Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
N
ngraph
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
ngraph
Commits
abd69371
Unverified
Commit
abd69371
authored
Jul 09, 2019
by
Scott Cyphers
Committed by
GitHub
Jul 09, 2019
Browse files
Options
Browse Files
Download
Plain Diff
Merge pull request #3161 from NervanaSystems/ayzhuang/batch_norm_infer_relu_fusion
Add Batch Norm Inference Relu fusion.
parents
47342339
60252edd
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
269 additions
and
0 deletions
+269
-0
cpu_fusion.cpp
src/ngraph/runtime/cpu/pass/cpu_fusion.cpp
+137
-0
cpu_fusion.hpp
src/ngraph/runtime/cpu/pass/cpu_fusion.hpp
+2
-0
cpu_fusion.cpp
test/cpu_fusion.cpp
+130
-0
No files found.
src/ngraph/runtime/cpu/pass/cpu_fusion.cpp
View file @
abd69371
...
...
@@ -650,6 +650,143 @@ void ngraph::runtime::cpu::pass::CPUFusion::construct_batch_norm_relu_global_sta
this
->
add_matcher
(
m
,
callback
);
}
// graph before this fusion:
// input mean var gamma beta broadcast1_input broadcast2_input
// \ \ | / / / \
// BatchNormInference Broadcast1 Broadcast2
// \ / /
// Multiply /
// \ /
// Add
// |
// Relu
//
//
// graph after this fusion:
// input mean var gamma broadcast1_input beta broadcast2_input
// \ \ | \ / \ / /
// \ \ | Mulitply1 Multiply2 /
// \ \ | / \ /
// \ \ | / newAdd
// \ \| / /
// BatchNormInferenceRelu
//
// Multiply1, Multiply2, and newAdd operate on vectors while Multiply an Add operate on multi-dimensional matrices.
// Multiply1, Multiply2, and newAdd may be folded away with constant folding pass later.
void
ngraph
::
runtime
::
cpu
::
pass
::
CPUFusion
::
construct_batch_norm_infer_relu_with_multiply_add
()
{
auto
input_shape
=
Shape
{
1
,
3
,
2
,
2
};
auto
input
=
std
::
make_shared
<
pattern
::
op
::
Label
>
(
element
::
f32
,
input_shape
);
auto
mean_shape
=
Shape
{
3
};
auto
mean
=
std
::
make_shared
<
pattern
::
op
::
Label
>
(
element
::
f32
,
mean_shape
);
auto
var_shape
=
Shape
{
3
};
auto
var
=
std
::
make_shared
<
pattern
::
op
::
Label
>
(
element
::
f32
,
var_shape
);
auto
gamma_shape
=
Shape
{
3
};
auto
gamma
=
std
::
make_shared
<
pattern
::
op
::
Label
>
(
element
::
f32
,
gamma_shape
);
auto
beta_shape
=
Shape
{
3
};
auto
beta
=
std
::
make_shared
<
pattern
::
op
::
Label
>
(
element
::
f32
,
beta_shape
);
double
eps
=
0.001
;
auto
bn
=
std
::
make_shared
<
ngraph
::
op
::
BatchNormInference
>
(
eps
,
gamma
,
beta
,
input
,
mean
,
var
);
auto
bn_label
=
std
::
make_shared
<
pattern
::
op
::
Label
>
(
bn
,
nullptr
,
NodeVector
{
bn
});
auto
broadcast1_input
=
std
::
make_shared
<
pattern
::
op
::
Label
>
(
element
::
f32
,
gamma_shape
);
auto
broadcast1
=
std
::
make_shared
<
ngraph
::
op
::
Broadcast
>
(
broadcast1_input
,
input_shape
,
AxisSet
{
0
,
2
,
3
});
auto
broadcast1_label
=
std
::
make_shared
<
pattern
::
op
::
Label
>
(
broadcast1
,
nullptr
,
NodeVector
{
broadcast1
});
auto
multiply
=
std
::
make_shared
<
ngraph
::
op
::
Multiply
>
(
bn_label
,
broadcast1_label
);
auto
multi_label
=
std
::
make_shared
<
pattern
::
op
::
Label
>
(
multiply
,
nullptr
,
NodeVector
{
multiply
});
auto
broadcast2_input
=
std
::
make_shared
<
pattern
::
op
::
Label
>
(
element
::
f32
,
gamma_shape
);
auto
broadcast2
=
std
::
make_shared
<
ngraph
::
op
::
Broadcast
>
(
broadcast2_input
,
input_shape
,
AxisSet
{
0
,
2
,
3
});
auto
broadcast2_label
=
std
::
make_shared
<
pattern
::
op
::
Label
>
(
broadcast2
,
nullptr
,
NodeVector
{
broadcast2
});
auto
add
=
std
::
make_shared
<
ngraph
::
op
::
Add
>
(
multi_label
,
broadcast2_label
);
auto
prelu
=
std
::
make_shared
<
ngraph
::
op
::
Relu
>
(
add
);
auto
callback
=
[
input
,
mean
,
var
,
gamma
,
beta
,
bn_label
,
multi_label
,
broadcast1_input
,
broadcast2_input
,
broadcast1_label
,
broadcast2_label
](
pattern
::
Matcher
&
m
)
{
NGRAPH_DEBUG
<<
"In callback for construct_batch_norm_infer_relu_with_multi_add against node = "
<<
m
.
get_match_root
()
->
get_name
();
auto
pattern_map
=
m
.
get_pattern_map
();
auto
bn_match
=
pattern_map
[
bn_label
];
if
(
bn_match
->
get_users
().
size
()
>
1
)
{
NGRAPH_DEBUG
<<
"Multiply isn't the only user of BatchNorm's output"
;
return
false
;
}
auto
multi_match
=
pattern_map
[
multi_label
];
if
(
multi_match
->
get_users
().
size
()
>
1
)
{
NGRAPH_DEBUG
<<
"Add isn't the only user of Multiply's output"
;
return
false
;
}
std
::
vector
<
size_t
>
vec
{
0
};
for
(
auto
i
=
2
;
i
<
pattern_map
[
input
]
->
output
(
0
).
get_shape
().
size
();
i
++
)
{
vec
.
push_back
(
i
);
}
AxisSet
axisSet
{
vec
};
if
(
std
::
static_pointer_cast
<
ngraph
::
op
::
Broadcast
>
(
pattern_map
[
broadcast1_label
])
->
get_broadcast_axes
()
!=
axisSet
||
std
::
static_pointer_cast
<
ngraph
::
op
::
Broadcast
>
(
pattern_map
[
broadcast2_label
])
->
get_broadcast_axes
()
!=
axisSet
)
{
NGRAPH_DEBUG
<<
"Broadcast axes is not {0, 2, ...}"
;
return
false
;
}
auto
new_gamma
=
std
::
make_shared
<
ngraph
::
op
::
Multiply
>
(
pattern_map
[
gamma
],
pattern_map
[
broadcast1_input
]);
auto
new_multi
=
std
::
make_shared
<
ngraph
::
op
::
Multiply
>
(
pattern_map
[
beta
],
pattern_map
[
broadcast1_input
]);
auto
new_beta
=
std
::
make_shared
<
ngraph
::
op
::
Add
>
(
new_multi
,
pattern_map
[
broadcast2_input
]);
std
::
shared_ptr
<
Node
>
bn_relu
;
if
(
auto
bn_inference
=
std
::
dynamic_pointer_cast
<
ngraph
::
op
::
BatchNormInference
>
(
bn_match
))
{
if
(
!
mkldnn_utils
::
can_use_mkldnn_batchnorm_fprop
(
bn_inference
.
get
()))
{
return
false
;
}
bn_relu
=
std
::
make_shared
<
ngraph
::
op
::
BatchNormInferenceRelu
>
(
bn_inference
->
get_eps_value
(),
new_gamma
,
new_beta
,
pattern_map
[
input
],
pattern_map
[
mean
],
pattern_map
[
var
]);
}
if
(
bn_relu
)
{
ngraph
::
replace_node
(
m
.
get_match_root
(),
bn_relu
);
return
true
;
}
return
false
;
};
auto
m
=
std
::
make_shared
<
ngraph
::
pattern
::
Matcher
>
(
prelu
,
"CPUFusion.BatchNormInferReluWithMultiAdd"
);
this
->
add_matcher
(
m
,
callback
);
}
void
ngraph
::
runtime
::
cpu
::
pass
::
CPUFusion
::
construct_conv_relu
()
{
Shape
shape
{
2
,
2
,
1
,
1
};
...
...
src/ngraph/runtime/cpu/pass/cpu_fusion.hpp
View file @
abd69371
...
...
@@ -78,6 +78,7 @@ public:
construct_deconvolution_affine_folding_relu
();
}
construct_dropout
();
construct_batch_norm_infer_relu_with_multiply_add
();
}
}
...
...
@@ -90,6 +91,7 @@ private:
void
construct_sigmoid_multiply
();
void
construct_batch_norm_relu
();
void
construct_batch_norm_relu_global_stats
();
void
construct_batch_norm_infer_relu_with_multiply_add
();
void
construct_conv_relu
();
void
construct_conv_bias_relu
();
void
construct_conv_bias_add
();
...
...
test/cpu_fusion.cpp
View file @
abd69371
...
...
@@ -560,6 +560,136 @@ TEST(cpu_fusion, conv_bias_bprop)
ASSERT_EQ
(
ccg
,
1
);
}
static
void
test_batchnorm_multiply_add_relu
(
Shape
input_shape
)
{
auto
make_bn_relu_function
=
[
&
]()
{
auto
c_axis
=
input_shape
[
1
];
auto
input
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
input_shape
);
auto
mean_shape
=
Shape
{
c_axis
};
auto
mean
=
std
::
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
mean_shape
);
auto
var_shape
=
Shape
{
c_axis
};
auto
var
=
std
::
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
var_shape
);
auto
gamma_shape
=
Shape
{
c_axis
};
auto
gamma
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
gamma_shape
);
auto
beta_shape
=
Shape
{
c_axis
};
auto
beta
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
beta_shape
);
double
eps
=
0.001
;
auto
bn
=
std
::
make_shared
<
ngraph
::
op
::
BatchNormInference
>
(
eps
,
gamma
,
beta
,
input
,
mean
,
var
);
std
::
vector
<
size_t
>
vec
{
0
};
for
(
auto
i
=
2
;
i
<
input_shape
.
size
();
i
++
)
{
vec
.
push_back
(
i
);
}
auto
broadcast1_input
=
std
::
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
gamma_shape
);
auto
broadcast1
=
std
::
make_shared
<
ngraph
::
op
::
Broadcast
>
(
broadcast1_input
,
input_shape
,
AxisSet
(
vec
));
auto
multiply
=
std
::
make_shared
<
ngraph
::
op
::
Multiply
>
(
bn
,
broadcast1
);
auto
broadcast2_input
=
std
::
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
gamma_shape
);
auto
broadcast2
=
std
::
make_shared
<
ngraph
::
op
::
Broadcast
>
(
broadcast2_input
,
input_shape
,
AxisSet
(
vec
));
auto
add
=
std
::
make_shared
<
ngraph
::
op
::
Add
>
(
multiply
,
broadcast2
);
auto
relu
=
std
::
make_shared
<
ngraph
::
op
::
Relu
>
(
add
);
auto
f
=
make_shared
<
Function
>
(
relu
,
ParameterVector
{
gamma
,
beta
,
input
,
mean
,
var
,
broadcast1_input
,
broadcast2_input
});
return
f
;
};
auto
cpu_f
=
make_bn_relu_function
();
auto
int_f
=
make_bn_relu_function
();
test
::
Uniform
<
float
>
rng
(
1.0
f
,
10.0
f
);
vector
<
vector
<
float
>>
args
;
for
(
shared_ptr
<
op
::
Parameter
>
param
:
int_f
->
get_parameters
())
{
vector
<
float
>
tensor_val
(
shape_size
(
param
->
get_shape
()));
rng
.
initialize
(
tensor_val
);
args
.
push_back
(
tensor_val
);
}
auto
int_results
=
execute
(
int_f
,
args
,
"INTERPRETER"
);
auto
cpu_results
=
execute
(
cpu_f
,
args
,
"CPU"
);
for
(
size_t
i
=
0
;
i
<
cpu_results
.
size
();
i
++
)
{
EXPECT_TRUE
(
test
::
all_close
(
cpu_results
.
at
(
i
),
int_results
.
at
(
i
),
1.0e-4
f
,
1.0e-4
f
));
}
size_t
bn_relu
=
count_ops_of_type
<
op
::
BatchNormInferenceRelu
>
(
cpu_f
);
ASSERT_EQ
(
bn_relu
,
1
);
}
TEST
(
cpu_fusion
,
batchnorm_multiply_add_relu
)
{
test_batchnorm_multiply_add_relu
(
Shape
{
1
,
3
,
2
,
2
});
test_batchnorm_multiply_add_relu
(
Shape
{
1
,
2
,
2
,
2
,
2
});
test_batchnorm_multiply_add_relu
(
Shape
{
2
,
2
,
2
,
4
,
4
});
}
TEST
(
cpu_fusion
,
batchnorm_multiply_add_relu_no_fusion
)
{
auto
input_shape
=
Shape
{
3
,
3
,
2
,
2
};
auto
make_bn_relu_function
=
[
&
]()
{
auto
c_axis
=
input_shape
[
1
];
auto
input
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
input_shape
);
auto
mean_shape
=
Shape
{
c_axis
};
auto
mean
=
std
::
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
mean_shape
);
auto
var_shape
=
Shape
{
c_axis
};
auto
var
=
std
::
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
var_shape
);
auto
gamma_shape
=
Shape
{
c_axis
};
auto
gamma
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
gamma_shape
);
auto
beta_shape
=
Shape
{
c_axis
};
auto
beta
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
beta_shape
);
double
eps
=
0.001
;
auto
bn
=
std
::
make_shared
<
ngraph
::
op
::
BatchNormInference
>
(
eps
,
gamma
,
beta
,
input
,
mean
,
var
);
std
::
vector
<
size_t
>
vec
;
for
(
auto
i
=
1
;
i
<
input_shape
.
size
();
i
++
)
{
vec
.
push_back
(
i
);
}
auto
broadcast1_input
=
std
::
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
Shape
{
3
});
auto
broadcast1
=
std
::
make_shared
<
ngraph
::
op
::
Broadcast
>
(
broadcast1_input
,
input_shape
,
AxisSet
(
vec
));
auto
multiply
=
std
::
make_shared
<
ngraph
::
op
::
Multiply
>
(
bn
,
broadcast1
);
auto
broadcast2_input
=
std
::
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
Shape
{
3
});
auto
broadcast2
=
std
::
make_shared
<
ngraph
::
op
::
Broadcast
>
(
broadcast2_input
,
input_shape
,
AxisSet
(
vec
));
auto
add
=
std
::
make_shared
<
ngraph
::
op
::
Add
>
(
multiply
,
broadcast2
);
auto
relu
=
std
::
make_shared
<
ngraph
::
op
::
Relu
>
(
add
);
auto
f
=
make_shared
<
Function
>
(
relu
,
ParameterVector
{
gamma
,
beta
,
input
,
mean
,
var
,
broadcast1_input
,
broadcast2_input
});
return
f
;
};
auto
cpu_f
=
make_bn_relu_function
();
auto
int_f
=
make_bn_relu_function
();
test
::
Uniform
<
float
>
rng
(
1.0
f
,
10.0
f
);
vector
<
vector
<
float
>>
args
;
for
(
shared_ptr
<
op
::
Parameter
>
param
:
int_f
->
get_parameters
())
{
vector
<
float
>
tensor_val
(
shape_size
(
param
->
get_shape
()));
rng
.
initialize
(
tensor_val
);
args
.
push_back
(
tensor_val
);
}
auto
int_results
=
execute
(
int_f
,
args
,
"INTERPRETER"
);
auto
cpu_results
=
execute
(
cpu_f
,
args
,
"CPU"
);
for
(
size_t
i
=
0
;
i
<
cpu_results
.
size
();
i
++
)
{
EXPECT_TRUE
(
test
::
all_close
(
cpu_results
.
at
(
i
),
int_results
.
at
(
i
),
1.0e-4
f
,
1.0e-4
f
));
}
size_t
bn_relu
=
count_ops_of_type
<
op
::
BatchNormInferenceRelu
>
(
cpu_f
);
ASSERT_EQ
(
bn_relu
,
0
);
}
TEST
(
cpu_fusion
,
batchnorm_fprop_relu_b1c2h2w2
)
{
auto
input_shape
=
Shape
{
1
,
2
,
2
,
2
};
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment