Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
N
ngraph
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
ngraph
Commits
a8b170b3
Unverified
Commit
a8b170b3
authored
Jul 01, 2019
by
Scott Cyphers
Committed by
GitHub
Jul 01, 2019
Browse files
Options
Browse Files
Download
Plain Diff
Merge branch 'r0.23' into tomdol/plaidml_r0.23
parents
0fc64ea9
51f57d46
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
292 additions
and
32 deletions
+292
-32
CMakeLists.txt
src/ngraph/runtime/plaidml/CMakeLists.txt
+1
-0
plaidml_builder.hpp
src/ngraph/runtime/plaidml/plaidml_builder.hpp
+2
-1
plaidml_ops_quantize.cpp
src/ngraph/runtime/plaidml/plaidml_ops_quantize.cpp
+288
-0
unit_test.manifest
src/ngraph/runtime/plaidml/unit_test.manifest
+1
-31
No files found.
src/ngraph/runtime/plaidml/CMakeLists.txt
View file @
a8b170b3
...
...
@@ -41,6 +41,7 @@ set(SRC
plaidml_ops_one_hot.cpp
plaidml_ops_passthrough.cpp
plaidml_ops_pool.cpp
plaidml_ops_quantize.cpp
plaidml_ops_reduce.cpp
plaidml_ops_replace_slice.cpp
plaidml_ops_replicate.cpp
...
...
src/ngraph/runtime/plaidml/plaidml_builder.hpp
View file @
a8b170b3
...
...
@@ -188,7 +188,8 @@ class ngraph::runtime::plaidml::builder::Elementwise final : public Statement
{
public
:
Elementwise
(
std
::
string
lhs
,
std
::
string
rhs
);
void
set_lhs
(
const
std
::
string
&
lhs
)
{
m_lhs
=
lhs
;
}
void
set_rhs
(
const
std
::
string
&
rhs
)
{
m_rhs
=
rhs
;
}
private
:
friend
class
Function
;
...
...
src/ngraph/runtime/plaidml/plaidml_ops_quantize.cpp
0 → 100644
View file @
a8b170b3
//*****************************************************************************
// Copyright 2017-2019 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#include "ngraph/op/dequantize.hpp"
#include "ngraph/op/quantize.hpp"
#include "ngraph/runtime/plaidml/plaidml_impl.hpp"
namespace
ngraph
{
namespace
runtime
{
namespace
plaidml
{
NGRAPH_PLAIDML_OP_CLASS
(
ImplDequantize
,
OpImpl
<
op
::
Dequantize
>
);
NGRAPH_PLAIDML_OP_CLASS
(
ImplQuantize
,
OpImpl
<
op
::
Quantize
>
);
}
}
}
void
ngraph
::
runtime
::
plaidml
::
ImplDequantize
::
Apply
()
{
check_inputs
(
3
);
check_outputs
(
1
);
const
auto
&
axes
=
op
().
get_axes
();
const
auto
&
input_shape
=
op
().
get_input_shape
(
0
);
const
auto
&
scale_shape
=
op
().
get_input_shape
(
1
);
const
auto
&
zp_shape
=
op
().
get_input_shape
(
2
);
const
auto
&
input_type
=
op
().
get_input_element_type
(
0
);
if
(
!
input_type
.
is_signed
()
&&
input_type
.
size
()
>=
8
)
{
throw
std
::
runtime_error
(
"PlaidML does not yet support dequantizing from uint64+"
);
}
if
(
scale_shape
!=
zp_shape
)
{
throw
std
::
runtime_error
(
"Dequantize given mismatched scale & zero point shapes."
);
}
if
(
scale_shape
.
size
()
!=
axes
.
size
())
{
std
::
ostringstream
msg
;
msg
<<
"Dequantize received "
<<
axes
.
size
()
<<
" axes to use for scale & zero point, but those tensors have "
<<
scale_shape
.
size
()
<<
" dimensions instead."
;
throw
std
::
runtime_error
(
msg
.
str
());
}
std
::
vector
<
std
::
string
>
short_idxs
;
for
(
size_t
i
=
0
;
i
<
input_shape
.
size
();
++
i
)
{
if
(
axes
.
count
(
i
))
{
std
::
ostringstream
name
;
name
<<
"i"
<<
i
;
short_idxs
.
push_back
(
name
.
str
());
}
}
builder
::
ContractionInput
scale_input
{
"S"
};
builder
::
ContractionInput
neg_zp_input
{
"NegZ"
};
for
(
const
auto
&
idx
:
short_idxs
)
{
scale_input
.
add_indices
({
idx
});
neg_zp_input
.
add_indices
({
idx
});
}
std
::
function
<
std
::
string
(
std
::
string
)
>
cast_uint_to_wider_int
=
[
input_type
](
std
::
string
tensor_name
)
{
std
::
ostringstream
cast_str
;
if
(
!
input_type
.
is_signed
())
{
cast_str
<<
"as_int("
<<
tensor_name
<<
", "
<<
2
*
8
*
input_type
.
size
()
<<
")"
;
}
else
{
cast_str
<<
tensor_name
;
}
return
cast_str
.
str
();
};
builder
::
Elementwise
CastI
{
"CastI"
,
cast_uint_to_wider_int
(
"I"
)};
builder
::
Elementwise
CastZ
{
"CastZ"
,
cast_uint_to_wider_int
(
"Z"
)};
auto
f
=
start_tile_function
();
f
.
add
(
builder
::
Input
{
op_input
(
0
),
"I"
}.
add_dims
(
"I"
,
0
,
input_shape
.
size
()))
.
add
(
builder
::
Input
{
op_input
(
1
),
"S"
}.
add_dims
(
"S"
,
0
,
scale_shape
.
size
()))
.
add
(
builder
::
Input
{
op_input
(
2
),
"Z"
}.
add_dims
(
"Z"
,
0
,
zp_shape
.
size
()))
.
add
(
builder
::
Output
{
"O"
})
.
add
(
CastI
)
.
add
(
CastZ
)
.
add
(
builder
::
Elementwise
{
"NegZ"
,
"-CastZ"
})
.
add
(
builder
::
BinaryContraction
{
"="
,
"+"
}
.
set
(
builder
::
ContractionOutput
{
"Offset"
}
.
add_indices
(
"i"
,
0
,
input_shape
.
size
())
.
add_dims
(
"I"
,
0
,
input_shape
.
size
()))
.
set_lhs
(
builder
::
ContractionInput
{
"CastI"
}.
add_indices
(
"i"
,
0
,
input_shape
.
size
()))
.
set_rhs
(
neg_zp_input
))
.
add
(
builder
::
BinaryContraction
{
"="
,
"*"
}
.
set
(
builder
::
ContractionOutput
{
"O"
}
.
add_indices
(
"i"
,
0
,
input_shape
.
size
())
.
add_dims
(
"I"
,
0
,
input_shape
.
size
()))
.
set_lhs
(
builder
::
ContractionInput
{
"Offset"
}.
add_indices
(
"i"
,
0
,
input_shape
.
size
()))
.
set_rhs
(
scale_input
));
set_output
(
f
.
finalize
());
}
void
ngraph
::
runtime
::
plaidml
::
ImplQuantize
::
Apply
()
{
check_inputs
(
3
);
check_outputs
(
1
);
const
auto
&
type
=
op
().
get_output_element_type
(
0
);
const
auto
&
axes
=
op
().
get_axes
();
const
auto
&
round_mode
=
op
().
get_round_mode
();
const
auto
&
input_shape
=
op
().
get_input_shape
(
0
);
const
auto
&
scale_shape
=
op
().
get_input_shape
(
1
);
const
auto
&
zp_shape
=
op
().
get_input_shape
(
2
);
std
::
function
<
std
::
string
(
std
::
string
)
>
cast_to_output_type
=
[
type
](
std
::
string
tensor_name
)
{
std
::
ostringstream
cast_str
;
if
(
type
.
is_signed
())
{
cast_str
<<
"as_int"
;
}
else
{
cast_str
<<
"as_uint"
;
}
cast_str
<<
"("
<<
tensor_name
<<
", "
<<
8
*
type
.
size
()
<<
")"
;
return
cast_str
.
str
();
};
if
(
scale_shape
!=
zp_shape
)
{
throw
std
::
runtime_error
(
"Quantize given mismatched scale & zero point shapes."
);
}
if
(
scale_shape
.
size
()
!=
axes
.
size
())
{
std
::
ostringstream
msg
;
msg
<<
"Quantize received "
<<
axes
.
size
()
<<
" axes to use for scale & zero point, but those tensors have "
<<
scale_shape
.
size
()
<<
" dimensions instead."
;
throw
std
::
runtime_error
(
msg
.
str
());
}
std
::
vector
<
std
::
string
>
short_idxs
;
for
(
size_t
i
=
0
;
i
<
input_shape
.
size
();
++
i
)
{
if
(
axes
.
count
(
i
))
{
std
::
ostringstream
name
;
name
<<
"i"
<<
i
;
short_idxs
.
push_back
(
name
.
str
());
}
}
if
(
!
type
.
is_integral
())
{
throw
std
::
runtime_error
(
"Quantize output type must be integral"
);
}
builder
::
Elementwise
Rounded
{
"Rounded"
,
""
};
builder
::
Elementwise
Clamped
{
"Clamped"
,
""
};
builder
::
Elementwise
O
{
"O"
,
""
};
int64_t
q_min
;
int64_t
q_max
;
std
::
ostringstream
clamp_formula
;
if
(
type
.
size
()
>
4
)
{
// PlaidML doesn't support quantization clamping for types wider than 32 bits
if
(
!
type
.
is_signed
())
{
clamp_formula
<<
"Uncast < 0 ? 0 : Uncast"
;
}
else
{
clamp_formula
<<
"Uncast"
;
}
}
else
{
if
(
type
.
is_signed
())
{
q_max
=
(
1
<<
(
8
*
type
.
size
()
-
1
))
-
1
;
q_min
=
-
q_max
-
1
;
}
else
{
q_max
=
(
1
<<
(
8
*
type
.
size
()))
-
1
;
q_min
=
0
;
}
clamp_formula
<<
"Uncast < "
<<
q_min
<<
" ? "
<<
q_min
<<
" : "
<<
"(Uncast > "
<<
q_max
<<
" ? "
<<
q_max
<<
" : Uncast)"
;
}
Clamped
.
set_rhs
(
clamp_formula
.
str
());
std
::
ostringstream
round_formula
;
std
::
string
lower_rounded_int
;
switch
(
round_mode
)
{
case
ngraph
:
:
op
::
Quantize
::
RoundMode
::
ROUND_DOWN
:
Rounded
.
set_rhs
(
"floor(Frac)"
);
break
;
case
ngraph
:
:
op
::
Quantize
::
RoundMode
::
ROUND_UP
:
Rounded
.
set_rhs
(
"ceil(Frac)"
);
break
;
case
ngraph
:
:
op
::
Quantize
::
RoundMode
::
ROUND_NEAREST_DOWNWARD
:
Rounded
.
set_rhs
(
"ceil(Frac - 0.5)"
);
break
;
case
ngraph
:
:
op
::
Quantize
::
RoundMode
::
ROUND_NEAREST_UPWARD
:
Rounded
.
set_rhs
(
"floor(Frac + 0.5)"
);
break
;
case
ngraph
:
:
op
::
Quantize
::
RoundMode
::
ROUND_TOWARD_ZERO
:
Rounded
.
set_rhs
(
"Frac > 0 ? floor(Frac) : ceil(Frac)"
);
break
;
case
ngraph
:
:
op
::
Quantize
::
RoundMode
::
ROUND_TOWARD_INFINITY
:
Rounded
.
set_rhs
(
"Frac < 0 ? floor(Frac) : ceil(Frac)"
);
break
;
case
ngraph
:
:
op
::
Quantize
::
RoundMode
::
ROUND_NEAREST_TOWARD_ZERO
:
Rounded
.
set_rhs
(
"Frac > 0 ? ceil(Frac - 0.5) : floor(Frac + 0.5)"
);
break
;
case
ngraph
:
:
op
::
Quantize
::
RoundMode
::
ROUND_NEAREST_TOWARD_INFINITY
:
Rounded
.
set_rhs
(
"Frac < 0 ? ceil(Frac - 0.5) : floor(Frac + 0.5)"
);
break
;
case
ngraph
:
:
op
::
Quantize
::
RoundMode
::
ROUND_NEAREST_TOWARD_EVEN
:
// This is ugly, but it produces correct output
lower_rounded_int
=
cast_to_output_type
(
"ceil(Frac - 0.5)"
);
round_formula
<<
"2 * ("
<<
lower_rounded_int
<<
" / 2) == "
<<
lower_rounded_int
<<
" ? ceil(Frac - 0.5) : floor(Frac + 0.5)"
;
Rounded
.
set_rhs
(
round_formula
.
str
());
break
;
default
:
throw
std
::
runtime_error
(
"Requested quantize round mode not yet implemented in PlaidML"
);
}
O
.
set_rhs
(
cast_to_output_type
(
"Clamped"
));
builder
::
ContractionInput
scale_recip_input
{
"SRecip"
};
builder
::
ContractionInput
zp_input
{
"Z"
};
for
(
const
auto
&
idx
:
short_idxs
)
{
scale_recip_input
.
add_indices
({
idx
});
zp_input
.
add_indices
({
idx
});
}
auto
f
=
start_tile_function
();
f
.
add
(
builder
::
Input
{
op_input
(
0
),
"I"
}.
add_dims
(
"I"
,
0
,
input_shape
.
size
()))
.
add
(
builder
::
Input
{
op_input
(
1
),
"S"
}.
add_dims
(
"S"
,
0
,
scale_shape
.
size
()))
.
add
(
builder
::
Input
{
op_input
(
2
),
"Z"
}.
add_dims
(
"Z"
,
0
,
zp_shape
.
size
()))
.
add
(
builder
::
Output
{
"O"
})
.
add
(
builder
::
Elementwise
{
"SRecip"
,
"1 / S"
})
.
add
(
builder
::
BinaryContraction
{
"="
,
"*"
}
.
set
(
builder
::
ContractionOutput
{
"Frac"
}
.
add_indices
(
"i"
,
0
,
input_shape
.
size
())
.
add_dims
(
"I"
,
0
,
input_shape
.
size
()))
.
set_lhs
(
builder
::
ContractionInput
{
"I"
}.
add_indices
(
"i"
,
0
,
input_shape
.
size
()))
.
set_rhs
(
scale_recip_input
))
.
add
(
Rounded
)
.
add
(
builder
::
BinaryContraction
{
"="
,
"+"
}
.
set
(
builder
::
ContractionOutput
{
"Uncast"
}
.
add_indices
(
"i"
,
0
,
input_shape
.
size
())
.
add_dims
(
"I"
,
0
,
input_shape
.
size
()))
.
set_lhs
(
builder
::
ContractionInput
{
"Rounded"
}.
add_indices
(
"i"
,
0
,
input_shape
.
size
()))
.
set_rhs
(
zp_input
))
.
add
(
Clamped
)
.
add
(
O
);
set_output
(
f
.
finalize
());
}
src/ngraph/runtime/plaidml/unit_test.manifest
View file @
a8b170b3
...
...
@@ -60,37 +60,7 @@ generate_mask
generate_mask2
avg_pool_3d
avg_pool_3d_uneven_strided_padded_include_in_computation
quantize_dynamic_offset # Quantization/Dequantization is unimplemented
dequantize_dynamic_offset # Quantization/Dequantization is unimplemented
dequantize_int8_zero_offset # Quantization/Dequantization is unimplemented
dequantize_int32 # Quantization/Dequantization is unimplemented
dequantize_int32_zero_offset # Quantization/Dequantization is unimplemented
dequantize_zero_offset # Quantization/Dequantization is unimplemented
quantize_ROUND_NEAREST_TOWARD_ZERO # Quantization/Dequantization is unimplemented
quantize_ROUND_NEAREST_UPWARD # Quantization/Dequantization is unimplemented
quantize_ROUND_NEAREST_DOWNWARD # Quantization/Dequantization is unimplemented
quantize_ROUND_NEAREST_TOWARD_EVEN # Quantization/Dequantization is unimplemented
quantize_ROUND_NEAREST_TOWARD_INFINITY # Quantization/Dequantization is unimplemented
quantize_ROUND_TOWARD_INFINITY # Quantization/Dequantization is unimplemented
quantize_ROUND_TOWARD_ZERO # Quantization/Dequantization is unimplemented
quantize_ROUND_UP # Quantization/Dequantization is unimplemented
quantize_ROUND_DOWN # Quantization/Dequantization is unimplemented
quantize # Quantization/Dequantization is unimplemented
quantize_zero_offset # Quantization/Dequantization is unimplemented
quantize_axes # Quantization/Dequantization is unimplemented
quantize_dynamic_offset # Quantization/Dequantization is unimplemented
quantize_int8 # Quantization/Dequantization is unimplemented
quantize_int8_zero_offset # Quantization/Dequantization is unimplemented
quantize_int32 # Quantization/Dequantization is unimplemented
quantize_int32_zero_offset # Quantization/Dequantization is unimplemented
quantize_clamp # Quantization/Dequantization is unimplemented
quantize_clamp_int8 # Quantization/Dequantization is unimplemented
quantize_clamp_int32 # Quantization/Dequantization is unimplemented
quantize_clamp_int32_zero_offset # Quantization/Dequantization is unimplemented
quantize_clamp_uint8 # Quantization/Dequantization is unimplemented
dequantize # Quantization/Dequantization is unimplemented
dequantize_axes # Quantization/Dequantization is unimplemented
dequantize_int8 # Quantization/Dequantization is unimplemented
quantize_clamp_int32 # Requires fp64 inputs, which won't work on GPUs
numeric_float_nan
numeric_double_nan
shape_of_scalar
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment