Commit b408a08e authored by Nick Korovaiko's avatar Nick Korovaiko Committed by Scott Cyphers

Back Propagation for Average Pooling (#407)

* bprop for avg pool

remove debug statements + formatting

* fix CPU test failures

* numeric tests

* use make_shared; unprotect c-tor
parent e87b4936
...@@ -217,8 +217,48 @@ bool op::AvgPool::is_functionally_identical(const Node& other) const ...@@ -217,8 +217,48 @@ bool op::AvgPool::is_functionally_identical(const Node& other) const
return rc; return rc;
} }
/* op::AvgPoolBprop::AvgPoolBprop(const std::shared_ptr<Node>& arg,
void op::AvgPool::generate_adjoints(autodiff::Adjoints& adjoints, const std::shared_ptr<Node>& delta) const std::shared_ptr<Node>& delta,
const Shape& window_shape,
const Strides& window_movement_strides,
const Shape& padding_below,
const Shape& padding_above)
: RequiresTensorViewArgs("AvgPoolBprop", {arg, delta})
, m_window_shape(window_shape)
, m_window_movement_strides(window_movement_strides)
, m_padding_below(padding_below)
, m_padding_above(padding_above)
{
set_value_type_checked(get_input_element_type(0), arg->get_shape());
}
bool op::AvgPoolBprop::is_functionally_identical(const Node& other) const
{
bool rc = true;
if (Node::is_functionally_identical(other))
{
const AvgPoolBprop& rhs = dynamic_cast<const AvgPoolBprop&>(other);
rc &= m_window_shape == rhs.m_window_shape;
rc &= m_window_movement_strides == rhs.m_window_movement_strides;
rc &= m_padding_below == rhs.m_padding_below;
rc &= m_padding_above == rhs.m_padding_above;
}
else
{
rc = false;
}
return rc;
}
void op::AvgPool::generate_adjoints(autodiff::Adjoints& adjoints,
const std::shared_ptr<Node>& delta)
{ {
auto operand = get_input_op(0);
auto bprop = std::make_shared<op::AvgPoolBprop>(operand,
delta,
m_window_shape,
m_window_movement_strides,
m_padding_below,
m_padding_above);
adjoints.add_delta(operand, bprop);
} }
*/
...@@ -97,6 +97,7 @@ namespace ngraph ...@@ -97,6 +97,7 @@ namespace ngraph
{ {
if (new_args.size() != 1) if (new_args.size() != 1)
throw ngraph_error("Incorrect number of new arguments"); throw ngraph_error("Incorrect number of new arguments");
return std::make_shared<AvgPool>(new_args.at(0), return std::make_shared<AvgPool>(new_args.at(0),
m_window_shape, m_window_shape,
m_window_movement_strides, m_window_movement_strides,
...@@ -105,6 +106,9 @@ namespace ngraph ...@@ -105,6 +106,9 @@ namespace ngraph
} }
bool is_functionally_identical(const Node&) const override; bool is_functionally_identical(const Node&) const override;
virtual void generate_adjoints(autodiff::Adjoints& adjoints,
const std::shared_ptr<Node>& delta) override;
/// \return The window shape. /// \return The window shape.
const Shape& get_window_shape() const { return m_window_shape; } const Shape& get_window_shape() const { return m_window_shape; }
/// \return The window movement strides. /// \return The window movement strides.
...@@ -119,5 +123,43 @@ namespace ngraph ...@@ -119,5 +123,43 @@ namespace ngraph
Shape m_padding_below; Shape m_padding_below;
Shape m_padding_above; Shape m_padding_above;
}; };
class AvgPoolBprop : public RequiresTensorViewArgs
{
public:
AvgPoolBprop(const std::shared_ptr<Node>& arg,
const std::shared_ptr<Node>& delta,
const Shape& window_shape,
const Strides& window_movement_strides,
const Shape& padding_below,
const Shape& padding_above);
virtual std::shared_ptr<Node> copy_with_new_args(
const std::vector<std::shared_ptr<Node>>& new_args) const override
{
if (new_args.size() != 2)
throw ngraph_error("Incorrect number of new arguments");
AvgPoolBprop* avpn = new AvgPoolBprop(new_args.at(0),
new_args.at(1),
m_window_shape,
m_window_movement_strides,
m_padding_below,
m_padding_above);
return std::shared_ptr<op::AvgPoolBprop>(avpn);
}
const Shape& get_window_shape() const { return m_window_shape; }
const Strides& get_window_movement_strides() const { return m_window_movement_strides; }
const Shape& get_padding_below() const { return m_padding_below; }
const Shape& get_padding_above() const { return m_padding_above; }
bool is_functionally_identical(const Node&) const override;
protected:
Shape m_window_shape;
Strides m_window_movement_strides;
Shape m_padding_below;
Shape m_padding_above;
};
} }
} }
...@@ -2341,6 +2341,29 @@ void runtime::cpu::CPU_Emitter::EmitPad(codegen::CodeWriter& writer, ...@@ -2341,6 +2341,29 @@ void runtime::cpu::CPU_Emitter::EmitPad(codegen::CodeWriter& writer,
writer << " {" << join(pad->get_padding_interior()) << "});\n"; writer << " {" << join(pad->get_padding_interior()) << "});\n";
} }
void runtime::cpu::CPU_Emitter::EmitAvgPoolBprop(
codegen::CodeWriter& writer,
const ngraph::Node* n,
const vector<runtime::cpu::TensorViewWrapper>& args,
const vector<runtime::cpu::TensorViewWrapper>& out)
{
auto apb = static_cast<const op::AvgPoolBprop*>(n);
auto arg_shape = args[0].get_shape();
auto delta_shape = args[1].get_shape();
writer << "kernel::avg_pool_bprop<" << out[0].get_type() << ">(" << args[0].get_name() << ",\n";
writer << " " << args[1].get_name() << ",\n";
writer << " " << out[0].get_name() << ",\n";
writer << " {" << join(arg_shape) << "},\n";
writer << " {" << join(delta_shape) << "},\n";
writer << " {" << join(apb->get_window_shape()) << "},\n";
writer << " {" << join(apb->get_window_movement_strides()) << "},\n";
writer << " {" << join(apb->get_padding_below()) << "},\n";
writer << " {" << join(apb->get_padding_above()) << "},\n";
writer << " true);\n";
}
//------------------------------------------------------------------------------------------------ //------------------------------------------------------------------------------------------------
// Utility methods // Utility methods
//------------------------------------------------------------------------------------------------ //------------------------------------------------------------------------------------------------
......
...@@ -94,6 +94,7 @@ namespace ngraph ...@@ -94,6 +94,7 @@ namespace ngraph
static void EMITTER_DECL(EmitReduceWindow); static void EMITTER_DECL(EmitReduceWindow);
static void EMITTER_DECL(EmitSelectAndScatter); static void EMITTER_DECL(EmitSelectAndScatter);
static void EMITTER_DECL(EmitAvgPool); static void EMITTER_DECL(EmitAvgPool);
static void EMITTER_DECL(EmitAvgPoolBprop);
static void EMITTER_DECL(EmitPad); static void EMITTER_DECL(EmitPad);
static void EmitMKLDNNPreamble(codegen::CodeWriter& writer); static void EmitMKLDNNPreamble(codegen::CodeWriter& writer);
......
...@@ -199,6 +199,7 @@ static const runtime::cpu::OpMap dispatcher{ ...@@ -199,6 +199,7 @@ static const runtime::cpu::OpMap dispatcher{
{TI(ngraph::op::ReduceWindow), &runtime::cpu::CPU_Emitter::EmitReduceWindow}, {TI(ngraph::op::ReduceWindow), &runtime::cpu::CPU_Emitter::EmitReduceWindow},
{TI(ngraph::op::SelectAndScatter), &runtime::cpu::CPU_Emitter::EmitSelectAndScatter}, {TI(ngraph::op::SelectAndScatter), &runtime::cpu::CPU_Emitter::EmitSelectAndScatter},
{TI(ngraph::op::AvgPool), &runtime::cpu::CPU_Emitter::EmitAvgPool}, {TI(ngraph::op::AvgPool), &runtime::cpu::CPU_Emitter::EmitAvgPool},
{TI(ngraph::op::AvgPoolBprop), &runtime::cpu::CPU_Emitter::EmitAvgPoolBprop},
{TI(ngraph::op::Pad), &runtime::cpu::CPU_Emitter::EmitPad}, {TI(ngraph::op::Pad), &runtime::cpu::CPU_Emitter::EmitPad},
}; };
......
...@@ -262,6 +262,21 @@ private: ...@@ -262,6 +262,21 @@ private:
avg_pool->get_padding_below(), avg_pool->get_padding_below(),
avg_pool->get_padding_above()); avg_pool->get_padding_above());
} }
else if (node_op == "AvgPoolBprop")
{
ngraph::op::AvgPoolBprop* apb = dynamic_cast<ngraph::op::AvgPoolBprop*>(&node);
kernel::avg_pool_bprop<T>(
reinterpret_cast<T*>(args[0]->get_data_ptr()),
reinterpret_cast<T*>(args[1]->get_data_ptr()),
reinterpret_cast<T*>(out[0]->get_data_ptr()),
args[0]->get_shape(),
args[1]->get_shape(), /*delta shape*/
apb->get_window_shape(),
apb->get_window_movement_strides(),
apb->get_padding_below(),
apb->get_padding_above(),
true /*divide by the number of physical elements in a window*/);
}
else if (node_op == "Broadcast") else if (node_op == "Broadcast")
{ {
ngraph::op::Broadcast* broadcast = dynamic_cast<ngraph::op::Broadcast*>(&node); ngraph::op::Broadcast* broadcast = dynamic_cast<ngraph::op::Broadcast*>(&node);
......
...@@ -14,10 +14,13 @@ ...@@ -14,10 +14,13 @@
#pragma once #pragma once
#include <algorithm>
#include <cmath> #include <cmath>
#include <vector>
#include "ngraph/common.hpp" #include "ngraph/common.hpp"
#include "ngraph/coordinate_transform.hpp" #include "ngraph/coordinate_transform.hpp"
#include "ngraph/shape.hpp"
namespace ngraph namespace ngraph
{ {
...@@ -25,6 +28,94 @@ namespace ngraph ...@@ -25,6 +28,94 @@ namespace ngraph
{ {
namespace kernel namespace kernel
{ {
template <typename T>
void avg_pool_bprop(T* arg,
T* delta,
T* out, //out is also arg_shape
const Shape& arg_shape,
const Shape& delta_shape,
const Shape& window_shape,
const Strides& window_movement_strides,
const Shape& padding_below,
const Shape& padding_above,
bool count_only_physical)
{
memset(out, 0, sizeof(T) * shape_size(arg_shape));
size_t j = 0; //for iterating over delta (ep) elements
size_t num_elements_in_window = shape_size(window_shape);
CoordinateTransform output_transform(delta_shape);
for (const Coordinate& out_coord : output_transform)
{
size_t img_index = out_coord[0];
size_t channel = out_coord[1];
size_t n_image_dimensions = arg_shape.size() - 2;
Coordinate input_batch_transform_start(2 + n_image_dimensions);
Coordinate input_batch_transform_end(2 + n_image_dimensions);
Strides input_batch_transform_source_strides(2 + n_image_dimensions, 1);
AxisVector input_batch_transform_source_axis_order(2 + n_image_dimensions);
CoordinateDiff input_batch_transform_padding_below(2 + n_image_dimensions);
CoordinateDiff input_batch_transform_padding_above(2 + n_image_dimensions);
input_batch_transform_start[0] = img_index;
input_batch_transform_end[0] = img_index + 1;
input_batch_transform_start[1] = channel;
input_batch_transform_end[1] = channel + 1;
input_batch_transform_padding_below[0] = 0;
input_batch_transform_padding_below[1] = 0;
input_batch_transform_padding_above[0] = 0;
input_batch_transform_padding_above[1] = 0;
for (size_t i = 2; i < n_image_dimensions + 2; i++)
{
size_t window_shape_this_dim = window_shape[i - 2];
size_t movement_stride = window_movement_strides[i - 2];
input_batch_transform_start[i] = movement_stride * out_coord[i];
input_batch_transform_end[i] =
input_batch_transform_start[i] + window_shape_this_dim;
input_batch_transform_padding_below[i] = padding_below[i - 2];
input_batch_transform_padding_above[i] = padding_above[i - 2];
}
std::iota(begin(input_batch_transform_source_axis_order),
end(input_batch_transform_source_axis_order),
0);
CoordinateTransform input_batch_transform(
arg_shape,
input_batch_transform_start,
input_batch_transform_end,
input_batch_transform_source_strides,
input_batch_transform_source_axis_order,
input_batch_transform_padding_below,
input_batch_transform_padding_above);
if (count_only_physical)
{
num_elements_in_window = 0;
//Dumb! But should work for now
for (const Coordinate& input_batch_coord : input_batch_transform)
{
if (input_batch_transform.has_source_coordinate(input_batch_coord))
{
num_elements_in_window++;
}
}
}
for (const Coordinate& input_batch_coord : input_batch_transform)
{
if (input_batch_transform.has_source_coordinate(input_batch_coord))
{
size_t index = input_batch_transform.index(input_batch_coord);
out[index] += delta[j] / num_elements_in_window;
}
}
j++; //move to the next ep
}
}
template <typename T> template <typename T>
void avg_pool(T* arg, void avg_pool(T* arg,
T* out, T* out,
......
...@@ -24,6 +24,8 @@ ...@@ -24,6 +24,8 @@
#include "util/autodiff/numeric_compare.hpp" #include "util/autodiff/numeric_compare.hpp"
#include "util/random.hpp" #include "util/random.hpp"
#include "ngraph/runtime/kernel/avg_pool.hpp"
using namespace std; using namespace std;
using namespace ngraph; using namespace ngraph;
...@@ -117,6 +119,263 @@ TEST(${BACKEND_NAME}, backwards_maxpool_n2_c1_hw5_3x3_str2_max) ...@@ -117,6 +119,263 @@ TEST(${BACKEND_NAME}, backwards_maxpool_n2_c1_hw5_3x3_str2_max)
ASSERT_TRUE(read_vector<int>(output) == expected); ASSERT_TRUE(read_vector<int>(output) == expected);
} }
TEST(${BACKEND_NAME}, backwards_avgpool_n1_c1_hw2x2)
{
auto manager = runtime::Manager::get("${BACKEND_NAME}");
auto backend = manager->allocate_backend();
auto padding = Shape{1, 1};
auto shape_a = Shape{1, 1, 2, 2};
auto avgpool_shape = Shape{1, 1, 2, 2};
auto A = make_shared<op::Parameter>(element::i32, shape_a);
auto window_shape = Shape{2, 2};
auto window_movement_strides = Strides{2, 2};
auto avgpool =
make_shared<op::AvgPool>(A, window_shape, window_movement_strides, padding, padding);
auto f = make_shared<Function>(avgpool, op::Parameters{A});
shared_ptr<runtime::TensorView> ep =
backend->make_primary_tensor_view(element::i32, avgpool_shape);
vector<int> dataEp(shape_size(avgpool_shape), 4);
shared_ptr<runtime::TensorView> input =
backend->make_primary_tensor_view(element::i32, shape_a);
shared_ptr<runtime::TensorView> output =
backend->make_primary_tensor_view(element::i32, shape_a);
vector<int> dataInput{4, 8, 12, 16};
vector<int> expected{1, 2, 3, 4};
copy_data(ep, dataEp);
copy_data(input, dataInput);
auto C = make_shared<op::Parameter>(element::i32, avgpool_shape);
auto df = autodiff::backprop_function(f);
auto external = manager->compile(df);
auto cf = backend->make_call_frame(external);
cf->tensor_call({input, ep}, {output});
ASSERT_TRUE(read_vector<int>(output) == dataEp);
}
TEST(${BACKEND_NAME}, backwards_avgpool_n1_c1_hw4x4)
{
auto manager = runtime::Manager::get("${BACKEND_NAME}");
auto backend = manager->allocate_backend();
auto shape_a = Shape{1, 1, 4, 4};
auto avgpool_shape = Shape{1, 1, 3, 3};
auto A = make_shared<op::Parameter>(element::i32, shape_a);
auto window_shape = Shape{2, 2};
auto window_movement_strides = Strides{1, 1};
auto avgpool = make_shared<op::AvgPool>(A, window_shape, window_movement_strides);
auto f = make_shared<Function>(avgpool, op::Parameters{A});
shared_ptr<runtime::TensorView> ep =
backend->make_primary_tensor_view(element::i32, avgpool_shape);
vector<int> dataEp(shape_size(avgpool_shape), 4);
shared_ptr<runtime::TensorView> input =
backend->make_primary_tensor_view(element::i32, shape_a);
shared_ptr<runtime::TensorView> output =
backend->make_primary_tensor_view(element::i32, shape_a);
vector<int> dataInput{1, 3, 1, 3, 1, 3, 1, 3, 3, 5, 3, 5, 3, 5, 3, 5};
vector<int> expected{1, 2, 2, 1, 2, 4, 4, 2, 2, 4, 4, 2, 1, 2, 2, 1};
copy_data(ep, dataEp);
copy_data(input, dataInput);
auto C = make_shared<op::Parameter>(element::i32, avgpool_shape);
auto df = autodiff::backprop_function(f);
auto external = manager->compile(df);
auto cf = backend->make_call_frame(external);
cf->tensor_call({input, ep}, {output});
ASSERT_TRUE(read_vector<int>(output) == expected);
}
TEST(${BACKEND_NAME}, backwards_avgpool_n2_c2_hw4x4)
{
auto manager = runtime::Manager::get("${BACKEND_NAME}");
auto backend = manager->allocate_backend();
auto shape_a = Shape{2, 2, 4, 4};
auto avgpool_shape = Shape{2, 2, 2, 2};
auto A = make_shared<op::Parameter>(element::i32, shape_a);
auto window_shape = Shape{2, 2};
auto window_movement_strides = Strides{2, 2};
auto avgpool = make_shared<op::AvgPool>(A, window_shape, window_movement_strides);
auto f = make_shared<Function>(avgpool, op::Parameters{A});
shared_ptr<runtime::TensorView> ep =
backend->make_primary_tensor_view(element::i32, avgpool_shape);
vector<int> dataEp(shape_size(avgpool_shape), 12);
shared_ptr<runtime::TensorView> input =
backend->make_primary_tensor_view(element::i32, shape_a);
shared_ptr<runtime::TensorView> output =
backend->make_primary_tensor_view(element::i32, shape_a);
vector<int> dataInput{//i1c1
1,
2,
6,
7,
3,
4,
4,
3,
19,
1,
2,
3,
18,
2,
3,
2,
//i1c2
4,
1,
5,
5,
1,
4,
5,
5,
12,
8,
2,
3,
15,
5,
3,
2,
//i2c1
2,
3,
7,
7,
3,
2,
3,
3,
13,
7,
1,
2,
7,
13,
3,
4,
//i2c2
1,
1,
2,
2,
7,
1,
2,
14,
6,
16,
4,
1,
14,
4,
4,
1};
vector<int> expected(shape_size(shape_a), 3);
copy_data(ep, dataEp);
copy_data(input, dataInput);
auto C = make_shared<op::Parameter>(element::i32, avgpool_shape);
auto df = autodiff::backprop_function(f);
auto external = manager->compile(df);
auto cf = backend->make_call_frame(external);
cf->tensor_call({input, ep}, {output});
ASSERT_TRUE(read_vector<int>(output) == expected);
}
TEST(${BACKEND_NAME}, backwards_avgpool_n2_c2_hw4x4_numeric)
{
auto manager = runtime::Manager::get("${BACKEND_NAME}");
auto backend = manager->allocate_backend();
auto shape_a = Shape{2, 2, 4, 4};
test::Uniform<float> rng(1.0f, 10.0f);
auto make_graph = [shape_a]() {
auto A = make_shared<op::Parameter>(element::f32, shape_a);
auto window_shape = Shape{2, 2};
auto window_movement_strides = Strides{2, 2};
auto avgpool = make_shared<op::AvgPool>(A, window_shape, window_movement_strides);
return make_shared<Function>(avgpool, op::Parameters{A});
};
for (auto i = 0; i < 100; i++)
{
auto x = rng.initialize(backend->make_primary_tensor_view(element::f32, shape_a));
EXPECT_TRUE(autodiff_numeric_compare<float>(manager, backend, make_graph, {x}, .01f, .01f));
}
}
TEST(${BACKEND_NAME}, backwards_avgpool_n2_c2_hw4x4_win_2x2_str_1x1_numeric)
{
auto manager = runtime::Manager::get("${BACKEND_NAME}");
auto backend = manager->allocate_backend();
auto shape_a = Shape{2, 2, 4, 4};
test::Uniform<float> rng(1.0f, 10.0f);
auto make_graph = [shape_a]() {
auto A = make_shared<op::Parameter>(element::f32, shape_a);
auto window_shape = Shape{2, 2};
auto window_movement_strides = Strides{1, 1};
auto avgpool = make_shared<op::AvgPool>(A, window_shape, window_movement_strides);
return make_shared<Function>(avgpool, op::Parameters{A});
};
for (auto i = 0; i < 100; i++)
{
auto x = rng.initialize(backend->make_primary_tensor_view(element::f32, shape_a));
EXPECT_TRUE(autodiff_numeric_compare<float>(manager, backend, make_graph, {x}, .01f, .01f));
}
}
TEST(${BACKEND_NAME}, backwards_avgpool_n2_c2_hw2x2_win_2x2_str_1x1_padding_numeric)
{
auto manager = runtime::Manager::get("${BACKEND_NAME}");
auto backend = manager->allocate_backend();
auto shape_a = Shape{2, 2, 4, 4};
test::Uniform<float> rng(1.0f, 10.0f);
auto make_graph = [shape_a]() {
auto A = make_shared<op::Parameter>(element::f32, shape_a);
auto window_shape = Shape{2, 2};
auto padding = Shape{1, 1};
auto window_movement_strides = Strides{2, 2};
auto avgpool =
make_shared<op::AvgPool>(A, window_shape, window_movement_strides, padding, padding);
return make_shared<Function>(avgpool, op::Parameters{A});
};
for (auto i = 0; i < 100; i++)
{
auto x = rng.initialize(backend->make_primary_tensor_view(element::f32, shape_a));
EXPECT_TRUE(autodiff_numeric_compare<float>(manager, backend, make_graph, {x}, .01f, .01f));
}
}
TEST(${BACKEND_NAME}, backwards_abs) TEST(${BACKEND_NAME}, backwards_abs)
{ {
auto manager = runtime::Manager::get("${BACKEND_NAME}"); auto manager = runtime::Manager::get("${BACKEND_NAME}");
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment