Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
N
ngraph
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
ngraph
Commits
b3d70927
Unverified
Commit
b3d70927
authored
Dec 01, 2018
by
Scott Cyphers
Committed by
GitHub
Dec 01, 2018
Browse files
Options
Browse Files
Download
Plain Diff
Merge branch 'master' into master
parents
c0b0bf8f
a4b9e6b7
Show whitespace changes
Inline
Side-by-side
Showing
23 changed files
with
352 additions
and
149 deletions
+352
-149
README.md
README.md
+5
-8
external_halide.cmake
cmake/external_halide.cmake
+1
-0
halide.patch
cmake/halide.patch
+14
-0
theme.css
doc/sphinx/ngraph_theme/static/css/theme.css
+2
-2
conf.py
doc/sphinx/source/conf.py
+5
-3
framework-integration-guides.rst
doc/sphinx/source/framework-integration-guides.rst
+1
-1
validation-testing.rst
doc/sphinx/source/frameworks/validation-testing.rst
+11
-7
notifications.txt
licenses/notifications.txt
+5
-0
setup.py
python/setup.py
+18
-18
log.cpp
src/ngraph/log.cpp
+0
-20
log.hpp
src/ngraph/log.hpp
+28
-3
quantized_conv_relu.cpp
src/ngraph/op/experimental/quantized_conv_relu.cpp
+15
-15
unit_test.manifest
src/ngraph/runtime/cpu/unit_test.manifest
+3
-0
cudnn_emitter.cpp
src/ngraph/runtime/gpu/cudnn_emitter.cpp
+66
-47
unit_test.manifest
src/ngraph/runtime/intelgpu/unit_test.manifest
+4
-0
plaidml_backend.cpp
src/ngraph/runtime/plaidml/plaidml_backend.cpp
+1
-5
plaidml_compiled_function.cpp
src/ngraph/runtime/plaidml/plaidml_compiled_function.cpp
+26
-5
plaidml_compiled_function.hpp
src/ngraph/runtime/plaidml/plaidml_compiled_function.hpp
+2
-0
plaidml_tensor.cpp
src/ngraph/runtime/plaidml/plaidml_tensor.cpp
+6
-0
unit_test.manifest
src/ngraph/runtime/plaidml/unit_test.manifest
+27
-0
ngraph-to-plaidml.cpp
src/tools/ngraph-to-plaidml/ngraph-to-plaidml.cpp
+15
-15
backend_arg_reduce.in.cpp
test/backend_arg_reduce.in.cpp
+79
-0
backend_sum.in.cpp
test/backend_sum.in.cpp
+18
-0
No files found.
README.md
View file @
b3d70927
# nGraph Compiler Stack
# nGraph Compiler Stack
(Beta)
[
![License
](
https://img.shields.io/badge/License-Apache%202.0-blue.svg
)
](https://github.com/NervanaSystems/ngraph/blob/master/LICENSE)
[
![Build Status
][
build-status-badge
]
]
[
build-status
]
[
![License
](
https://img.shields.io/badge/License-Apache%202.0-blue.svg
)
](https://github.com/NervanaSystems/ngraph/blob/master/LICENSE)
[
![Build Status
][
build-status-badge
]
]
[
build-status
]
...
@@ -16,12 +16,12 @@ workloads on CPU for inference, please refer to the links below.
...
@@ -16,12 +16,12 @@ workloads on CPU for inference, please refer to the links below.
| Framework (Version) | Installation guide | Notes
| Framework (Version) | Installation guide | Notes
|----------------------------|----------------------------------------|-----------------------------------
|----------------------------|----------------------------------------|-----------------------------------
| TensorFlow
*
1.12 |
[
Pip
package
]
or
[
Build from source
]
| 17
[
Validated workloads
]
| TensorFlow
*
1.12 |
[
Pip
install
](
https://github.com/NervanaSystems/ngraph-tf
)
or
[
Build from source
](
https://github.com/NervanaSystems/ngraph-tf
)
| 20
[
Validated workloads
]
| MXNet
*
1.
4 |
[
Enable the module
]
or
[
Source compile
]
| 17
[
Validated workloads
]
| MXNet
*
1.
3 |
[
Pip install
](
https://github.com/NervanaSystems/ngraph-mxnet#Installation
)
or
[
Build from source
](
https://github.com/NervanaSystems/ngraph-mxnet#building-with-ngraph-support
)
| 18
[
Validated workloads
]
| ONNX 1.3 |
[
Pip
package
]
| 14
[
Validated workloads
]
| ONNX 1.3 |
[
Pip
install
](
https://github.com/NervanaSystems/ngraph-onnx#installation
)
| 14
[
Validated workloads
]
Frameworks using nGraph Compiler stack to execute workloads have shown
Frameworks using nGraph Compiler stack to execute workloads have shown
**up to 45X**
performance boost when compared to native framework
[
**up to 45X**
](
https://ai.intel.com/ngraph-compiler-stack-beta-release/
)
performance boost when compared to native framework
implementations. We've also seen performance boosts running workloads that
implementations. We've also seen performance boosts running workloads that
are not included on the list of
[
Validated workloads
]
, thanks to our
are not included on the list of
[
Validated workloads
]
, thanks to our
powerful subgraph pattern matching.
powerful subgraph pattern matching.
...
@@ -100,9 +100,6 @@ to improve it:
...
@@ -100,9 +100,6 @@ to improve it:
[
develop-without-lockin
]:
doc/sphinx/source/graphics/develop-without-lockin.png
"Develop on any part of the stack wtihout lockin"
[
develop-without-lockin
]:
doc/sphinx/source/graphics/develop-without-lockin.png
"Develop on any part of the stack wtihout lockin"
[
Movidius™ Myriad™ 2
]:
https://www.movidius.com/solutions/vision-processing-unit
[
Movidius™ Myriad™ 2
]:
https://www.movidius.com/solutions/vision-processing-unit
[
PlaidML
]:
https://github.com/plaidml/plaidml
[
PlaidML
]:
https://github.com/plaidml/plaidml
[
Pip package
]:
https://github.com/NervanaSystems/ngraph-onnx#installing-ngraph-onnx
[
Build from source
]:
https://github.com/NervanaSystems/ngraph-tf
[
Enable the module
]:
https://github.com/NervanaSystems/ngraph/blob/mbrookhart/mxnet_tutorial/doc/sphinx/source/shared/mxnet_tutorial.rst
[
Source compile
]:
https://github.com/NervanaSystems/ngraph-mxnet/blob/master/README.md
[
Source compile
]:
https://github.com/NervanaSystems/ngraph-mxnet/blob/master/README.md
[
nGraph-ONNX
]:
https://github.com/NervanaSystems/ngraph-onnx/blob/master/README.md
[
nGraph-ONNX
]:
https://github.com/NervanaSystems/ngraph-onnx/blob/master/README.md
[
nGraph-ONNX adaptable
]:
https://ai.intel.com/adaptable-deep-learning-solutions-with-ngraph-compiler-and-onnx/
[
nGraph-ONNX adaptable
]:
https://ai.intel.com/adaptable-deep-learning-solutions-with-ngraph-compiler-and-onnx/
...
...
cmake/external_halide.cmake
View file @
b3d70927
...
@@ -45,6 +45,7 @@ ExternalProject_Add(
...
@@ -45,6 +45,7 @@ ExternalProject_Add(
GIT_REPOSITORY
${
HALIDE_GIT_REPO_URL
}
GIT_REPOSITORY
${
HALIDE_GIT_REPO_URL
}
GIT_TAG
${
HALIDE_GIT_TAG
}
GIT_TAG
${
HALIDE_GIT_TAG
}
UPDATE_COMMAND
""
UPDATE_COMMAND
""
PATCH_COMMAND patch -p1 --forward --reject-file=- -i
${
CMAKE_SOURCE_DIR
}
/cmake/halide.patch || exit 0
CMAKE_ARGS
CMAKE_ARGS
-DLLVM_DIR=
${
HALIDE_LLVM_DIR
}
-DLLVM_DIR=
${
HALIDE_LLVM_DIR
}
-DCMAKE_BUILD_TYPE=
${
CMAKE_BUILD_TYPE
}
-DCMAKE_BUILD_TYPE=
${
CMAKE_BUILD_TYPE
}
...
...
cmake/halide.patch
0 → 100644
View file @
b3d70927
diff --git a/CMakeLists.txt b/CMakeLists.txt
index d70fdc79d..60aa4c3b7 100644
--- a/CMakeLists.txt
+++ b/CMakeLists.txt
@@ -131,7 +131,8 @@ function(check_llvm_target TARGET HAS_TARGET)
set(_llvm_required_version ${ARGV2})
endif()
if (NOT LLVM_VERSION LESS _llvm_required_version)
- list(FIND LLVM_TARGETS_TO_BUILD ${TARGET} _found_target)
+ set(NGRAPH_TARGETS_TO_BUILD "X86")
+ list(FIND NGRAPH_TARGETS_TO_BUILD ${TARGET} _found_target)
if (_found_target GREATER -1)
set(${HAS_TARGET} ON PARENT_SCOPE)
else()
doc/sphinx/ngraph_theme/static/css/theme.css
View file @
b3d70927
...
@@ -1634,7 +1634,7 @@ body {
...
@@ -1634,7 +1634,7 @@ body {
color
:
#38403f
;
color
:
#38403f
;
min-height
:
100%
;
min-height
:
100%
;
overflow-x
:
hidden
;
overflow-x
:
hidden
;
background
:
#
edf0f2
;
background
:
#
fcfcfc
;
}
}
.wy-text-left
{
.wy-text-left
{
...
@@ -3193,7 +3193,7 @@ footer span.commit code, footer span.commit .rst-content tt, .rst-content footer
...
@@ -3193,7 +3193,7 @@ footer span.commit code, footer span.commit .rst-content tt, .rst-content footer
}
}
@media
screen
and
(
min-width
:
1400px
)
{
@media
screen
and
(
min-width
:
1400px
)
{
.wy-nav-content-wrap
{
.wy-nav-content-wrap
{
background
:
#
0C7881
;
background
:
#
fcfcfc
;
}
}
.wy-nav-content
{
.wy-nav-content
{
...
...
doc/sphinx/source/conf.py
View file @
b3d70927
...
@@ -73,9 +73,11 @@ author = 'Intel Corporation'
...
@@ -73,9 +73,11 @@ author = 'Intel Corporation'
# built documents.
# built documents.
#
#
# The short X.Y version.
# The short X.Y version.
version
=
'0.9'
version
=
'0.10'
# The full version, including alpha/beta/rc tags.
# The Documentation full version, including alpha/beta/rc tags. Some features
release
=
'0.9.0'
# available in the latest code will not necessarily be documented first
release
=
'0.10.1'
# The language for content autogenerated by Sphinx. Refer to documentation
# The language for content autogenerated by Sphinx. Refer to documentation
# for a list of supported languages.
# for a list of supported languages.
...
...
doc/sphinx/source/framework-integration-guides.rst
View file @
b3d70927
...
@@ -50,4 +50,4 @@ nGraph-TensorFlow bridge.
...
@@ -50,4 +50,4 @@ nGraph-TensorFlow bridge.
.. _MXNet: http://mxnet.incubator.apache.org
.. _MXNet: http://mxnet.incubator.apache.org
.. _DSO: http://csweb.cs.wfu.edu/%7Etorgerse/Kokua/More_SGI/007-2360-010/sgi_html/ch03.html
.. _DSO: http://csweb.cs.wfu.edu/%7Etorgerse/Kokua/More_SGI/007-2360-010/sgi_html/ch03.html
.. _being the fastest: https://github.com/soumith/convnet-benchmarks
.. _being the fastest: https://github.com/soumith/convnet-benchmarks
.. _ngraph tensorflow bridge README: https://github.com/NervanaSystems/ngraph-tf
.. _ngraph tensorflow bridge README: https://github.com/NervanaSystems/ngraph-tf
/blob/master/README.md
doc/sphinx/source/frameworks/validation-testing.rst
View file @
b3d70927
...
@@ -15,19 +15,22 @@ TensorFlow
...
@@ -15,19 +15,22 @@ TensorFlow
:widths: 27, 53
:widths: 27, 53
:escape: ~
:escape: ~
Resnet50 v1 and v2, Image recognition
Resnet50 v1, Image recognition
Inception V3 and V4, Image recognition
Resnet50 v2, Image recognition
Inception V3, Image recognition
Inception V4, Image recognition
Inception-ResNetv2, Image recognition
Inception-ResNetv2, Image recognition
MobileNet v1, Image recognition
MobileNet v1, Image recognition
SqueezeNet v1.1
, Image recognition
MobileNet v2
, Image recognition
DenseNet-121
, Image recognition
VGG16
, Image recognition
SSD-VGG16, Object detection
SSD-VGG16, Object detection
SSD-MobileNetv1, Object detection
SSD-MobileNetv1, Object detection
R-FCN, Object detection
Faster RCNN, Object detection
Faster RCNN, Object detection
Yolo v2, Object detection
Yolo v2, Object detection
Transformer-LT, Language translation
Wide & Deep, Recommender system
Wide & Deep, Recommender system
NCF, Recommender system
NCF, Recommender system
WaveNet, Speech generation
U-Net, Image segmentation
U-Net, Image segmentation
DCGAN, Generative adversarial network
DCGAN, Generative adversarial network
DRAW, Image generation
DRAW, Image generation
...
@@ -41,7 +44,8 @@ MXNet
...
@@ -41,7 +44,8 @@ MXNet
:widths: 27, 53
:widths: 27, 53
:escape: ~
:escape: ~
Resnet50 v1 and v2, Image recognition
Resnet50 v1, Image recognition
Resnet50 v2, Image recognition
DenseNet-121, Image recognition
DenseNet-121, Image recognition
InceptionV3, Image recognition
InceptionV3, Image recognition
InceptionV4, Image recognition
InceptionV4, Image recognition
...
@@ -70,10 +74,10 @@ Additionally, we validated the following workloads are functional through nGraph
...
@@ -70,10 +74,10 @@ Additionally, we validated the following workloads are functional through nGraph
:widths: 27, 53
:widths: 27, 53
:escape: ~
:escape: ~
ResNet-50, Image recognition
DenseNet-121, Image recognition
DenseNet-121, Image recognition
Inception-v1, Image recognition
Inception-v1, Image recognition
Inception-v2, Image recognition
Inception-v2, Image recognition
ResNet-50, Image recognition
Shufflenet, Image recognition
Shufflenet, Image recognition
SqueezeNet, Image recognition
SqueezeNet, Image recognition
VGG-19, Image recognition
VGG-19, Image recognition
...
...
licenses/notifications.txt
0 → 100644
View file @
b3d70927
The MPL 2.0 license used by the eigen library used by this ngraph core
component requires distribution of the following information:
Eigen source code can be viewed or downloaded from here:
http://eigen.tuxfamily.org
python/setup.py
View file @
b3d70927
...
@@ -22,7 +22,7 @@ import os
...
@@ -22,7 +22,7 @@ import os
import
distutils.ccompiler
import
distutils.ccompiler
__version__
=
os
.
environ
.
get
(
'NGRAPH_VERSION'
,
'0.0.0-dev'
)
__version__
=
os
.
environ
.
get
(
'NGRAPH_VERSION'
,
'0.0.0-dev'
)
PYNGRAPH_
SOURCE
_DIR
=
os
.
path
.
abspath
(
os
.
path
.
dirname
(
__file__
))
PYNGRAPH_
ROOT
_DIR
=
os
.
path
.
abspath
(
os
.
path
.
dirname
(
__file__
))
NGRAPH_DEFAULT_INSTALL_DIR
=
os
.
environ
.
get
(
'HOME'
)
NGRAPH_DEFAULT_INSTALL_DIR
=
os
.
environ
.
get
(
'HOME'
)
NGRAPH_ONNX_IMPORT_ENABLE
=
os
.
environ
.
get
(
'NGRAPH_ONNX_IMPORT_ENABLE'
)
NGRAPH_ONNX_IMPORT_ENABLE
=
os
.
environ
.
get
(
'NGRAPH_ONNX_IMPORT_ENABLE'
)
...
@@ -50,7 +50,7 @@ def find_pybind_headers_dir():
...
@@ -50,7 +50,7 @@ def find_pybind_headers_dir():
if
os
.
environ
.
get
(
'PYBIND_HEADERS_PATH'
):
if
os
.
environ
.
get
(
'PYBIND_HEADERS_PATH'
):
pybind_headers_dir
=
os
.
environ
.
get
(
'PYBIND_HEADERS_PATH'
)
pybind_headers_dir
=
os
.
environ
.
get
(
'PYBIND_HEADERS_PATH'
)
else
:
else
:
pybind_headers_dir
=
os
.
path
.
join
(
PYNGRAPH_
SOURCE
_DIR
,
'pybind11'
)
pybind_headers_dir
=
os
.
path
.
join
(
PYNGRAPH_
ROOT
_DIR
,
'pybind11'
)
found
=
os
.
path
.
exists
(
os
.
path
.
join
(
pybind_headers_dir
,
'include/pybind11'
))
found
=
os
.
path
.
exists
(
os
.
path
.
join
(
pybind_headers_dir
,
'include/pybind11'
))
if
not
found
:
if
not
found
:
...
@@ -233,13 +233,13 @@ sources = [
...
@@ -233,13 +233,13 @@ sources = [
]
]
package_dir
=
{
package_dir
=
{
'ngraph'
:
PYNGRAPH_
SOURCE
_DIR
+
"/ngraph"
,
'ngraph'
:
PYNGRAPH_
ROOT
_DIR
+
"/ngraph"
,
'ngraph.utils'
:
PYNGRAPH_
SOURCE
_DIR
+
"/ngraph/utils"
,
'ngraph.utils'
:
PYNGRAPH_
ROOT
_DIR
+
"/ngraph/utils"
,
'ngraph.impl'
:
PYNGRAPH_
SOURCE
_DIR
+
"/ngraph/impl"
,
'ngraph.impl'
:
PYNGRAPH_
ROOT
_DIR
+
"/ngraph/impl"
,
'ngraph.impl.op'
:
PYNGRAPH_
SOURCE
_DIR
+
"/ngraph/impl/op"
,
'ngraph.impl.op'
:
PYNGRAPH_
ROOT
_DIR
+
"/ngraph/impl/op"
,
'ngraph.impl.op.util'
:
PYNGRAPH_
SOURCE
_DIR
+
"/ngraph/impl/op/util"
,
'ngraph.impl.op.util'
:
PYNGRAPH_
ROOT
_DIR
+
"/ngraph/impl/op/util"
,
'ngraph.impl.passes'
:
PYNGRAPH_
SOURCE
_DIR
+
"/ngraph/impl/passes"
,
'ngraph.impl.passes'
:
PYNGRAPH_
ROOT
_DIR
+
"/ngraph/impl/passes"
,
'ngraph.impl.runtime'
:
PYNGRAPH_
SOURCE
_DIR
+
"/ngraph/impl/runtime"
,
'ngraph.impl.runtime'
:
PYNGRAPH_
ROOT
_DIR
+
"/ngraph/impl/runtime"
,
}
}
packages
=
[
packages
=
[
'ngraph'
,
'ngraph'
,
...
@@ -251,9 +251,9 @@ packages = [
...
@@ -251,9 +251,9 @@ packages = [
'ngraph.impl.runtime'
,
'ngraph.impl.runtime'
,
]
]
sources
=
[
PYNGRAPH_
SOURCE
_DIR
+
"/"
+
source
for
source
in
sources
]
sources
=
[
PYNGRAPH_
ROOT
_DIR
+
"/"
+
source
for
source
in
sources
]
include_dirs
=
[
PYNGRAPH_
SOURCE
_DIR
,
NGRAPH_CPP_INCLUDE_DIR
,
PYBIND11_INCLUDE_DIR
]
include_dirs
=
[
PYNGRAPH_
ROOT
_DIR
,
NGRAPH_CPP_INCLUDE_DIR
,
PYBIND11_INCLUDE_DIR
]
library_dirs
=
[
NGRAPH_CPP_LIBRARY_DIR
]
library_dirs
=
[
NGRAPH_CPP_LIBRARY_DIR
]
...
@@ -274,13 +274,13 @@ data_files = [
...
@@ -274,13 +274,13 @@ data_files = [
(
(
'licenses'
,
'licenses'
,
[
[
PYNGRAPH_
SOURCE
_DIR
+
"/../licenses/"
+
license
PYNGRAPH_
ROOT
_DIR
+
"/../licenses/"
+
license
for
license
in
os
.
listdir
(
PYNGRAPH_
SOURCE
_DIR
+
"/../licenses"
)
for
license
in
os
.
listdir
(
PYNGRAPH_
ROOT
_DIR
+
"/../licenses"
)
],
],
),
),
(
(
''
,
''
,
[
PYNGRAPH_
SOURCE
_DIR
+
"/../LICENSE"
],
[
PYNGRAPH_
ROOT
_DIR
+
"/../LICENSE"
],
)
)
]
]
...
@@ -302,10 +302,10 @@ if NGRAPH_ONNX_IMPORT_ENABLE == 'TRUE':
...
@@ -302,10 +302,10 @@ if NGRAPH_ONNX_IMPORT_ENABLE == 'TRUE':
'pyngraph/pyngraph_onnx_import.cpp'
,
'pyngraph/pyngraph_onnx_import.cpp'
,
'pyngraph/onnx_import/onnx_import.cpp'
,
'pyngraph/onnx_import/onnx_import.cpp'
,
]
]
onnx_sources
=
[
PYNGRAPH_
SOURCE
_DIR
+
"/"
+
source
for
source
in
onnx_sources
]
onnx_sources
=
[
PYNGRAPH_
ROOT
_DIR
+
"/"
+
source
for
source
in
onnx_sources
]
package_dir
[
'ngraph.impl.onnx_import'
]
=
(
package_dir
[
'ngraph.impl.onnx_import'
]
=
(
PYNGRAPH_
SOURCE
_DIR
+
"/ngraph/impl/onnx_import"
PYNGRAPH_
ROOT
_DIR
+
"/ngraph/impl/onnx_import"
)
)
packages
.
append
(
'ngraph.impl.onnx_import'
)
packages
.
append
(
'ngraph.impl.onnx_import'
)
...
@@ -360,17 +360,17 @@ class BuildExt(build_ext):
...
@@ -360,17 +360,17 @@ class BuildExt(build_ext):
build_ext
.
build_extensions
(
self
)
build_ext
.
build_extensions
(
self
)
with
open
(
os
.
path
.
join
(
PYNGRAPH_
SOURCE
_DIR
,
'requirements.txt'
))
as
req
:
with
open
(
os
.
path
.
join
(
PYNGRAPH_
ROOT
_DIR
,
'requirements.txt'
))
as
req
:
requirements
=
req
.
read
()
.
splitlines
()
requirements
=
req
.
read
()
.
splitlines
()
setup
(
setup
(
name
=
'ngraph-core'
,
name
=
'ngraph-core'
,
description
=
open
(
os
.
path
.
join
(
PYNGRAPH_ROOT_DIR
,
'README.md'
))
.
read
(),
version
=
__version__
,
version
=
__version__
,
author
=
'Intel'
,
author
=
'Intel'
,
author_email
=
'intelnervana@intel.com'
,
author_email
=
'intelnervana@intel.com'
,
url
=
'https://ai.intel.com/'
,
url
=
'https://ai.intel.com/'
,
license
=
'License :: OSI Approved :: Apache Software License'
,
license
=
'License :: OSI Approved :: Apache Software License'
,
description
=
'Python API for nGraph'
,
long_description
=
''
,
long_description
=
''
,
ext_modules
=
ext_modules
,
ext_modules
=
ext_modules
,
package_dir
=
package_dir
,
package_dir
=
package_dir
,
...
...
src/ngraph/log.cpp
View file @
b3d70927
...
@@ -28,26 +28,6 @@
...
@@ -28,26 +28,6 @@
using
namespace
std
;
using
namespace
std
;
using
namespace
ngraph
;
using
namespace
ngraph
;
namespace
{
class
NilStreamBuf
final
:
public
streambuf
{
// N.B. We derive from the base streambuf implementation, in
// which underflow() and overflow() both return
// Traits::eof() -- any access returns a failure.
};
}
ostream
&
ngraph
::
get_nil_stream
()
{
// N.B. When debug logging is disabled, multiple threads may
// access the nil stream simultaneously, so it's important to
// return a threadsafe nil stream implementation.
static
NilStreamBuf
nil_buf
;
static
ostream
nil
{
&
nil_buf
};
return
nil
;
}
void
ngraph
::
default_logger_handler_func
(
const
string
&
s
)
void
ngraph
::
default_logger_handler_func
(
const
string
&
s
)
{
{
cout
<<
s
<<
endl
;
cout
<<
s
<<
endl
;
...
...
src/ngraph/log.hpp
View file @
b3d70927
...
@@ -100,8 +100,6 @@ namespace ngraph
...
@@ -100,8 +100,6 @@ namespace ngraph
static
std
::
deque
<
std
::
string
>
m_queue
;
static
std
::
deque
<
std
::
string
>
m_queue
;
};
};
extern
std
::
ostream
&
get_nil_stream
();
void
default_logger_handler_func
(
const
std
::
string
&
s
);
void
default_logger_handler_func
(
const
std
::
string
&
s
);
#define NGRAPH_ERR \
#define NGRAPH_ERR \
...
@@ -133,6 +131,33 @@ namespace ngraph
...
@@ -133,6 +131,33 @@ namespace ngraph
ngraph::default_logger_handler_func) \
ngraph::default_logger_handler_func) \
.stream()
.stream()
#else
#else
#define NGRAPH_DEBUG ngraph::get_nil_stream()
struct
NullLogger
{
};
template
<
typename
T
>
NullLogger
&&
operator
<<
(
NullLogger
&&
logger
,
T
&&
)
{
return
std
::
move
(
logger
);
}
template
<
typename
T
>
NullLogger
&&
operator
<<
(
NullLogger
&&
logger
,
const
T
&
)
{
return
std
::
move
(
logger
);
}
inline
NullLogger
&&
operator
<<
(
NullLogger
&&
logger
,
std
::
basic_ostream
<
char
,
std
::
char_traits
<
char
>>&
(
&
)(
std
::
basic_ostream
<
char
,
std
::
char_traits
<
char
>>&
))
{
return
std
::
move
(
logger
);
}
#define NGRAPH_DEBUG \
::ngraph::NullLogger {}
#endif
#endif
}
}
src/ngraph/op/experimental/quantized_conv_relu.cpp
View file @
b3d70927
/
**
*****************************************************************************
/
/
*****************************************************************************
*
Copyright 2017-2018 Intel Corporation
//
Copyright 2017-2018 Intel Corporation
*
//
*
Licensed under the Apache License, Version 2.0 (the "License");
//
Licensed under the Apache License, Version 2.0 (the "License");
*
you may not use this file except in compliance with the License.
//
you may not use this file except in compliance with the License.
*
You may obtain a copy of the License at
//
You may obtain a copy of the License at
*
//
*
http://www.apache.org/licenses/LICENSE-2.0
//
http://www.apache.org/licenses/LICENSE-2.0
*
//
*
Unless required by applicable law or agreed to in writing, software
//
Unless required by applicable law or agreed to in writing, software
*
distributed under the License is distributed on an "AS IS" BASIS,
//
distributed under the License is distributed on an "AS IS" BASIS,
*
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
//
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
*
See the License for the specific language governing permissions and
//
See the License for the specific language governing permissions and
*
limitations under the License.
//
limitations under the License.
*******************************************************************************/
//*****************************************************************************
#include <numeric>
#include <numeric>
...
...
src/ngraph/runtime/cpu/unit_test.manifest
View file @
b3d70927
...
@@ -16,3 +16,6 @@ quantize_clamp_int32
...
@@ -16,3 +16,6 @@ quantize_clamp_int32
# failing in CI build but passing on local machine
# failing in CI build but passing on local machine
max_3d_to_scalar_int32
max_3d_to_scalar_int32
argmin_trivial_in_i32
argmax_4D_axis_3_i64_in_i32
src/ngraph/runtime/gpu/cudnn_emitter.cpp
View file @
b3d70927
...
@@ -165,6 +165,15 @@ size_t runtime::gpu::CUDNNEmitter::build_reduce_forward(const cudnnReduceTensorO
...
@@ -165,6 +165,15 @@ size_t runtime::gpu::CUDNNEmitter::build_reduce_forward(const cudnnReduceTensorO
const
ReductionMode
&
reduction_mode
)
const
ReductionMode
&
reduction_mode
)
{
{
auto
input_type
=
dtypes
[
0
];
auto
input_type
=
dtypes
[
0
];
bool
use_cudnn_reduce
=
!
((
reduction_mode
==
ReductionMode
::
Reduce
)
&&
((
input_type
==
element
::
i32
)
||
(
input_type
==
element
::
i8
)));
NGRAPH_ASSERT
(
use_cudnn_reduce
)
<<
"cuDNN reduce for input type int32_t or int8_t currently not supported"
;
bool
unsupported_int8_type_arg_reduce
=
!
((
reduction_mode
==
ReductionMode
::
ArgReduce
)
&&
(
input_type
==
element
::
i8
));
NGRAPH_ASSERT
(
unsupported_int8_type_arg_reduce
)
<<
"cuDNN arg_reduce for input type int8_t currently not supported"
;
auto
output_type
=
dtypes
[
1
];
auto
output_type
=
dtypes
[
1
];
std
::
stringstream
ss
;
std
::
stringstream
ss
;
ss
<<
"reduce_"
<<
reduce_op
<<
"_"
<<
input_type
.
c_type_string
()
<<
"_"
ss
<<
"reduce_"
<<
reduce_op
<<
"_"
<<
input_type
.
c_type_string
()
<<
"_"
...
@@ -180,7 +189,8 @@ size_t runtime::gpu::CUDNNEmitter::build_reduce_forward(const cudnnReduceTensorO
...
@@ -180,7 +189,8 @@ size_t runtime::gpu::CUDNNEmitter::build_reduce_forward(const cudnnReduceTensorO
}
}
auto
&
desc
=
m_descriptors
.
build
<
cudnnReduceTensorDescriptor_t
>
();
auto
&
desc
=
m_descriptors
.
build
<
cudnnReduceTensorDescriptor_t
>
();
cudnnDataType_t
data_type
=
get_cudnn_datatype
(
input_type
);
auto
modified_input_type
=
(
input_type
==
element
::
i32
)
?
element
::
f64
:
input_type
;
cudnnDataType_t
data_type
=
get_cudnn_datatype
(
modified_input_type
);
cudnnTensorFormat_t
tensor_format
=
CUDNN_TENSOR_NCHW
;
cudnnTensorFormat_t
tensor_format
=
CUDNN_TENSOR_NCHW
;
auto
&
input_desc
=
tensor_descriptor_from_shape
(
input_shape
,
data_type
,
tensor_format
);
auto
&
input_desc
=
tensor_descriptor_from_shape
(
input_shape
,
data_type
,
tensor_format
);
Shape
output_shape
=
input_shape
;
Shape
output_shape
=
input_shape
;
...
@@ -193,15 +203,6 @@ size_t runtime::gpu::CUDNNEmitter::build_reduce_forward(const cudnnReduceTensorO
...
@@ -193,15 +203,6 @@ size_t runtime::gpu::CUDNNEmitter::build_reduce_forward(const cudnnReduceTensorO
// get an allocator for transient per kernel gpu memory
// get an allocator for transient per kernel gpu memory
GPUAllocator
allocator
=
this
->
m_primitive_emitter
->
get_memory_allocator
();
GPUAllocator
allocator
=
this
->
m_primitive_emitter
->
get_memory_allocator
();
size_t
workspace_size
=
0
;
CUDNN_SAFE_CALL
(
cudnnGetReductionWorkspaceSize
(
*
m_ctx
->
cudnn_handle
,
desc
,
input_desc
,
output_desc
,
&
workspace_size
));
size_t
input_buffer_size
=
shape_size
(
input_shape
)
*
input_type
.
size
();
if
(
workspace_size
<
input_buffer_size
)
{
workspace_size
=
input_buffer_size
;
}
size_t
workspace_idx
=
allocator
.
reserve_workspace
(
workspace_size
);
void
*
alpha
=
m_host_parameters
.
allocate_by_datatype
(
data_type
,
1.0
);
void
*
alpha
=
m_host_parameters
.
allocate_by_datatype
(
data_type
,
1.0
);
void
*
beta
=
m_host_parameters
.
allocate_by_datatype
(
data_type
,
0
);
void
*
beta
=
m_host_parameters
.
allocate_by_datatype
(
data_type
,
0
);
...
@@ -217,6 +218,12 @@ size_t runtime::gpu::CUDNNEmitter::build_reduce_forward(const cudnnReduceTensorO
...
@@ -217,6 +218,12 @@ size_t runtime::gpu::CUDNNEmitter::build_reduce_forward(const cudnnReduceTensorO
CUDNN_NOT_PROPAGATE_NAN
,
CUDNN_NOT_PROPAGATE_NAN
,
CUDNN_REDUCE_TENSOR_NO_INDICES
,
CUDNN_REDUCE_TENSOR_NO_INDICES
,
CUDNN_32BIT_INDICES
));
CUDNN_32BIT_INDICES
));
size_t
workspace_size
=
0
;
CUDNN_SAFE_CALL
(
cudnnGetReductionWorkspaceSize
(
*
m_ctx
->
cudnn_handle
,
desc
,
input_desc
,
output_desc
,
&
workspace_size
));
size_t
workspace_idx
=
allocator
.
reserve_workspace
(
workspace_size
);
// emit reduce operation
// emit reduce operation
reduce
.
reset
(
new
gpu
::
primitive
{
reduce
.
reset
(
new
gpu
::
primitive
{
[
=
,
&
desc
,
&
input_desc
,
&
output_desc
](
void
**
inputs
,
void
**
outputs
)
{
[
=
,
&
desc
,
&
input_desc
,
&
output_desc
](
void
**
inputs
,
void
**
outputs
)
{
...
@@ -243,71 +250,83 @@ size_t runtime::gpu::CUDNNEmitter::build_reduce_forward(const cudnnReduceTensorO
...
@@ -243,71 +250,83 @@ size_t runtime::gpu::CUDNNEmitter::build_reduce_forward(const cudnnReduceTensorO
{
{
if
(
output_type
==
element
::
i32
||
output_type
==
element
::
i64
)
if
(
output_type
==
element
::
i32
||
output_type
==
element
::
i64
)
{
{
size_t
indices_size
=
shape_size
(
output_shape
)
*
output_type
.
size
();
// Since cuDNN only outputs int32 indices
size_t
indices_size
=
shape_size
(
output_shape
)
*
element
::
i32
.
size
();
size_t
reduce_buffer_idx
=
size_t
reduce_buffer_idx
=
allocator
.
reserve_workspace
(
shape_size
(
output_shape
)
*
input_type
.
size
());
allocator
.
reserve_workspace
(
shape_size
(
output_shape
)
*
modified_input_type
.
size
());
CUDNN_SAFE_CALL
(
cudnnSetReduceTensorDescriptor
(
desc
,
CUDNN_SAFE_CALL
(
cudnnSetReduceTensorDescriptor
(
desc
,
reduce_op
,
reduce_op
,
data_type
,
data_type
,
CUDNN_NOT_PROPAGATE_NAN
,
CUDNN_NOT_PROPAGATE_NAN
,
CUDNN_REDUCE_TENSOR_FLATTENED_INDICES
,
CUDNN_REDUCE_TENSOR_FLATTENED_INDICES
,
CUDNN_32BIT_INDICES
));
CUDNN_32BIT_INDICES
));
size_t
workspace_size
=
0
;
CUDNN_SAFE_CALL
(
cudnnGetReductionWorkspaceSize
(
*
m_ctx
->
cudnn_handle
,
desc
,
input_desc
,
output_desc
,
&
workspace_size
));
size_t
workspace_idx
=
allocator
.
reserve_workspace
(
workspace_size
);
auto
&
cuda_emitter
=
m_primitive_emitter
->
get_cuda_emitter
();
std
::
function
<
void
(
void
**
,
void
**
)
>
convert_output
=
[](
void
**
inputs
,
void
**
outputs
)
{
};
std
::
function
<
void
*
(
void
*
)
>
convert_output_space
=
[](
void
*
ptr
)
{
return
ptr
;
};
if
(
output_type
==
element
::
i64
)
if
(
output_type
==
element
::
i64
)
{
{
size_t
workspace_indices_idx
=
size_t
workspace_indices_idx
=
allocator
.
reserve_workspace
(
indices_size
);
allocator
.
reserve_workspace
(
shape_size
(
output_shape
)
*
input_type
.
size
());
auto
convert_idx
=
cuda_emitter
->
template
build_elementwise
<
op
::
Convert
>
(
auto
&
cuda_emitter
=
m_primitive_emitter
->
get_cuda_emitter
();
auto
convert_idx
=
cuda_emitter
->
build_elementwise
<
op
::
Convert
>
(
{
element
::
i32
.
c_type_string
(),
element
::
i64
.
c_type_string
()},
output_shape
);
{
element
::
i32
.
c_type_string
(),
element
::
i64
.
c_type_string
()},
output_shape
);
reduce
.
reset
(
new
gpu
::
primitive
{
convert_output
=
[
=
](
void
**
inputs
,
void
**
outputs
)
{
[
=
,
&
desc
,
&
input_desc
,
&
output_desc
](
void
**
inputs
,
void
**
outputs
)
{
gpu
::
invoke_primitive
(
m_ctx
,
convert_idx
,
inputs
,
outputs
);
void
*
workspace_indices_ptr
=
};
runtime
::
gpu
::
invoke_memory_primitive
(
m_ctx
,
workspace_indices_idx
);
convert_output_space
=
[
=
](
void
*
ptr
)
{
void
*
workspace_ptr
=
return
runtime
::
gpu
::
invoke_memory_primitive
(
m_ctx
,
workspace_indices_idx
);
runtime
::
gpu
::
invoke_memory_primitive
(
m_ctx
,
workspace_idx
);
};
void
*
reduce_buffer
=
runtime
::
gpu
::
invoke_memory_primitive
(
m_ctx
,
reduce_buffer_idx
);
CUDNN_SAFE_CALL
(
cudnnReduceTensor
(
*
m_ctx
->
cudnn_handle
,
desc
,
workspace_indices_ptr
,
indices_size
,
workspace_ptr
,
workspace_size
,
alpha
,
input_desc
,
inputs
[
0
],
beta
,
output_desc
,
reduce_buffer
));
gpu
::
invoke_primitive
(
m_ctx
,
convert_idx
,
&
workspace_indices_ptr
,
outputs
);
debug_sync
();
}});
}
}
else
std
::
function
<
void
(
void
**
,
void
**
)
>
convert_input
=
[](
void
**
inputs
,
void
**
outputs
)
{
};
std
::
function
<
void
*
(
void
*
)
>
convert_input_space
=
[](
void
*
ptr
)
{
return
ptr
;
};
if
(
input_type
==
element
::
i32
)
{
{
reduce
.
reset
(
new
gpu
::
primitive
{
size_t
input_idx
=
allocator
.
reserve_workspace
(
shape_size
(
input_shape
)
*
[
=
,
&
desc
,
&
input_desc
,
&
output_desc
](
void
**
inputs
,
void
**
outputs
)
{
modified_input_type
.
size
());
auto
convert_input_idx
=
cuda_emitter
->
template
build_elementwise
<
op
::
Convert
>
(
{
input_type
.
c_type_string
(),
modified_input_type
.
c_type_string
()},
input_shape
);
convert_input
=
[
=
](
void
**
inputs
,
void
**
outputs
)
{
gpu
::
invoke_primitive
(
m_ctx
,
convert_input_idx
,
inputs
,
outputs
);
};
convert_input_space
=
[
=
](
void
*
ptr
)
{
return
runtime
::
gpu
::
invoke_memory_primitive
(
m_ctx
,
input_idx
);
};
}
void
*
workspace_ptr
=
reduce
.
reset
(
new
gpu
::
primitive
{[
=
,
&
desc
,
&
input_desc
,
&
output_desc
](
void
**
inputs
,
runtime
::
gpu
::
invoke_memory_primitive
(
m_ctx
,
workspace_idx
);
void
**
outputs
)
{
void
*
input_ptr
=
convert_input_space
(
inputs
[
0
]);
void
*
workspace_indices_ptr
=
convert_output_space
(
outputs
[
0
]);
void
*
workspace_ptr
=
runtime
::
gpu
::
invoke_memory_primitive
(
m_ctx
,
workspace_idx
);
void
*
reduce_buffer
=
void
*
reduce_buffer
=
runtime
::
gpu
::
invoke_memory_primitive
(
m_ctx
,
reduce_buffer_idx
);
runtime
::
gpu
::
invoke_memory_primitive
(
m_ctx
,
reduce_buffer_idx
);
convert_input
(
inputs
,
&
input_ptr
);
CUDNN_SAFE_CALL
(
cudnnReduceTensor
(
*
m_ctx
->
cudnn_handle
,
CUDNN_SAFE_CALL
(
cudnnReduceTensor
(
*
m_ctx
->
cudnn_handle
,
desc
,
desc
,
outputs
[
0
]
,
workspace_indices_ptr
,
indices_size
,
indices_size
,
workspace_ptr
,
workspace_ptr
,
workspace_size
,
workspace_size
,
alpha
,
alpha
,
input_desc
,
input_desc
,
inputs
[
0
]
,
input_ptr
,
beta
,
beta
,
output_desc
,
output_desc
,
reduce_buffer
));
reduce_buffer
));
convert_output
(
&
workspace_indices_ptr
,
outputs
);
debug_sync
();
debug_sync
();
}});
}});
}
}
}
else
else
{
{
std
::
stringstream
ss_er
;
std
::
stringstream
ss_er
;
...
...
src/ngraph/runtime/intelgpu/unit_test.manifest
View file @
b3d70927
...
@@ -134,6 +134,7 @@ shape_of_vector
...
@@ -134,6 +134,7 @@ shape_of_vector
shape_of_matrix
shape_of_matrix
shape_of_5d
shape_of_5d
sum_stable_acc
sum_stable_acc
sum_trivial_in_double
product_2d_to_scalar_int32
product_2d_to_scalar_int32
product_to_scalar_int32
product_to_scalar_int32
product_to_scalar_int8
product_to_scalar_int8
...
@@ -141,3 +142,6 @@ max_matrix_rows_zero_int32
...
@@ -141,3 +142,6 @@ max_matrix_rows_zero_int32
max_to_scalar_int8
max_to_scalar_int8
min_to_scalar_int8
min_to_scalar_int8
max_3d_to_scalar_double
max_3d_to_scalar_double
argmin_trivial_in_i32
argmax_4D_axis_3_i64_in_i32
argmin_trivial_in_double
src/ngraph/runtime/plaidml/plaidml_backend.cpp
View file @
b3d70927
...
@@ -52,11 +52,7 @@ bool ngraph::runtime::plaidml::PlaidML_Backend::call(
...
@@ -52,11 +52,7 @@ bool ngraph::runtime::plaidml::PlaidML_Backend::call(
const
std
::
vector
<
std
::
shared_ptr
<
runtime
::
Tensor
>>&
outputs
,
const
std
::
vector
<
std
::
shared_ptr
<
runtime
::
Tensor
>>&
outputs
,
const
std
::
vector
<
std
::
shared_ptr
<
runtime
::
Tensor
>>&
inputs
)
const
std
::
vector
<
std
::
shared_ptr
<
runtime
::
Tensor
>>&
inputs
)
{
{
auto
cfunc
=
m_cache
.
try_lookup
(
func
);
auto
cfunc
=
m_cache
.
compile
(
func
,
&
m_compiler
);
if
(
!
cfunc
)
{
cfunc
=
m_compiler
.
compile
(
func
);
}
cfunc
->
schedule_invocation
(
inputs
,
outputs
);
cfunc
->
schedule_invocation
(
inputs
,
outputs
);
return
true
;
return
true
;
}
}
...
...
src/ngraph/runtime/plaidml/plaidml_compiled_function.cpp
View file @
b3d70927
...
@@ -42,19 +42,31 @@ bool ngraph::runtime::plaidml::CompiledFunction::schedule_invocation(
...
@@ -42,19 +42,31 @@ bool ngraph::runtime::plaidml::CompiledFunction::schedule_invocation(
NGRAPH_DEBUG
<<
"Binding PlaidML function "
<<
this
;
NGRAPH_DEBUG
<<
"Binding PlaidML function "
<<
this
;
m_bound_inputs
.
resize
(
inputs
.
size
());
m_bound_outputs
.
resize
(
outputs
.
size
());
std
::
size_t
input_count
=
0
;
std
::
size_t
input_count
=
0
;
for
(
const
auto
&
param
:
m_func
->
get_parameters
())
for
(
const
auto
&
param
:
m_func
->
get_parameters
())
{
{
for
(
std
::
size_t
idx
=
0
;
idx
<
param
->
get_output_size
();
++
idx
)
for
(
std
::
size_t
idx
=
0
;
idx
<
param
->
get_output_size
();
++
idx
)
{
{
descriptor
::
Tensor
*
tv
=
param
->
get_output_tensor_ptr
(
idx
).
get
();
descriptor
::
Tensor
*
tv
=
param
->
get_output_tensor_ptr
(
idx
).
get
();
auto
rtv
=
dynamic_cast
<
PlaidML_Tensor
*>
(
inputs
[
input_count
++
].
get
());
auto
&
input
=
inputs
.
at
(
input_count
);
auto
rtv
=
dynamic_cast
<
PlaidML_Tensor
*>
(
input
.
get
());
if
(
!
rtv
)
if
(
!
rtv
)
{
{
throw
std
::
runtime_error
{
throw
std
::
runtime_error
{
"The PlaidML backend only operat
ion
s on PlaidML tensor views"
};
"The PlaidML backend only operat
e
s on PlaidML tensor views"
};
}
}
rtv
->
sync_input
();
rtv
->
sync_input
();
auto
&
bound_input
=
m_bound_inputs
.
at
(
input_count
);
++
input_count
;
if
(
bound_input
.
lock
()
==
input
)
{
// No need to re-bind this input.
continue
;
}
bound_input
=
input
;
NGRAPH_DEBUG
<<
"Binding input "
<<
m_input_names
.
at
(
tv
)
<<
" to tensor "
<<
rtv
;
NGRAPH_DEBUG
<<
"Binding input "
<<
m_input_names
.
at
(
tv
)
<<
" to tensor "
<<
rtv
;
m_invoker
.
set_input
(
m_input_names
.
at
(
tv
),
rtv
->
tensor
());
m_invoker
.
set_input
(
m_input_names
.
at
(
tv
),
rtv
->
tensor
());
}
}
...
@@ -66,12 +78,21 @@ bool ngraph::runtime::plaidml::CompiledFunction::schedule_invocation(
...
@@ -66,12 +78,21 @@ bool ngraph::runtime::plaidml::CompiledFunction::schedule_invocation(
for
(
std
::
size_t
idx
=
0
;
idx
<
result
->
get_output_size
();
++
idx
)
for
(
std
::
size_t
idx
=
0
;
idx
<
result
->
get_output_size
();
++
idx
)
{
{
descriptor
::
Tensor
*
tv
=
result
->
get_output_tensor_ptr
(
idx
).
get
();
descriptor
::
Tensor
*
tv
=
result
->
get_output_tensor_ptr
(
idx
).
get
();
auto
rtv
=
dynamic_cast
<
PlaidML_Tensor
*>
(
outputs
[
output_count
++
].
get
());
auto
&
output
=
outputs
.
at
(
output_count
);
auto
rtv
=
dynamic_cast
<
PlaidML_Tensor
*>
(
output
.
get
());
if
(
!
rtv
)
if
(
!
rtv
)
{
{
throw
std
::
runtime_error
{
throw
std
::
runtime_error
{
"The PlaidML backend only operations on PlaidML tensor views"
};
"The PlaidML backend only operates on PlaidML tensor views"
};
}
auto
&
bound_output
=
m_bound_outputs
.
at
(
output_count
);
++
output_count
;
if
(
bound_output
.
lock
()
==
output
)
{
// No need to re-bind this output.
continue
;
}
}
bound_output
=
output
;
NGRAPH_DEBUG
<<
"Binding output "
<<
m_output_names
.
at
(
tv
)
<<
" to tensor "
<<
rtv
;
NGRAPH_DEBUG
<<
"Binding output "
<<
m_output_names
.
at
(
tv
)
<<
" to tensor "
<<
rtv
;
m_invoker
.
set_output
(
m_output_names
.
at
(
tv
),
rtv
->
tensor
());
m_invoker
.
set_output
(
m_output_names
.
at
(
tv
),
rtv
->
tensor
());
}
}
...
@@ -91,7 +112,7 @@ bool ngraph::runtime::plaidml::CompiledFunction::schedule_invocation(
...
@@ -91,7 +112,7 @@ bool ngraph::runtime::plaidml::CompiledFunction::schedule_invocation(
if
(
!
rtv
)
if
(
!
rtv
)
{
{
throw
std
::
runtime_error
{
throw
std
::
runtime_error
{
"The PlaidML backend only operat
ion
s on PlaidML tensor views"
};
"The PlaidML backend only operat
e
s on PlaidML tensor views"
};
}
}
rtv
->
sync_output
();
rtv
->
sync_output
();
}
}
...
...
src/ngraph/runtime/plaidml/plaidml_compiled_function.hpp
View file @
b3d70927
...
@@ -58,5 +58,7 @@ private:
...
@@ -58,5 +58,7 @@ private:
std
::
shared_ptr
<
Function
>
m_func
;
std
::
shared_ptr
<
Function
>
m_func
;
std
::
unordered_map
<
descriptor
::
Tensor
*
,
std
::
string
>
m_input_names
;
std
::
unordered_map
<
descriptor
::
Tensor
*
,
std
::
string
>
m_input_names
;
std
::
unordered_map
<
descriptor
::
Tensor
*
,
std
::
string
>
m_output_names
;
std
::
unordered_map
<
descriptor
::
Tensor
*
,
std
::
string
>
m_output_names
;
mutable
std
::
vector
<
std
::
weak_ptr
<
runtime
::
Tensor
>>
m_bound_inputs
;
mutable
std
::
vector
<
std
::
weak_ptr
<
runtime
::
Tensor
>>
m_bound_outputs
;
mutable
vertexai
::
plaidml
::
invoker
m_invoker
;
mutable
vertexai
::
plaidml
::
invoker
m_invoker
;
};
};
src/ngraph/runtime/plaidml/plaidml_tensor.cpp
View file @
b3d70927
...
@@ -101,6 +101,11 @@ void ngraph::runtime::plaidml::PlaidML_Tensor::read(void* p, size_t tensor_offse
...
@@ -101,6 +101,11 @@ void ngraph::runtime::plaidml::PlaidML_Tensor::read(void* p, size_t tensor_offse
void
ngraph
::
runtime
::
plaidml
::
PlaidML_Tensor
::
sync_input
()
void
ngraph
::
runtime
::
plaidml
::
PlaidML_Tensor
::
sync_input
()
{
{
if
(
!
get_stale
())
{
return
;
}
set_stale
(
false
);
if
(
!
m_memory
)
if
(
!
m_memory
)
{
{
if
(
m_is_logically_zero
)
if
(
m_is_logically_zero
)
...
@@ -122,6 +127,7 @@ void ngraph::runtime::plaidml::PlaidML_Tensor::sync_output()
...
@@ -122,6 +127,7 @@ void ngraph::runtime::plaidml::PlaidML_Tensor::sync_output()
{
{
// The tensor's been used for an output, so it's no longer logically zero.
// The tensor's been used for an output, so it's no longer logically zero.
m_is_logically_zero
=
false
;
m_is_logically_zero
=
false
;
set_stale
(
false
);
if
(
!
m_memory
)
if
(
!
m_memory
)
{
{
...
...
src/ngraph/runtime/plaidml/unit_test.manifest
View file @
b3d70927
...
@@ -26,12 +26,15 @@ topk_1d_max_one # No plans to implement TopK
...
@@ -26,12 +26,15 @@ topk_1d_max_one # No plans to implement TopK
topk_1d_min_all # No plans to implement TopK
topk_1d_min_all # No plans to implement TopK
topk_1d_min_partial # No plans to implement TopK
topk_1d_min_partial # No plans to implement TopK
topk_1d_min_one # No plans to implement TopK
topk_1d_min_one # No plans to implement TopK
topk_3d_large_input_max # No plans to implement TopK
topk_3d_large_input_min # No plans to implement TopK
topk_3d_max_all # No plans to implement TopK
topk_3d_max_all # No plans to implement TopK
topk_3d_max_partial # No plans to implement TopK
topk_3d_max_partial # No plans to implement TopK
topk_3d_max_one # No plans to implement TopK
topk_3d_max_one # No plans to implement TopK
topk_3d_min_all # No plans to implement TopK
topk_3d_min_all # No plans to implement TopK
topk_3d_min_partial # No plans to implement TopK
topk_3d_min_partial # No plans to implement TopK
topk_3d_min_one # No plans to implement TopK
topk_3d_min_one # No plans to implement TopK
topk_3d_single_output # No plans to implement TopK
topk_2d_max_all # No plans to implement TopK
topk_2d_max_all # No plans to implement TopK
topk_2d_max_partial # No plans to implement TopK
topk_2d_max_partial # No plans to implement TopK
topk_2d_max_one # No plans to implement TopK
topk_2d_max_one # No plans to implement TopK
...
@@ -43,15 +46,21 @@ topk_5d_max_partial # No plans to implement TopK
...
@@ -43,15 +46,21 @@ topk_5d_max_partial # No plans to implement TopK
# Tests that PlaidML might be able to run at some point.
# Tests that PlaidML might be able to run at some point.
backwards_maxpool_n2_c1_hw5_3x3_str2_max_pad1x2_2x3
backwards_maxpool_n2_c1_hw5_3x3_str2_max_pad1x2_2x3
backwards_maxpool_n4c1h4w4_kh2kw2_sh1sw1
backwards_maxpool_n2c1h5w5_kh3kw3_sh2sw2
backwards_maxpool_n4_c1_hw4_2x2_max
backwards_maxpool_n2_c1_hw5_3x3_str2_max
backwards_slice
backwards_slice
batchnorm_fprop_bprop # To debug
batchnorm_fprop_bprop # To debug
batchnorm_fprop_bprop_2step # To debug
batchnorm_fprop_bprop_2step # To debug
softmax_axis_3d_double # To debug
reduce_matrix_rows_zero # To debug: possible broadcasting error?
reduce_matrix_rows_zero # To debug: possible broadcasting error?
reduce_matrix_cols_zero # To debug: possible broadcasting error?
reduce_matrix_cols_zero # To debug: possible broadcasting error?
reduce_3d_to_vector # To debug: possible broadcasting error?
reduce_3d_to_vector # To debug: possible broadcasting error?
replace_slice_matrix_inplace
replace_slice_matrix_inplace
max_pool_2d_1channel_1image_overpadded
max_pool_2d_1channel_1image_overpadded
max_pool_3d
max_pool_3d
maxpool_bprop_larger_than_cache
reduce_window_emulating_max_pool_1d_1channel_1image
reduce_window_emulating_max_pool_1d_1channel_1image
reduce_window_emulating_max_pool_1d_1channel_2image
reduce_window_emulating_max_pool_1d_1channel_2image
reduce_window_emulating_max_pool_1d_2channel_2image
reduce_window_emulating_max_pool_1d_2channel_2image
...
@@ -60,21 +69,34 @@ reduce_window_emulating_max_pool_2d_1channel_1image_strided
...
@@ -60,21 +69,34 @@ reduce_window_emulating_max_pool_2d_1channel_1image_strided
select_and_scatter_with_overlap
select_and_scatter_with_overlap
select_and_scatter_without_overlap
select_and_scatter_without_overlap
select_and_scatter_3d_without_overlap
select_and_scatter_3d_without_overlap
generate_mask
avg_pool_3d
avg_pool_3d
avg_pool_3d_uneven_strided_padded_include_in_computation
avg_pool_3d_uneven_strided_padded_include_in_computation
dequantize_int8_zero_offset # Quantization/Dequantization is unimplemented
dequantize_int32 # Quantization/Dequantization is unimplemented
dequantize_int32_zero_offset # Quantization/Dequantization is unimplemented
dequantize_zero_offset # Quantization/Dequantization is unimplemented
dequantize_zero_offset # Quantization/Dequantization is unimplemented
quantize_ROUND_NEAREST_TOWARD_ZERO # Quantization/Dequantization is unimplemented
quantize_ROUND_NEAREST_TOWARD_ZERO # Quantization/Dequantization is unimplemented
quantize_ROUND_NEAREST_UPWARD # Quantization/Dequantization is unimplemented
quantize_ROUND_NEAREST_UPWARD # Quantization/Dequantization is unimplemented
quantize_ROUND_NEAREST_DOWNWARD # Quantization/Dequantization is unimplemented
quantize_ROUND_NEAREST_DOWNWARD # Quantization/Dequantization is unimplemented
quantize_ROUND_NEAREST_TOWARD_EVEN # Quantization/Dequantization is unimplemented
quantize_ROUND_NEAREST_TOWARD_EVEN # Quantization/Dequantization is unimplemented
quantize_ROUND_NEAREST_TOWARD_INFINITY # Quantization/Dequantization is unimplemented
quantize_ROUND_TOWARD_INFINITY # Quantization/Dequantization is unimplemented
quantize_ROUND_TOWARD_INFINITY # Quantization/Dequantization is unimplemented
quantize_ROUND_TOWARD_ZERO # Quantization/Dequantization is unimplemented
quantize_ROUND_TOWARD_ZERO # Quantization/Dequantization is unimplemented
quantize_ROUND_UP # Quantization/Dequantization is unimplemented
quantize_ROUND_UP # Quantization/Dequantization is unimplemented
quantize_ROUND_DOWN # Quantization/Dequantization is unimplemented
quantize_ROUND_DOWN # Quantization/Dequantization is unimplemented
quantize # Quantization/Dequantization is unimplemented
quantize # Quantization/Dequantization is unimplemented
quantize_zero_offset # Quantization/Dequantization is unimplemented
quantize_axes # Quantization/Dequantization is unimplemented
quantize_axes # Quantization/Dequantization is unimplemented
quantize_int8 # Quantization/Dequantization is unimplemented
quantize_int8 # Quantization/Dequantization is unimplemented
quantize_int8_zero_offset # Quantization/Dequantization is unimplemented
quantize_int32 # Quantization/Dequantization is unimplemented
quantize_int32_zero_offset # Quantization/Dequantization is unimplemented
quantize_clamp # Quantization/Dequantization is unimplemented
quantize_clamp # Quantization/Dequantization is unimplemented
quantize_clamp_int8 # Quantization/Dequantization is unimplemented
quantize_clamp_int32 # Quantization/Dequantization is unimplemented
quantize_clamp_int32_zero_offset # Quantization/Dequantization is unimplemented
quantize_clamp_uint8 # Quantization/Dequantization is unimplemented
dequantize # Quantization/Dequantization is unimplemented
dequantize # Quantization/Dequantization is unimplemented
dequantize_axes # Quantization/Dequantization is unimplemented
dequantize_axes # Quantization/Dequantization is unimplemented
dequantize_int8 # Quantization/Dequantization is unimplemented
dequantize_int8 # Quantization/Dequantization is unimplemented
...
@@ -88,3 +110,8 @@ dot_matrix_2x0_0x2 # Empty dims apparently should produce shape
...
@@ -88,3 +110,8 @@ dot_matrix_2x0_0x2 # Empty dims apparently should produce shape
dot_2x0_0 # Empty dims apparently should produce shaped 0s
dot_2x0_0 # Empty dims apparently should produce shaped 0s
numeric_float_nan
numeric_float_nan
numeric_double_nan
numeric_double_nan
shape_of_scalar
shape_of_vector
shape_of_matrix
shape_of_5d
src/tools/ngraph-to-plaidml/ngraph-to-plaidml.cpp
View file @
b3d70927
/
**
*****************************************************************************
/
/
*****************************************************************************
* Copyright
2018 Intel Corporation
// Copyright 2017-
2018 Intel Corporation
*
//
*
Licensed under the Apache License, Version 2.0 (the "License");
//
Licensed under the Apache License, Version 2.0 (the "License");
*
you may not use this file except in compliance with the License.
//
you may not use this file except in compliance with the License.
*
You may obtain a copy of the License at
//
You may obtain a copy of the License at
*
//
*
http://www.apache.org/licenses/LICENSE-2.0
//
http://www.apache.org/licenses/LICENSE-2.0
*
//
*
Unless required by applicable law or agreed to in writing, software
//
Unless required by applicable law or agreed to in writing, software
*
distributed under the License is distributed on an "AS IS" BASIS,
//
distributed under the License is distributed on an "AS IS" BASIS,
*
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
//
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
*
See the License for the specific language governing permissions and
//
See the License for the specific language governing permissions and
*
limitations under the License.
//
limitations under the License.
*******************************************************************************/
//*****************************************************************************
#include <getopt.h>
#include <getopt.h>
...
...
test/backend_arg_reduce.in.cpp
View file @
b3d70927
...
@@ -311,3 +311,82 @@ NGRAPH_TEST(${BACKEND_NAME}, argmax_4D_axis_3)
...
@@ -311,3 +311,82 @@ NGRAPH_TEST(${BACKEND_NAME}, argmax_4D_axis_3)
.
get_vector
()),
.
get_vector
()),
read_vector
<
int
>
(
result
));
read_vector
<
int
>
(
result
));
}
}
NGRAPH_TEST
(
$
{
BACKEND_NAME
},
argmin_trivial_in_i32
)
{
Shape
shape
{
4
,
3
};
Shape
rshape
{
3
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
element
::
i32
,
shape
);
auto
f
=
make_shared
<
Function
>
(
make_shared
<
op
::
ArgMin
>
(
A
,
0
,
element
::
i32
),
ParameterVector
{
A
});
auto
backend
=
runtime
::
Backend
::
create
(
"${BACKEND_NAME}"
);
// Create some tensors for input/output
auto
a
=
backend
->
create_tensor
(
element
::
i32
,
shape
);
copy_data
(
a
,
vector
<
int32_t
>
{
12
,
2
,
10
,
9
,
8
,
4
,
6
,
1
,
5
,
3
,
11
,
7
});
auto
result
=
backend
->
create_tensor
(
element
::
i32
,
rshape
);
backend
->
call_with_validate
(
f
,
{
result
},
{
a
});
EXPECT_EQ
((
vector
<
int
>
{
3
,
2
,
1
}),
read_vector
<
int
>
(
result
));
}
NGRAPH_TEST
(
$
{
BACKEND_NAME
},
argmax_4D_axis_3_i64_in_i32
)
{
Shape
shape
{
2
,
2
,
5
,
5
};
// NCHW ->(0,1,2,3)
Shape
rshape
{
2
,
2
,
5
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
element
::
i32
,
shape
);
auto
f
=
make_shared
<
Function
>
(
make_shared
<
op
::
ArgMax
>
(
A
,
3
,
element
::
i64
),
ParameterVector
{
A
});
auto
backend
=
runtime
::
Backend
::
create
(
"${BACKEND_NAME}"
);
// Create some tensors for input/output
auto
a
=
backend
->
create_tensor
(
element
::
i32
,
shape
);
copy_data
(
a
,
test
::
NDArray
<
int32_t
,
4
>
({{{{
0
,
1
,
0
,
2
,
1
},
// img 0 ch 0
{
0
,
3
,
2
,
0
,
0
},
{
2
,
0
,
0
,
0
,
1
},
{
2
,
0
,
1
,
1
,
2
},
{
0
,
2
,
1
,
0
,
0
}},
{{
0
,
0
,
0
,
2
,
0
},
// img 0 ch 1
{
0
,
2
,
3
,
0
,
1
},
{
2
,
0
,
1
,
0
,
2
},
{
3
,
1
,
0
,
0
,
0
},
{
2
,
0
,
0
,
0
,
0
}}},
{{{
0
,
2
,
1
,
1
,
0
},
// img 1 ch 0
{
0
,
0
,
2
,
0
,
1
},
{
0
,
0
,
1
,
2
,
3
},
{
2
,
0
,
0
,
3
,
0
},
{
0
,
0
,
0
,
0
,
0
}},
{{
2
,
1
,
0
,
0
,
1
},
// img 1 ch 1
{
0
,
2
,
0
,
0
,
0
},
{
1
,
1
,
2
,
0
,
2
},
{
1
,
1
,
1
,
0
,
1
},
{
1
,
0
,
0
,
0
,
2
}}}})
.
get_vector
());
auto
result
=
backend
->
create_tensor
(
element
::
i64
,
rshape
);
backend
->
call_with_validate
(
f
,
{
result
},
{
a
});
EXPECT_EQ
((
test
::
NDArray
<
int64_t
,
3
>
({{{
3
,
1
,
0
,
0
,
1
},
{
3
,
2
,
0
,
0
,
0
}},
//ch0
{{
1
,
2
,
4
,
3
,
0
},
{
0
,
1
,
2
,
0
,
4
}}})
//ch1
.
get_vector
()),
read_vector
<
int64_t
>
(
result
));
}
NGRAPH_TEST
(
$
{
BACKEND_NAME
},
argmin_trivial_in_double
)
{
Shape
shape
{
4
,
3
};
Shape
rshape
{
3
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
element
::
f64
,
shape
);
auto
f
=
make_shared
<
Function
>
(
make_shared
<
op
::
ArgMin
>
(
A
,
0
,
element
::
i32
),
ParameterVector
{
A
});
auto
backend
=
runtime
::
Backend
::
create
(
"${BACKEND_NAME}"
);
// Create some tensors for input/output
auto
a
=
backend
->
create_tensor
(
element
::
f64
,
shape
);
copy_data
(
a
,
vector
<
double
>
{
12
,
2
,
10
,
9
,
8
,
4
,
6
,
1
,
5
,
3
,
11
,
7
});
auto
result
=
backend
->
create_tensor
(
element
::
i32
,
rshape
);
backend
->
call_with_validate
(
f
,
{
result
},
{
a
});
EXPECT_EQ
((
vector
<
int32_t
>
{
3
,
2
,
1
}),
read_vector
<
int32_t
>
(
result
));
}
test/backend_sum.in.cpp
View file @
b3d70927
...
@@ -485,6 +485,24 @@ NGRAPH_TEST(${BACKEND_NAME}, sum_2d_to_scalar_int8)
...
@@ -485,6 +485,24 @@ NGRAPH_TEST(${BACKEND_NAME}, sum_2d_to_scalar_int8)
EXPECT_EQ
(
std
::
vector
<
int8_t
>
{
45
},
read_vector
<
int8_t
>
(
result
));
EXPECT_EQ
(
std
::
vector
<
int8_t
>
{
45
},
read_vector
<
int8_t
>
(
result
));
}
}
NGRAPH_TEST
(
$
{
BACKEND_NAME
},
sum_trivial_in_double
)
{
Shape
shape
{
4
,
3
};
Shape
rshape
{
3
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
element
::
f64
,
shape
);
auto
f
=
make_shared
<
Function
>
(
make_shared
<
op
::
Sum
>
(
A
,
AxisSet
{
0
}),
ParameterVector
{
A
});
auto
backend
=
runtime
::
Backend
::
create
(
"${BACKEND_NAME}"
);
// Create some tensors for input/output
auto
a
=
backend
->
create_tensor
(
element
::
f64
,
shape
);
copy_data
(
a
,
vector
<
double
>
{
12
,
2
,
10
,
9
,
8
,
4
,
6
,
1
,
5
,
3
,
11
,
7
});
auto
result
=
backend
->
create_tensor
(
element
::
f64
,
rshape
);
backend
->
call_with_validate
(
f
,
{
result
},
{
a
});
EXPECT_EQ
((
vector
<
double
>
{
30
,
22
,
26
}),
read_vector
<
double
>
(
result
));
}
#if NGRAPH_INTERPRETER_ENABLE
#if NGRAPH_INTERPRETER_ENABLE
NGRAPH_TEST
(
$
{
BACKEND_NAME
},
sum_stable_acc
)
NGRAPH_TEST
(
$
{
BACKEND_NAME
},
sum_stable_acc
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment