{
continue
;
}
if
(
contains_key
(
match_functions
,
op_list
[
i
].
get
()))
{
continue
;
}
string
match_function_name
;
for
(
size_t
j
=
i
+
1
;
j
<
op_list
.
size
();
j
++
)
{
if
(
0
)
//op_list[i]->is_functionally_identical(*op_list[j]))
{
if
(
match_function_name
.
empty
())
{
match_function_name
=
"func_"
+
op_list
[
i
]
->
get_name
();
match_functions
.
insert
({
op_list
[
i
].
get
(),
match_function_name
});
}
match_functions
.
insert
({
op_list
[
j
].
get
(),
match_function_name
});
}
}
if
(
!
match_function_name
.
empty
())
{
writer
<<
","
;
writer
<<
"static void "
<<
match_function_name
<<
"("
;
writer
.
indent
++
;
// Work around a compiler warning (*node inside typeid may have effects
// with shared pointers, which is fine here but clang doesn't like it.)
auto
&
n
=
*
op_list
[
i
];
auto
handler
=
dispatcher
.
find
(
type_index
(
typeid
(
n
)));
vector
<
GPU_TensorViewWrapper
>
in
;
size_t
arg_index
=
0
;
set
<
string
>
arg_names
;
for
(
const
descriptor
::
Input
&
input
:
n
.
get_inputs
())
{
const
descriptor
::
Output
&
output
=
input
.
get_output
();
shared_ptr
<
descriptor
::
TensorView
>
tv
=
output
.
get_tensor_view
();
GPU_TensorViewWrapper
tvw
{
tv
,
"_arg"
+
to_string
(
arg_index
)};
if
(
!
contains
(
arg_names
,
tvw
.
get_name
()))
{
arg_names
.
insert
(
tvw
.
get_name
());
if
(
arg_index
++
>
0
)
{
writer
<<
","
;
}
writer
<<
"
\n
"
;
writer
<<
tvw
.
get_type
()
<<
"* "
<<
tvw
.
get_name
();
}
in
.
push_back
(
tvw
);
}
vector
<
GPU_TensorViewWrapper
>
out
;
for
(
const
descriptor
::
Output
&
output
:
n
.
get_outputs
())
{
shared_ptr
<
descriptor
::
TensorView
>
tv
=
output
.
get_tensor_view
();
GPU_TensorViewWrapper
tvw
{
tv
,
"_out"
+
to_string
(
arg_index
)};
if
(
arg_index
++
>
0
)
{
writer
<<
","
;
}
writer
<<
"
\n
"
;
writer
<<
tvw
.
get_type
()
<<
"* "
<<
tvw
.
get_name
();
out
.
push_back
(
tvw
);
}
writer
.
indent
--
;
writer
<<
"
\n
)
\n
"
;
writer
<<
"{
\n
"
;
writer
.
indent
++
;
handler
->
second
(
this
,
writer
,
&
n
,
in
,
out
);
writer
.
indent
--
;
writer
<<
"}
\n
"
;
}
writer
<<
"
\n
"
;
writer
<<
tvw
.
get_type
()
<<
"* "
<<
tvw
.
get_name
();
}
in
.
push_back
(
tvw
);
}
vector
<
GPU_TensorViewWrapper
>
out
;
for
(
const
descriptor
::
Output
&
output
:
n
.
get_outputs
())
for
(
shared_ptr
<
Function
>
current_function
:
pass_manager
.
get_state
().
get_functions
())
{
shared_ptr
<
descriptor
::
TensorView
>
tv
=
output
.
get_tensor_view
();
GPU_TensorViewWrapper
tvw
{
tv
,
"_out"
+
to_string
(
arg_index
)};
if
(
arg_index
++
>
0
)
set
<
string
>
output_names
;
for
(
shared_ptr
<
Node
>
op
:
current_function
->
get_results
())
{
writer
<<
","
;
shared_ptr
<
descriptor
::
TensorView
>
tv
=
op
->
get_output_tensor_view
();
output_names
.
insert
(
tv
->
get_tensor
().
get_name
());
}
set
<
descriptor
::
TensorView
*>
constants
;
for
(
shared_ptr
<
Node
>
node
:
current_function
->
get_ordered_ops
())
{
if
(
dynamic_cast
<
ngraph
::
op
::
Constant
*>
(
node
.
get
()))
{
shared_ptr
<
descriptor
::
TensorView
>
tv
=
node
->
get_outputs
()[
0
].
get_tensor_view
();
constants
.
insert
(
tv
.
get
());
}
}
writer
<<
"
\n
"
;
writer
<<
tvw
.
get_type
()
<<
"* "
<<
tvw
.
get_name
();
out
.
push_back
(
tvw
);
}
writer
.
indent
--
;
writer
<<
"
\n
)
\n
"
;
writer
<<
"{
\n
"
;
writer
.
indent
++
;
handler
->
second
(
this
,
writer
,
&
n
,
in
,
out
);
writer
.
indent
--
;
writer
<<
"}
\n
"
;
}
}
}
for
(
shared_ptr
<
Function
>
current_function
:
pass_manager
.
get_state
().
get_functions
())
{
set
<
string
>
output_names
;
for
(
shared_ptr
<
Node
>
op
:
current_function
->
get_results
())
{
shared_ptr
<
descriptor
::
TensorView
>
tv
=
op
->
get_output_tensor_view
();
output_names
.
insert
(
tv
->
get_tensor
().
get_name
());
}
set
<
descriptor
::
TensorView
*>
constants
;
for
(
shared_ptr
<
Node
>
node
:
current_function
->
get_ordered_ops
())
{
if
(
dynamic_cast
<
ngraph
::
op
::
Constant
*>
(
node
.
get
()))
{
shared_ptr
<
descriptor
::
TensorView
>
tv
=
node
->
get_outputs
()[
0
].
get_tensor_view
();
constants
.
insert
(
tv
.
get
());
}
}
writer
<<
"extern
\"
C
\"
void "
<<
current_function
->
get_name
();
writer
<<
"(void** inputs, void** outputs, cublasHandle_t& cublas_handle, cudnnHandle_t& "
"cudnn_handle)
\n
"
;
writer
<<
"{
\n
"
;
writer
.
indent
++
;
for
(
shared_ptr
<
Function
>
current_function
:
pass_manager
.
get_state
().
get_functions
())
{
for
(
shared_ptr
<
Node
>
node
:
current_function
->
get_ordered_ops
())
{
const
op
::
Constant
*
c
=
dynamic_cast
<
op
::
Constant
*>
(
node
.
get
());
if
(
c
)
{
shared_ptr
<
descriptor
::
TensorView
>
tv
=
node
->
get_outputs
()[
0
].
get_tensor_view
();
writer
<<
"if("
<<
tv
->
get_tensor
().
get_name
()
<<
" == NULL)
\n
"
;
writer
<<
"extern
\"
C
\"
void "
<<
current_function
->
get_name
();
writer
<<
"(void** inputs, void** outputs, cublasHandle_t& cublas_handle, "
"cudnnHandle_t& "
"cudnn_handle)
\n
"
;
writer
<<
"{
\n
"
;
writer
.
indent
++
;
writer
<<
"runtime::gpu::cuda_memcpyHtD("
<<
tv
->
get_tensor
().
get_name
()
<<
", "
<<
tv
->
get_tensor
().
get_name
()
<<
"_cpu, "
<<
tv
->
get_tensor
().
size
()
<<
");
\n
"
;
writer
.
indent
--
;
writer
<<
"}
\n
"
;
}
}
}
bool
temporaries_used
=
false
;
size_t
worst_case_tmp_size
=
0
;
for
(
shared_ptr
<
Node
>
node
:
current_function
->
get_ordered_ops
())
{
if
(
node
->
liveness_new_list
.
size
()
>
0
)
{
temporaries_used
=
true
;
for
(
descriptor
::
Tensor
*
tensor
:
node
->
liveness_new_list
)
{
worst_case_tmp_size
+=
tensor
->
size
();
}
}
}
if
(
temporaries_used
)
{
size_t
temp_pool_size
=
current_function
->
get_temporary_pool_size
();
writer
<<
"// Allocate the memory pool
\n
"
;
// TODO memory pool malloc.
writer
<<
"void* pool_base_ptr = ngraph::runtime::gpu::create_gpu_buffer("
<<
temp_pool_size
<<
");
\n
"
;
// Add temporaries to the variable name map
for
(
shared_ptr
<
Node
>
node
:
current_function
->
get_ordered_ops
())
{
for
(
descriptor
::
Tensor
*
tensor
:
node
->
liveness_new_list
)
{
stringstream
ss
;
ss
<<
"(("
<<
tensor
->
get_element_type
().
c_type_string
()
<<
"*)((char *)pool_base_ptr + "
<<
tensor
->
get_pool_offset
()
<<
"))"
;
m_variable_name_map
[
tensor
->
get_name
()]
=
ss
.
str
();
}
}
}
// Add inputs to the variable name map
size_t
arg_index
=
0
;
for
(
shared_ptr
<
ngraph
::
op
::
Parameter
>
param
:
current_function
->
get_parameters
())
{
for
(
size_t
i
=
0
;
i
<
param
->
get_output_size
();
++
i
)
{
shared_ptr
<
descriptor
::
TensorView
>
tv
=
param
->
get_output_tensor_view
(
i
);
const
element
::
Type
&
et
=
tv
->
get_tensor_view_type
()
->
get_element_type
();
string
type
=
et
.
c_type_string
();
stringstream
ss
;
ss
<<
"(("
<<
type
<<
"*)(inputs["
<<
arg_index
<<
"]))"
;
m_variable_name_map
[
tv
->
get_tensor
().
get_name
()]
=
ss
.
str
();
arg_index
++
;
}
}
for
(
shared_ptr
<
Function
>
current_function
:
pass_manager
.
get_state
().
get_functions
())
{
for
(
shared_ptr
<
Node
>
node
:
current_function
->
get_ordered_ops
())
{
const
op
::
Constant
*
c
=
dynamic_cast
<
op
::
Constant
*>
(
node
.
get
());
if
(
c
)
{
shared_ptr
<
descriptor
::
TensorView
>
tv
=
node
->
get_outputs
()[
0
].
get_tensor_view
();
writer
<<
"if("
<<
tv
->
get_tensor
().
get_name
()
<<
" == NULL)
\n
"
;
writer
<<
"{
\n
"
;
writer
.
indent
++
;
writer
<<
"runtime::gpu::cuda_memcpyHtD("
<<
tv
->
get_tensor
().
get_name
()
<<
", "
<<
tv
->
get_tensor
().
get_name
()
<<
"_cpu, "
<<
tv
->
get_tensor
().
size
()
<<
");
\n
"
;
writer
.
indent
--
;
writer
<<
"}
\n
"
;
}
}
}
bool
temporaries_used
=
false
;
size_t
worst_case_tmp_size
=
0
;
for
(
shared_ptr
<
Node
>
node
:
current_function
->
get_ordered_ops
())
{
if
(
node
->
liveness_new_list
.
size
()
>
0
)
{
temporaries_used
=
true
;
for
(
descriptor
::
Tensor
*
tensor
:
node
->
liveness_new_list
)
{
worst_case_tmp_size
+=
tensor
->
size
();
}
}
}
if
(
temporaries_used
)
{
size_t
temp_pool_size
=
current_function
->
get_temporary_pool_size
();
writer
<<
"// Allocate the memory pool
\n
"
;
// TODO memory pool malloc.
writer
<<
"void* pool_base_ptr = ngraph::runtime::gpu::create_gpu_buffer("
<<
temp_pool_size
<<
");
\n
"
;
// Add temporaries to the variable name map
for
(
shared_ptr
<
Node
>
node
:
current_function
->
get_ordered_ops
())
{
for
(
descriptor
::
Tensor
*
tensor
:
node
->
liveness_new_list
)
{
stringstream
ss
;
ss
<<
"(("
<<
tensor
->
get_element_type
().
c_type_string
()
<<
"*)((char *)pool_base_ptr + "
<<
tensor
->
get_pool_offset
()
<<
"))"
;
m_variable_name_map
[
tensor
->
get_name
()]
=
ss
.
str
();
}
}
}
// create output alias map
size_t
output_index
=
0
;
unordered_map
<
descriptor
::
TensorView
*
,
vector
<
size_t
>>
output_alias_map
;
vector
<
size_t
>
aliases
;
for
(
size_t
i
=
0
;
i
<
current_function
->
get_output_size
();
++
i
)
{
shared_ptr
<
Node
>
op
=
current_function
->
get_output_op
(
i
);
shared_ptr
<
descriptor
::
TensorView
>
otv
=
op
->
get_output_tensor_view
();
vector
<
size_t
>&
al
=
output_alias_map
[
otv
.
get
()];
al
.
push_back
(
output_index
);
if
(
al
.
size
()
>
1
)
{
aliases
.
push_back
(
output_index
);
}
output_index
++
;
}
// Add inputs to the variable name map
size_t
arg_index
=
0
;
for
(
shared_ptr
<
ngraph
::
op
::
Parameter
>
param
:
current_function
->
get_parameters
())
{
for
(
size_t
i
=
0
;
i
<
param
->
get_output_size
();
++
i
)
{
shared_ptr
<
descriptor
::
TensorView
>
tv
=
param
->
get_output_tensor_view
(
i
);
const
element
::
Type
&
et
=
tv
->
get_tensor_view_type
()
->
get_element_type
();
string
type
=
et
.
c_type_string
();
stringstream
ss
;
ss
<<
"(("
<<
type
<<
"*)(inputs["
<<
arg_index
<<
"]))"
;
m_variable_name_map
[
tv
->
get_tensor
().
get_name
()]
=
ss
.
str
();
arg_index
++
;
}
}
// Add outputs to the variable name map
output_index
=
0
;
for
(
size_t
i
=
0
;
i
<
current_function
->
get_output_size
();
++
i
)
{
shared_ptr
<
Node
>
op
=
current_function
->
get_output_op
(
i
);
shared_ptr
<
descriptor
::
TensorView
>
tv
=
op
->
get_output_tensor_view
();
const
element
::
Type
&
et
=
tv
->
get_tensor_view_type
()
->
get_element_type
();
bool
parameter_as_output
=
false
;
for
(
shared_ptr
<
ngraph
::
op
::
Parameter
>
param
:
current_function
->
get_parameters
())
{
for
(
const
descriptor
::
Output
&
pout
:
param
->
get_outputs
())
{
shared_ptr
<
descriptor
::
TensorView
>
ptv
=
pout
.
get_tensor_view
();
if
(
tv
==
ptv
)
// create output alias map
size_t
output_index
=
0
;
unordered_map
<
descriptor
::
TensorView
*
,
vector
<
size_t
>>
output_alias_map
;
vector
<
size_t
>
aliases
;
for
(
size_t
i
=
0
;
i
<
current_function
->
get_output_size
();
++
i
)
{
parameter_as_output
=
true
;
writer
<<
"ngraph::runtime::gpu::cuda_memcpyDtD(reinterpret_cast<"
<<
et
.
c_type_string
()
<<
"*>(outputs["
<<
output_index
<<
"]), "
<<
m_variable_name_map
[
ptv
->
get_tensor
().
get_name
()]
<<
", "
<<
ptv
->
get_tensor
().
size
()
<<
");
\n
"
;
break
;
shared_ptr
<
Node
>
op
=
current_function
->
get_output_op
(
i
);
shared_ptr
<
descriptor
::
TensorView
>
otv
=
op
->
get_output_tensor_view
();
vector
<
size_t
>&
al
=
output_alias_map
[
otv
.
get
()];
al
.
push_back
(
output_index
);
if
(
al
.
size
()
>
1
)
{
aliases
.
push_back
(
output_index
);
}
output_index
++
;
}
// Add outputs to the variable name map
output_index
=
0
;
for
(
size_t
i
=
0
;
i
<
current_function
->
get_output_size
();
++
i
)
{
shared_ptr
<
Node
>
op
=
current_function
->
get_output_op
(
i
);
shared_ptr
<
descriptor
::
TensorView
>
tv
=
op
->
get_output_tensor_view
();
const
element
::
Type
&
et
=
tv
->
get_tensor_view_type
()
->
get_element_type
();
bool
parameter_as_output
=
false
;
for
(
shared_ptr
<
ngraph
::
op
::
Parameter
>
param
:
current_function
->
get_parameters
())
{
for
(
const
descriptor
::
Output
&
pout
:
param
->
get_outputs
())
{
shared_ptr
<
descriptor
::
TensorView
>
ptv
=
pout
.
get_tensor_view
();
if
(
tv
==
ptv
)
{
parameter_as_output
=
true
;
writer
<<
"ngraph::runtime::gpu::cuda_memcpyDtD(reinterpret_cast<"
<<
et
.
c_type_string
()
<<
"*>(outputs["
<<
output_index
<<
"]), "
<<
m_variable_name_map
[
ptv
->
get_tensor
().
get_name
()]
<<
", "
<<
ptv
->
get_tensor
().
size
()
<<
");
\n
"
;
break
;
}
}
}
if
(
!
parameter_as_output
&&
!
contains
(
aliases
,
output_index
))
{
if
(
contains
(
constants
,
tv
.
get
()))
{
writer
<<
"ngraph::runtime::gpu::cuda_memcpyHtD(outputs["
<<
output_index
<<
"], "
<<
tv
->
get_tensor
().
get_name
()
<<
", "
<<
tv
->
get_tensor
().
size
()
<<
");
\n
"
;
}
else
{
string
type
=
et
.
c_type_string
();
stringstream
ss
;
ss
<<
"(("
<<
type
<<
"*)(outputs["
<<
output_index
<<
"]))"
;
m_variable_name_map
[
tv
->
get_tensor
().
get_name
()]
=
ss
.
str
();
}
}
output_index
++
;
}
for
(
shared_ptr
<
Node
>
node
:
current_function
->
get_ordered_ops
())
{
auto
&
n
=
*
node
;
// Work around a compiler warning (*node inside typeid may have effects
// with shared pointers, which is fine here but clang doesn't like it.)
auto
handler
=
dispatcher
.
find
(
type_index
(
typeid
(
n
)));
if
(
handler
==
dispatcher
.
end
())
{
throw
ngraph_error
(
"Unhandled op during code generation : "
+
node
->
description
());
}
vector
<
GPU_TensorViewWrapper
>
in
;
for
(
const
descriptor
::
Input
&
input
:
node
->
get_inputs
())
{
const
descriptor
::
Output
&
output
=
input
.
get_output
();
shared_ptr
<
descriptor
::
TensorView
>
tv
=
output
.
get_tensor_view
();
in
.
push_back
(
GPU_TensorViewWrapper
(
tv
,
m_variable_name_map
[
tv
->
get_tensor
().
get_name
()]));
}
vector
<
GPU_TensorViewWrapper
>
out
;
for
(
const
descriptor
::
Output
&
output
:
node
->
get_outputs
())
{
shared_ptr
<
descriptor
::
TensorView
>
tv
=
output
.
get_tensor_view
();
out
.
push_back
(
GPU_TensorViewWrapper
(
tv
,
m_variable_name_map
[
tv
->
get_tensor
().
get_name
()]));
}
// Emit operation prologue
if
(
!
node
->
is_parameter
()
&&
!
node
->
is_constant
())
{
if
(
m_emit_timing
)
{
emit_debug_function_entry
(
writer
,
node
.
get
(),
in
,
out
);
}
}
// Emit operation body
string
func_name
;
auto
it
=
match_functions
.
find
(
node
.
get
());
if
(
it
!=
match_functions
.
end
())
{
func_name
=
it
->
second
;
}
if
(
func_name
.
empty
())
{
handler
->
second
(
this
,
writer
,
node
.
get
(),
in
,
out
);
}
else
{
vector
<
string
>
names
;
for
(
const
GPU_TensorViewWrapper
&
tv
:
in
)
{
names
.
push_back
(
tv
.
get_name
());
}
for
(
const
GPU_TensorViewWrapper
&
tv
:
out
)
{
names
.
push_back
(
tv
.
get_name
());
}
writer
<<
func_name
<<
"("
<<
join
(
names
)
<<
");
\n
"
;
}
// Emit operation epilogue
if
(
!
node
->
is_parameter
()
&&
!
node
->
is_constant
())
{
if
(
m_emit_timing
)
{
emit_debug_function_exit
(
writer
,
node
.
get
(),
in
,
out
);
}
}
}
writer
.
indent
--
;
// End generated function
writer
+=
"}
\n\n
"
;
}
}
if
(
!
parameter_as_output
&&
!
contains
(
aliases
,
output_index
))
{
if
(
contains
(
constants
,
tv
.
get
()))
// TODO: Cleanup and make this a utility function
file_util
::
make_directory
(
s_output_dir
);
string
filename
=
file_util
::
path_join
(
s_output_dir
,
function_name
+
"_codegen.cpp"
);
ofstream
out
(
filename
);
string
code
=
writer
.
get_code
();
out
<<
code
;
out
.
close
();
m_compiler
.
reset
(
new
codegen
::
Compiler
());
m_execution_engine
.
reset
(
new
codegen
::
ExecutionEngine
());
m_compiler
->
set_precompiled_header_source
(
pch_header_source
);
auto
codegen_module
=
m_compiler
->
compile
(
code
);
if
(
codegen_module
==
nullptr
)
{
writer
<<
"ngraph::runtime::gpu::cuda_memcpyHtD(outputs["
<<
output_index
<<
"], "
<<
tv
->
get_tensor
().
get_name
()
<<
", "
<<
tv
->
get_tensor
().
size
()
<<
");
\n
"
;
throw
runtime_error
(
"function failed to compile"
);
}
else
m_execution_engine
->
add_module
(
codegen_module
);
m_execution_engine
->
finalize
();
m_compiled_function
=
m_execution_engine
->
find_function
<
EntryPoint_t
>
(
function_name
);
assert
(
m_compiled_function
);
m_is_compiled
=
true
;
if
(
m_release_function
)
{
string
type
=
et
.
c_type_string
();
stringstream
ss
;
ss
<<
"(("
<<
type
<<
"*)(outputs["
<<
output_index
<<
"]))"
;
m_variable_name_map
[
tv
->
get_tensor
().
get_name
()]
=
ss
.
str
();
release_function
();
}
}
output_index
++
;
}
for
(
shared_ptr
<
Node
>
node
:
current_function
->
get_ordered_ops
())
{
auto
&
n
=
*
node
;
// Work around a compiler warning (*node inside typeid may have effects
// with shared pointers, which is fine here but clang doesn't like it.)
auto
handler
=
dispatcher
.
find
(
type_index
(
typeid
(
n
)));
if
(
handler
==
dispatcher
.
end
())
void
GPU_ExternalFunction
::
handle_output_alias
(
codegen
::
CodeWriter
&
writer
,
const
Node
&
node
,
const
unordered_map
<
descriptor
::
TensorView
*
,
vector
<
size_t
>>&
output_alias_map
)
{
throw
ngraph_error
(
"Unhandled op during code generation : "
+
node
->
description
());
}
vector
<
GPU_TensorViewWrapper
>
in
;
for
(
const
descriptor
::
Input
&
input
:
node
->
get_inputs
())
{
const
descriptor
::
Output
&
output
=
input
.
get_output
();
shared_ptr
<
descriptor
::
TensorView
>
tv
=
output
.
get_tensor_view
();
in
.
push_back
(
GPU_TensorViewWrapper
(
tv
,
m_variable_name_map
[
tv
->
get_tensor
().
get_name
()]));
}
vector
<
GPU_TensorViewWrapper
>
out
;
for
(
const
descriptor
::
Output
&
output
:
node
->
get_outputs
())
{
shared_ptr
<
descriptor
::
TensorView
>
tv
=
output
.
get_tensor_view
();
out
.
push_back
(
GPU_TensorViewWrapper
(
tv
,
m_variable_name_map
[
tv
->
get_tensor
().
get_name
()]));
}
// Emit operation prologue
if
(
!
node
->
is_parameter
()
&&
!
node
->
is_constant
())
{
if
(
m_emit_timing
)
for
(
const
descriptor
::
Output
&
output
:
node
.
get_outputs
())
{
emit_debug_function_entry
(
writer
,
node
.
get
(),
in
,
out
);
shared_ptr
<
descriptor
::
TensorView
>
otv
=
output
.
get_tensor_view
();
auto
it
=
output_alias_map
.
find
(
otv
.
get
());
if
(
it
!=
output_alias_map
.
end
())
{
const
vector
<
size_t
>&
outputs
=
it
->
second
;
if
(
outputs
.
size
()
>
1
)
{
writer
<<
"{ // handle output alias for previous op
\n
"
;
writer
.
indent
++
;
for
(
size_t
i
=
1
;
i
<
outputs
.
size
();
i
++
)
{
writer
<<
"ngraph::runtime::gpu::cuda_memcpyDtD(static_cast<void*>("
"outputs["
<<
outputs
[
i
]
<<
"]), static_cast<void*>(outputs["
<<
outputs
[
0
]
<<
"]), "
<<
otv
->
get_tensor
().
size
()
<<
");
\n
"
;
}
writer
.
indent
--
;
writer
<<
"}
\n
"
;
}
}
}
}
// Emit operation body
string
func_name
;
auto
it
=
match_functions
.
find
(
node
.
get
());
if
(
it
!=
match_functions
.
end
())
{
func_name
=
it
->
second
;
}
if
(
func_name
.
empty
())
{
handler
->
second
(
this
,
writer
,
node
.
get
(),
in
,
out
);
}
else
shared_ptr
<
ngraph
::
runtime
::
CallFrame
>
GPU_ExternalFunction
::
make_call_frame
()
{
vector
<
string
>
names
;
for
(
const
GPU_TensorViewWrapper
&
tv
:
in
)
if
(
!
m_is_compiled
)
{
names
.
push_back
(
tv
.
get_name
()
);
compile
(
);
}
for
(
const
GPU_TensorViewWrapper
&
tv
:
out
)
{
names
.
push_back
(
tv
.
get_name
());
}
writer
<<
func_name
<<
"("
<<
join
(
names
)
<<
");
\n
"
;
return
make_shared
<
GPU_CallFrame
>
(
shared_from_this
(),
m_compiled_function
);
}
// Emit operation epilogue
if
(
!
node
->
is_parameter
()
&&
!
node
->
is_constant
())
void
GPU_ExternalFunction
::
emit_debug_function_entry
(
codegen
::
CodeWriter
&
writer
,
Node
*
node
,
const
std
::
vector
<
GPU_TensorViewWrapper
>&
in
,
const
std
::
vector
<
GPU_TensorViewWrapper
>&
out
)
{
if
(
m_emit_timing
)
{
emit_debug_function_exit
(
writer
,
node
.
get
(),
in
,
out
);
}
writer
<<
"timer_"
<<
node
->
get_name
()
<<
".start();
\n
"
;
}
}
writer
.
indent
--
;
// End generated function
writer
+=
"}
\n\n
"
;
}
// TODO: Cleanup and make this a utility function
file_util
::
make_directory
(
s_output_dir
);
string
filename
=
file_util
::
path_join
(
s_output_dir
,
function_name
+
"_codegen.cpp"
);
ofstream
out
(
filename
);
string
code
=
writer
.
get_code
();
out
<<
code
;
out
.
close
();
m_compiler
.
reset
(
new
codegen
::
Compiler
());
m_execution_engine
.
reset
(
new
codegen
::
ExecutionEngine
());
m_compiler
->
set_precompiled_header_source
(
pch_header_source
);
auto
codegen_module
=
m_compiler
->
compile
(
code
);
if
(
codegen_module
==
nullptr
)
{
throw
runtime_error
(
"function failed to compile"
);
}
m_execution_engine
->
add_module
(
codegen_module
);
m_execution_engine
->
finalize
();
m_compiled_function
=
m_execution_engine
->
find_function
<
EntryPoint_t
>
(
function_name
);
assert
(
m_compiled_function
);
m_is_compiled
=
true
;
if
(
m_release_function
)
{
release_function
();
}
}
void
GPU_ExternalFunction
::
handle_output_alias
(
codegen
::
CodeWriter
&
writer
,
const
Node
&
node
,
const
unordered_map
<
descriptor
::
TensorView
*
,
vector
<
size_t
>>&
output_alias_map
)
{
for
(
const
descriptor
::
Output
&
output
:
node
.
get_outputs
())
{
shared_ptr
<
descriptor
::
TensorView
>
otv
=
output
.
get_tensor_view
();
auto
it
=
output_alias_map
.
find
(
otv
.
get
());
if
(
it
!=
output_alias_map
.
end
())
{
const
vector
<
size_t
>&
outputs
=
it
->
second
;
if
(
outputs
.
size
()
>
1
)
void
GPU_ExternalFunction
::
emit_debug_function_exit
(
codegen
::
CodeWriter
&
writer
,
Node
*
node
,
const
std
::
vector
<
GPU_TensorViewWrapper
>&
in
,
const
std
::
vector
<
GPU_TensorViewWrapper
>&
out
)
{
writer
<<
"{ // handle output alias for previous op
\n
"
;
writer
.
indent
++
;
for
(
size_t
i
=
1
;
i
<
outputs
.
size
();
i
++
)
{
writer
<<
"ngraph::runtime::gpu::cuda_memcpyDtD(static_cast<void*>(outputs["
<<
outputs
[
i
]
<<
"]), static_cast<void*>(outputs["
<<
outputs
[
0
]
<<
"]), "
<<
otv
->
get_tensor
().
size
()
<<
");
\n
"
;
}
writer
.
indent
--
;
writer
<<
"}
\n
"
;
writer
<<
"timer_"
<<
node
->
get_name
()
<<
".stop();
\n
"
;
}
}
}
}
shared_ptr
<
ngraph
::
runtime
::
CallFrame
>
GPU_ExternalFunction
::
make_call_frame
()
{
if
(
!
m_is_compiled
)
{
compile
();
}
return
make_shared
<
GPU_CallFrame
>
(
shared_from_this
(),
m_compiled_function
);
}
void
GPU_ExternalFunction
::
emit_debug_function_entry
(
codegen
::
CodeWriter
&
writer
,
Node
*
node
,
const
std
::
vector
<
GPU_TensorViewWrapper
>&
in
,
const
std
::
vector
<
GPU_TensorViewWrapper
>&
out
)
{
writer
<<
"timer_"
<<
node
->
get_name
()
<<
".start();
\n
"
;
}
void
GPU_ExternalFunction
::
emit_debug_function_exit
(
codegen
::
CodeWriter
&
writer
,
Node
*
node
,
const
std
::
vector
<
GPU_TensorViewWrapper
>&
in
,
const
std
::
vector
<
GPU_TensorViewWrapper
>&
out
)
{
writer
<<
"timer_"
<<
node
->
get_name
()
<<
".stop();
\n
"
;
}
}
}
}
\ No newline at end of file
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment