Unverified Commit b445086b authored by Scott Cyphers's avatar Scott Cyphers Committed by GitHub

Merge branch 'master' into cyphers/migrate

parents c869cda6 2574be4d
// ******************************************************************************
// Copyright 2018-2019 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// ******************************************************************************
try{ if(LABEL.trim() == "") {throw new Exception();} }catch(Exception e){LABEL="onnx && ci"}; echo "${LABEL}"
NGRPAH_REPOSITORY = "https://github.com/NervanaSystems/ngraph.git"
NGRAPH_COMMIT_HASH = "${ghprbActualCommit}" // particular nGraph PR commit hash
ONNX_REPOSITORY = "https://github.com/NervanaSystems/onnxruntime.git"
ONNX_RUNTIME_BRANCH = "release"
def main(){
timeout(activity: true, time: 15) {
try{
stage("CloneRepos"){
CloneRepos()
}
stage("Apply Patch"){
ApplyPatch()
}
stage("Onnx Models"){
BuildAndTest()
}
}
catch(e) {
// Set result to ABORTED if exception contains exit code of a process interrupted by SIGTERM
if ("$e".contains("143")) {
currentBuild.result = "ABORTED"
} else {
currentBuild.result = "FAILURE"
}
}
stage("Clean"){
Clean()
}
}
}
def CloneRepos() {
dir("ngraph"){
checkout([
$class: 'GitSCM',
branches: [[name: "${NGRAPH_COMMIT_HASH}"]],
doGenerateSubmoduleConfigurations: false,
extensions: [[
$class: 'SubmoduleOption',
disableSubmodules: false,
parentCredentials: true,
recursiveSubmodules: true,
reference: '',
trackingSubmodules: false,
timeout: 15
]],
submoduleCfg: [],
userRemoteConfigs: [[
refspec: '+refs/pull/*:refs/remotes/origin/pr/*',
url: "${NGRPAH_REPOSITORY}"
]]
])
}
dir("onnxruntime") {
checkout([
$class: 'GitSCM',
branches: [[name: "${ONNX_RUNTIME_BRANCH}"]],
doGenerateSubmoduleConfigurations: false,
extensions: [[
$class: 'SubmoduleOption',
disableSubmodules: false,
parentCredentials: true,
recursiveSubmodules: true,
reference: '',
trackingSubmodules: false,
timeout: 15
]],
submoduleCfg: [],
userRemoteConfigs: [[
url: "${ONNX_REPOSITORY}"
]]
])
}
}
def ApplyPatch(){
dir("onnxruntime"){
echo "Update cmake/external/ngraph.cmake with ${NGRAPH_COMMIT_HASH}"
sh """
sed -i 's/set(ngraph_TAG ".*")/set(ngraph_TAG "${NGRAPH_COMMIT_HASH}")/g' cmake/external/ngraph.cmake
grep -q "${NGRAPH_COMMIT_HASH}" cmake/external/ngraph.cmake
"""
echo "Add proxy to tools/ci_build/github/linux/docker/Dockerfile.ubuntu"
sh """
sed -i 's|{HTTP_PROXY}|${env.http_proxy}|g' ../ngraph/.ci/onnx/onnxruntime/proxy.patch
sed -i 's|{SOCKS_PROXY}|${env.socks_proxy}|g' ../ngraph/.ci/onnx/onnxruntime/proxy.patch
grep -q "${env.http_proxy}" ../ngraph/.ci/onnx/onnxruntime/proxy.patch
git apply ../ngraph/.ci/onnx/onnxruntime/proxy.patch
"""
}
}
def BuildAndTest(){
dir("onnxruntime"){
sh "mkdir -p `pwd`/build/models && chmod 777 `pwd`/build/models"
sh """
//!/bin/bash
./tools/ci_build/github/linux/run_dockerbuild.sh \
-o ubuntu16.04 \
-d ngraph \
-r `pwd`/build -x '--use_ngraph --use_full_protobuf --test_data_url https://onnxruntimetestdata.blob.core.windows.net/models/20190327.zip --test_data_checksum 45166d81c021c8aae212b53c92101792'
"""
}
}
def Clean(){
deleteDir()
}
node(LABEL) {
main()
}
diff --git a/tools/ci_build/github/linux/docker/Dockerfile.ubuntu b/tools/ci_build/github/linux/docker/Dockerfile.ubuntu
index bdff95e1..cd9c0008 100644
--- a/tools/ci_build/github/linux/docker/Dockerfile.ubuntu
+++ b/tools/ci_build/github/linux/docker/Dockerfile.ubuntu
@@ -3,6 +3,18 @@ FROM ubuntu:${OS_VERSION}
ARG PYTHON_VERSION=3.5
+ENV http_proxy={HTTP_PROXY}
+ENV socks_proxy={SOCKS_PROXY}
+ENV https_proxy={HTTP_PROXY}
+ENV ftp_proxy={HTTP_PROXY}
+ENV rsync_proxy={HTTP_PROXY}
+ENV no_proxy=intel.com,.intel.com,localhost
+ENV HTTP_PROXY={HTTP_PROXY}
+ENV HTTPS_PROXY={HTTP_PROXY}
+ENV FTP_PROXY={HTTP_PROXY}
+ENV SOCKS_PROXY={SOCKS_PROXY}
+ENV NO_PROXY=intel.com,.intel.com,localhost
+
ADD scripts /tmp/scripts
RUN /tmp/scripts/install_ubuntu.sh -p ${PYTHON_VERSION} && /tmp/scripts/install_deps.sh && rm -rf /tmp/scripts
Contributor Guidelines
======================
https://ngraph.nervanasys.com/docs/latest/project/code-contributor-README.html
The latest version of this file can be found at:
https://ngraph.nervanasys.com/docs/latest/project/contribution-guide.html
License
......
......@@ -20,8 +20,8 @@ set(MLIR_LLVM_REPO_URL https://github.com/llvm/llvm-project.git)
set(MLIR_REPO_URL https://github.com/tensorflow/mlir.git)
# Change these commit IDs to move to latest stable versions
set(MLIR_LLVM_COMMIT_ID bb2b527)
set(MLIR_COMMIT_ID 49f7efc)
set(MLIR_LLVM_COMMIT_ID c0cad98)
set(MLIR_COMMIT_ID 82d5084)
set(MLIR_PROJECT_ROOT ${CMAKE_CURRENT_BINARY_DIR}/mlir_project)
set(MLIR_LLVM_ROOT ${MLIR_PROJECT_ROOT}/llvm-projects)
set(MLIR_SOURCE_DIR ${MLIR_LLVM_ROOT}/llvm/projects/mlir)
......
......@@ -56,6 +56,7 @@ if (NGRAPH_MLIR_ENABLE)
MLIRExecutionEngine
MLIRIR
MLIRLLVMIR
MLIRStandardToLLVM
MLIRParser
MLIRPass
MLIRTargetLLVMIR
......
......@@ -34,11 +34,12 @@
#include <llvm/Support/MemoryBuffer.h>
#include <llvm/Support/SourceMgr.h>
#include <llvm/Support/TargetSelect.h>
#include <mlir/Conversion/StandardToLLVM/ConvertStandardToLLVM.h>
#include <mlir/Conversion/StandardToLLVM/ConvertStandardToLLVMPass.h>
#include <mlir/ExecutionEngine/ExecutionEngine.h>
#include <mlir/ExecutionEngine/MemRefUtils.h>
#include <mlir/ExecutionEngine/OptUtils.h>
#include <mlir/LLVMIR/LLVMDialect.h>
#include <mlir/LLVMIR/Transforms.h>
#include <mlir/Pass/PassManager.h>
#include <mlir/Target/LLVMIR.h>
#include <mlir/Transforms/DialectConversion.h>
......@@ -50,6 +51,7 @@
using llvm::SmallVector;
using llvm::StringRef;
using llvm::make_unique;
using namespace ngraph::runtime::ngmlir;
#define COMPILE_OP_DECL(op_name) \
......@@ -75,7 +77,7 @@ void MLIRCompiler::init_mlir()
if (!initialized)
{
mlir::registerDialect<mlir::NGDialect>();
mlir::registerDialect<mlir::NGraphOpsDialect>();
// Register any LLVM command line options
llvm::cl::ParseEnvironmentOptions("ngraph", "MLIR_LLVM_OPTIONS", "");
initialized = true;
......@@ -133,7 +135,7 @@ void MLIRCompiler::build_ng_dialect_module()
}
// create builder
m_builder = llvm::make_unique<mlir::FuncBuilder>(function.get());
m_builder = llvm::make_unique<mlir::OpBuilder>(function->getBody());
build_ng_dialect();
m_module->getFunctions().push_back(function.release());
if (failed(m_module->verify()))
......@@ -359,10 +361,14 @@ void MLIRCompiler::execute()
NGRAPH_CHECK(m_module, "MLIR module is not ready.");
// Lower Standard dialect to LLVM dialect.
auto converter = mlir::createStdToLLVMConverter();
auto r = converter->convert(m_module.get());
(void)r;
NGRAPH_CHECK(succeeded(r), "second conversion failed");
mlir::LLVMTypeConverter llvm_converter(&m_context);
OwningRewritePatternList patterns;
mlir::populateStdToLLVMConversionPatterns(llvm_converter, patterns);
mlir::ConversionTarget target(m_context);
target.addLegalDialect<mlir::LLVM::LLVMDialect>();
auto result = applyConversionPatterns(*m_module, target, llvm_converter, std::move(patterns));
NGRAPH_CHECK(succeeded(result), "Standard to LLVM dialect conversion failed");
dump_mlir_module("LLVM-IR Dialect Dump:");
......
......@@ -132,7 +132,7 @@ namespace ngraph
mlir::MLIRContext m_context;
std::unique_ptr<mlir::Module> m_module;
std::unique_ptr<mlir::FuncBuilder> m_builder;
std::unique_ptr<mlir::OpBuilder> m_builder;
std::unique_ptr<mlir::ExecutionEngine> m_engine;
using TensorToInfo = std::pair<descriptor::Tensor*, TensorInfo>;
......
......@@ -21,8 +21,8 @@
using namespace mlir;
NGDialect::NGDialect(mlir::MLIRContext* ctx)
: mlir::Dialect("ng", ctx)
NGraphOpsDialect::NGraphOpsDialect(mlir::MLIRContext* ctx)
: mlir::Dialect(getDialectNamespace(), ctx)
{
addTypes<NGTensorType>();
addTypes<NGIntegerType>();
......@@ -34,7 +34,7 @@ NGDialect::NGDialect(mlir::MLIRContext* ctx)
>();
}
void NGDialect::printType(mlir::Type type, raw_ostream& os) const
void NGraphOpsDialect::printType(mlir::Type type, raw_ostream& os) const
{
switch (type.getKind())
{
......
......@@ -25,15 +25,17 @@
#include "ngraph/check.hpp"
namespace mlir
{
class NGDialect : public mlir::Dialect
class NGraphOpsDialect : public mlir::Dialect
{
public:
explicit NGDialect(mlir::MLIRContext* ctx);
explicit NGraphOpsDialect(mlir::MLIRContext* ctx);
mlir::Type parseType(llvm::StringRef tyData, mlir::Location loc) const override
{
NGRAPH_CHECK(false, "Unsupported type parsing.");
return mlir::Type();
}
void printType(mlir::Type type, llvm::raw_ostream& os) const override;
static StringRef getDialectNamespace() { return "ng"; }
};
}
......@@ -41,31 +41,34 @@ namespace
class DialectLoweringPass;
/// Base class for nGraph operation conversions to affine/standard dialect. Provides
/// conversion patterns with an access to the DialectLoweringPass which holds the state of the
/// conversion.
class NGraphOpLowering : public ConversionPattern
{
public:
NGraphOpLowering(StringRef rootOpName, MLIRContext* context, DialectLoweringPass& pass)
: ConversionPattern(rootOpName, /*benefit=*/1, context)
, m_pass(pass){};
protected:
// Back-reference to the lowering pass which contains the lowering state, including the
// nGraph type converter.
DialectLoweringPass& m_pass;
};
#include "op_lowerers.inc"
/// Use Dialect Converson Framework
class DialectLowerer : public DialectConversion
/// Conversion from types in the nGraph dialect to the Standard dialect.
class NGraphTypeConverter : public TypeConverter
{
public:
DialectLowerer(DialectLoweringPass& pass)
: DialectConversion()
, m_pass(pass)
NGraphTypeConverter()
: TypeConverter()
{
}
Type convertType(Type t) override;
protected:
// Initialize the list of converters.
void initConverters(OwningRewritePatternList& patterns, MLIRContext* mlirContext) override
{
RewriteListBuilder<NGAddOpConversion, NGDotOpConversion, NGReturnOpConversion>::build(
patterns, mlirContext, m_pass);
}
private:
DialectLoweringPass& m_pass;
llvm::BumpPtrAllocator allocator;
};
/// Dialect Lowering Pass to affine ops
......@@ -73,14 +76,17 @@ namespace
{
public:
DialectLoweringPass(ngmlir::MLIRCompiler& compiler)
: m_dialectLowerer(*this)
, m_compiler(compiler)
: m_compiler(compiler)
{
}
void runOnModule() override;
SmallVector<Value*, 4> buildOutputDefs(Operation* op, PatternRewriter& rewriter);
private:
/// Collect a set of patterns to convert from the nGraph dialect to Affine dialect.
void populateNGraphToAffineConversionPatterns(OwningRewritePatternList& patterns);
mlir::Function* getCallDecl(StringRef name,
ArrayRef<Type> args,
ArrayRef<Type> output,
......@@ -90,7 +96,7 @@ namespace
Value* insertMemMgrDef(PatternRewriter* rewriter = nullptr);
private:
DialectLowerer m_dialectLowerer;
NGraphTypeConverter m_typeConverter;
// Value holding mem manager passed pointer
SmallVector<Value*, 4> m_memMgrDefs;
......@@ -101,21 +107,39 @@ namespace
void DialectLoweringPass::runOnModule()
{
// Create type converter and initialize conversion patterns.
NGraphTypeConverter converter;
OwningRewritePatternList patterns;
populateNGraphToAffineConversionPatterns(patterns);
// Create target that defines legal ops for nGraph dialect to be lowered to.
ConversionTarget target(getContext());
// TODO: Remove NGFakeInputOp. We need to set NGFakeInputOp as legal op because we generate
// it as part of the lowering to affine/standard.
target.addLegalDialect<AffineOpsDialect, StandardOpsDialect>();
target.addLegalOp<NGFakeInputOp>();
// capture output values by looking for the Return and grabbing the values
// the order of the returned values matches the order of the lowered func signature for
// results. This is used to find the arg_id that a defined value maps to if it is an output
findOutputValues();
if (failed(m_dialectLowerer.convert(&getModule())))
if (failed(applyConversionPatterns(getModule(), target, converter, std::move(patterns))))
{
getModule().getContext()->emitError(mlir::UnknownLoc::get(getModule().getContext()),
"Error lowering dialect\n");
emitError(mlir::UnknownLoc::get(&getContext()), "Error lowering nGraph dialect\n");
signalPassFailure();
}
processFakeInstrs();
}
void DialectLoweringPass::populateNGraphToAffineConversionPatterns(
OwningRewritePatternList& patterns)
{
RewriteListBuilder<NGAddOpConversion, NGDotOpConversion, NGReturnOpConversion>::build(
patterns, &getContext(), *this);
}
void DialectLoweringPass::findOutputValues()
{
// get original function
......@@ -138,6 +162,9 @@ namespace
outputCount = ret.getNumOperands();
});
// will be populated with lowered output values later
// TODO: This resize is making debugging obscure. When the container is not populated due
// to a bug, null pointers are used by the consumer leading to a crash more difficult to
// root-cause. We should try to change the current approach or introduce verification code.
m_loweredOutputValues.resize(outputCount, nullptr);
}
......@@ -146,10 +173,11 @@ namespace
{
// it would be nice to insert one fake def at the start of the new func
// however, due to how DialectConversion framework works, new func is only
// materialized after conversion is done (rewriter->getFunction, or even rewriter->getInsertionBlock()->getFunction()
// will give you the original func). This makes it very convoluted to insert instructions at entry block.
// materialized after conversion is done (rewriter->getFunction, or even
// rewriter->getInsertionBlock()->getFunction() will give you the original func). This
// makes it very convoluted to insert instructions at entry block.
auto op = rewriter->create<NGFakeInputOp>(rewriter->getUnknownLoc(),
IndexType::get(getModule().getContext()));
IndexType::get(&getContext()));
// will be fixed later to read passed arg instead.
m_memMgrDefs.push_back(op.getResult());
return op.getResult();
......@@ -167,8 +195,7 @@ namespace
unsigned argId = (int)attr.getInt();
auto fakeOp = rewriter.create<NGFakeInputOp>(
op->getLoc(),
m_dialectLowerer.convertType(
origResult->getType()) /* convert to lowered type */
m_typeConverter.convertType(origResult->getType()) /* convert to lowered type */
);
// Fake instrution is short-lived. Verify here.
fakeOp.verify();
......@@ -181,7 +208,7 @@ namespace
auto tensorType = origResult->getType().cast<NGTensorType>();
auto callBackFunc = getCallDecl("__mlir_allocate",
{rewriter.getIndexType(), rewriter.getIndexType()},
{m_dialectLowerer.convertType(tensorType)},
{m_typeConverter.convertType(tensorType)},
rewriter);
auto size = tensorType.getSizeInBytes();
......@@ -261,10 +288,10 @@ namespace
return callBackFuncPtr;
}
// NGDialect converters
Type DialectLowerer::convertType(Type type)
Type NGraphTypeConverter::convertType(Type type)
{
// We may need to refactor this code to a external utility if type conversion is needed
// outside of the lowering context since DialectLowerer is private.
// outside of the lowering context since NGraphTypeConverter is private.
if (auto tensor_type = type.dyn_cast<NGTensorType>())
{
......@@ -294,7 +321,7 @@ namespace
}
#define REWRITER(OP) \
void OP##Conversion::rewrite( \
PatternMatchResult OP##Conversion::matchAndRewrite( \
Operation* op, ArrayRef<Value*> operands, PatternRewriter& rewriter) const
// ADD
......@@ -334,6 +361,8 @@ namespace
});
// clang-format on
rewriter.replaceOp(op, {result});
return matchSuccess();
}
REWRITER(NGDotOp)
......@@ -396,9 +425,16 @@ namespace
});
rewriter.replaceOp(op, {result});
return matchSuccess();
}
REWRITER(NGReturnOp)
{
rewriter.replaceOpWithNewOp<ReturnOp>(op);
return matchSuccess();
}
REWRITER(NGReturnOp) { rewriter.replaceOpWithNewOp<ReturnOp>(op); }
#undef REWRITER
}
......
......@@ -27,6 +27,8 @@ namespace ngraph
namespace ngmlir
{
class MLIRCompiler;
using OwningRewritePatternList = std::vector<std::unique_ptr<mlir::RewritePattern>>;
}
}
}
......
......@@ -18,16 +18,18 @@
// Add new dialect ops lowerers to this file
#define DECL_OP_CONV(OP) \
class OP##Conversion : public mlir::DialectConversionPattern \
{\
public:\
explicit OP##Conversion(mlir::MLIRContext *context, DialectLoweringPass& pass)\
: mlir::DialectConversionPattern(mlir::OP::getOperationName(), 1, context),\
m_pass(pass)\
{} \
void rewrite(Operation *op, ArrayRef<Value *> operands, PatternRewriter &rewriter) const override; \
DialectLoweringPass& m_pass;\
};
class OP##Conversion : public NGraphOpLowering \
{ \
public: \
explicit OP##Conversion(mlir::MLIRContext* context, DialectLoweringPass& pass) \
: NGraphOpLowering(mlir::OP::getOperationName(), context, pass) \
{ \
} \
\
PatternMatchResult matchAndRewrite(Operation* op, \
ArrayRef<Value*> operands, \
PatternRewriter& rewriter) const override; \
};
DECL_OP_CONV(NGAddOp)
DECL_OP_CONV(NGDotOp)
......
......@@ -216,8 +216,6 @@ void runtime::cpu::CPU_CallFrame::setup_runtime_context()
{
// single thread for codegen
NGRAPH_CHECK(m_num_ctx == 1);
ctx->mkldnn_primitives.swap(mkldnn_emitter->get_mkldnn_primitives());
ctx->mkldnn_workspaces = mkldnn_emitter->get_mkldnn_workspaces();
}
ctx->states = m_external_function->m_states.data();
......
......@@ -173,9 +173,6 @@ void runtime::gpu::GPUCompiledFunction::compile()
pass_manager.register_pass<runtime::gpu::pass::BatchNormCache>();
pass_manager.register_pass<ngraph::pass::LikeReplacement>();
pass_manager.register_pass<ngraph::pass::FusedOpDecomposition>();
// Run this pass for the second time since, some fused operators like LSTMCell may use
// other fused operators inside.
pass_manager.register_pass<ngraph::pass::FusedOpDecomposition>();
pass_manager.register_pass<ngraph::pass::ImplicitBroadcastElimination>();
pass_manager.register_pass<runtime::gpu::pass::GPULayout>(this);
pass_manager.register_pass<ngraph::pass::AssignLayout<descriptor::layout::DenseTensorLayout>>();
......
......@@ -430,10 +430,6 @@ shared_ptr<runtime::Executable>
if (m_disable_backend_optimizations < 2)
{
pass_manager.register_pass<ngraph::pass::FusedOpDecomposition>(
IntelGPUBackend::is_supported_impl);
// Run this pass for the second time since, some fused operators like LSTMCell may use
// other fused operators inside.
pass_manager.register_pass<ngraph::pass::FusedOpDecomposition>(
IntelGPUBackend::is_supported_impl);
pass_manager.register_pass<ngraph::pass::ImplicitBroadcastElimination>();
......
......@@ -47,9 +47,6 @@ runtime::interpreter::INTExecutable::INTExecutable(const shared_ptr<Function>& f
pass::Manager pass_manager;
pass_manager.register_pass<pass::LikeReplacement>();
pass_manager.register_pass<pass::FusedOpDecomposition>();
// Run this pass for the second time since, some fused operators like LSTMCell may use
// other fused operators inside.
pass_manager.register_pass<pass::FusedOpDecomposition>();
pass_manager.register_pass<pass::ImplicitBroadcastElimination>();
pass_manager.register_pass<pass::AssignLayout<DenseTensorLayout>>();
pass_manager.register_pass<pass::Liveness>();
......
......@@ -41,6 +41,7 @@ set(SRC
plaidml_ops_one_hot.cpp
plaidml_ops_passthrough.cpp
plaidml_ops_pool.cpp
plaidml_ops_quantize.cpp
plaidml_ops_reduce.cpp
plaidml_ops_replace_slice.cpp
plaidml_ops_replicate.cpp
......
......@@ -188,7 +188,8 @@ class ngraph::runtime::plaidml::builder::Elementwise final : public Statement
{
public:
Elementwise(std::string lhs, std::string rhs);
void set_lhs(const std::string& lhs) { m_lhs = lhs; }
void set_rhs(const std::string& rhs) { m_rhs = rhs; }
private:
friend class Function;
......
......@@ -20,6 +20,7 @@
#include "ngraph/pass/algebraic_simplification.hpp"
#include "ngraph/pass/core_fusion.hpp"
#include "ngraph/pass/cse.hpp"
#include "ngraph/pass/fused_op_decomposition.hpp"
#include "ngraph/pass/get_output_element_elimination.hpp"
#include "ngraph/pass/like_replacement.hpp"
#include "ngraph/pass/liveness.hpp"
......@@ -87,6 +88,7 @@ std::shared_ptr<ngraph::runtime::plaidml::PlaidML_Executable>
ngraph::pass::Manager pass_manager;
// We apply the same general-purposes passes as the CPU backend.
pass_manager.register_pass<ngraph::pass::FusedOpDecomposition>();
pass_manager.register_pass<ngraph::pass::LikeReplacement>();
pass_manager.register_pass<ngraph::pass::NopElimination>();
pass_manager.register_pass<ngraph::pass::ZeroDimTensorElimination>();
......
This diff is collapsed.
......@@ -60,37 +60,7 @@ generate_mask
generate_mask2
avg_pool_3d
avg_pool_3d_uneven_strided_padded_include_in_computation
quantize_dynamic_offset # Quantization/Dequantization is unimplemented
dequantize_dynamic_offset # Quantization/Dequantization is unimplemented
dequantize_int8_zero_offset # Quantization/Dequantization is unimplemented
dequantize_int32 # Quantization/Dequantization is unimplemented
dequantize_int32_zero_offset # Quantization/Dequantization is unimplemented
dequantize_zero_offset # Quantization/Dequantization is unimplemented
quantize_ROUND_NEAREST_TOWARD_ZERO # Quantization/Dequantization is unimplemented
quantize_ROUND_NEAREST_UPWARD # Quantization/Dequantization is unimplemented
quantize_ROUND_NEAREST_DOWNWARD # Quantization/Dequantization is unimplemented
quantize_ROUND_NEAREST_TOWARD_EVEN # Quantization/Dequantization is unimplemented
quantize_ROUND_NEAREST_TOWARD_INFINITY # Quantization/Dequantization is unimplemented
quantize_ROUND_TOWARD_INFINITY # Quantization/Dequantization is unimplemented
quantize_ROUND_TOWARD_ZERO # Quantization/Dequantization is unimplemented
quantize_ROUND_UP # Quantization/Dequantization is unimplemented
quantize_ROUND_DOWN # Quantization/Dequantization is unimplemented
quantize # Quantization/Dequantization is unimplemented
quantize_zero_offset # Quantization/Dequantization is unimplemented
quantize_axes # Quantization/Dequantization is unimplemented
quantize_dynamic_offset # Quantization/Dequantization is unimplemented
quantize_int8 # Quantization/Dequantization is unimplemented
quantize_int8_zero_offset # Quantization/Dequantization is unimplemented
quantize_int32 # Quantization/Dequantization is unimplemented
quantize_int32_zero_offset # Quantization/Dequantization is unimplemented
quantize_clamp # Quantization/Dequantization is unimplemented
quantize_clamp_int8 # Quantization/Dequantization is unimplemented
quantize_clamp_int32 # Quantization/Dequantization is unimplemented
quantize_clamp_int32_zero_offset # Quantization/Dequantization is unimplemented
quantize_clamp_uint8 # Quantization/Dequantization is unimplemented
dequantize # Quantization/Dequantization is unimplemented
dequantize_axes # Quantization/Dequantization is unimplemented
dequantize_int8 # Quantization/Dequantization is unimplemented
quantize_clamp_int32 # Requires fp64 inputs, which won't work on GPUs
numeric_float_nan
numeric_double_nan
shape_of_scalar
......@@ -259,12 +229,6 @@ backwards_softmax_underflow
backwards_softmax_3d
batch_mat_mul_forward
dot_matrix_2x0_0x2
rnn_cell_no_bias
rnn_cell_bias_clip
rnn_cell_activation_function
gru_cell_bias_clip
gru_cell_linear_before_reset
gru_cell_activation_function
# dgkutnic ww24.5: these tests are to be triaged by the PlaidML team
# ww25.2: re-scrubbed this list of tests after fixing check_inputs
......@@ -289,3 +253,29 @@ group_conv_transpose
group_conv_transpose_output_shape
divide_python_rounding_int32
backwards_batchmatmul_tensor2_tensor2
# unsupported ops: 'QuantizedConvolution', 'QuantizedDot', 'TopK', 'Erf', 'EmbeddingLookup'
model_quant_conv_linear
model_conv_integer_no_zero_point
model_matmul_integer_no_zero_point
model_matmul_integer_4d_no_zero_point
model_top_k
model_erf
model_erf_int32
model_hardmax
# node validation error: "Argument shapes are inconsistent."
model_lstm_fwd_with_clip
model_lstm_fwd_mixed_seq
model_lstm_fwd_hardsigmoid_activation
model_reduce_log_sum
model_reduce_log_sum_exp
model_reduce_mean
# result mismatch
model_dequantize_linear_scalar_zero_scale_int8
model_softmax
avg_pool_3d_uneven_strided_padded
rnn_cell_activation_function
gru_cell_bias_clip
gru_cell_linear_before_reset
ir_version: 4
producer_name: "nGraph ONNX Importer"
graph {
node {
input: "X"
input: "W"
input: "R"
output: ""
output: "Y_h"
op_type: "LSTM"
attribute {
name: "clip"
f: 9999.0
type: FLOAT
}
attribute {
name: "direction"
s: "forward"
type: STRING
}
attribute {
name: "hidden_size"
i: 3
type: INT
}
}
name: "compute_graph"
input {
name: "X"
type {
tensor_type {
elem_type: 1
shape {
dim {
dim_value: 2
}
dim {
dim_value: 32
}
dim {
dim_value: 1
}
}
}
}
}
input {
name: "W"
type {
tensor_type {
elem_type: 1
shape {
dim {
dim_value: 1
}
dim {
dim_value: 12
}
dim {
dim_value: 1
}
}
}
}
}
input {
name: "R"
type {
tensor_type {
elem_type: 1
shape {
dim {
dim_value: 1
}
dim {
dim_value: 12
}
dim {
dim_value: 3
}
}
}
}
}
output {
name: "Y_h"
type {
tensor_type {
elem_type: 1
shape {
dim {
dim_value: 1
}
dim {
dim_value: 32
}
dim {
dim_value: 3
}
}
}
}
}
}
opset_import {
version: 7
}
......@@ -20,6 +20,7 @@
#include <fstream>
#include <iterator>
#include <limits>
#include <numeric>
#include <sstream>
#include <stdexcept>
#include <vector>
......@@ -203,3 +204,48 @@ NGRAPH_TEST(onnx_${BACKEND_NAME}, model_lstm_fwd_hardsigmoid_activation)
test_case.set_tolerance(6);
test_case.run();
}
NGRAPH_TEST(onnx_${BACKEND_NAME}, model_lstm_fwd_large_batch_no_clip)
{
auto function = onnx_import::import_onnx_model(
file_util::path_join(SERIALIZED_ZOO, "onnx/lstm_fwd_large_batch_no_clip.prototxt"));
auto test_case = ngraph::test::NgraphTestCase(function, "${BACKEND_NAME}");
std::size_t seq_length = 2;
std::size_t batch_size = 32;
std::size_t input_size = 1;
std::size_t hidden_size = 3;
std::vector<float> in_X(seq_length * batch_size * input_size);
std::iota(std::begin(in_X), std::end(in_X), 1.f);
std::vector<float> in_R(4 * hidden_size * hidden_size, 0.1f);
// X
test_case.add_input<float>(in_X);
// W
test_case.add_input<float>(
{0.1f, 0.2f, 0.3f, 0.4f, 1.f, 2.f, 3.f, 4.f, 10.f, 11.f, 12.f, 13.f});
// R
test_case.add_input<float>(in_R);
// Y_h_data
test_case.add_expected_output<float>(
Shape{1, batch_size, hidden_size},
{0.90387899f, 0.9135572f, 0.91772245f, 0.90897038f, 0.92132433f, 0.92825467f, 0.91365823f,
0.92815113f, 0.93676105f, 0.91799162f, 0.93406357f, 0.94344562f, 0.92199681f, 0.93912057f,
0.94859476f, 0.92569357f, 0.94340185f, 0.95250664f, 0.92909964f, 0.94699686f, 0.95545127f,
0.93223207f, 0.94999634f, 0.95765468f, 0.93510761f, 0.9524867f, 0.95929726f, 0.93774272f,
0.9545467f, 0.96051891f, 0.9401536f, 0.95624603f, 0.96142619f, 0.94235605f, 0.95764499f,
0.96209939f, 0.94436539f, 0.95879495f, 0.96259862f, 0.94619635f, 0.95973921f, 0.96296872f,
0.94786299f, 0.96051397f, 0.96324302f, 0.94937864f, 0.96114929f, 0.96344629f, 0.95075587f,
0.96167006f, 0.96359692f, 0.95200645f, 0.96209679f, 0.96370852f, 0.95314133f, 0.9624464f,
0.9637912f, 0.95417069f, 0.96273278f, 0.96385246f, 0.95510395f, 0.96296733f, 0.96389785f,
0.95594975f, 0.96315942f, 0.96393147f, 0.95671607f, 0.96331673f, 0.96395638f, 0.9574102f,
0.96344554f, 0.96397483f, 0.9580388f, 0.96355102f, 0.9639885f, 0.95860795f, 0.96363739f,
0.96399863f, 0.95912322f, 0.96370811f, 0.96400613f, 0.95958963f, 0.96376601f, 0.96401169f,
0.96001179f, 0.96381342f, 0.96401581f, 0.96039386f, 0.96385224f, 0.96401886f, 0.96073964f,
0.96388402f, 0.96402112f, 0.96105254f, 0.96391004f, 0.96402279f});
test_case.run();
}
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment