Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
N
ngraph
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
ngraph
Commits
a87675fe
Unverified
Commit
a87675fe
authored
Jan 29, 2018
by
Jayaram Bobba
Committed by
GitHub
Jan 29, 2018
Browse files
Options
Browse Files
Download
Plain Diff
Merge pull request #421 from NervanaSystems/jmenon/maxpooling
Jmenon/maxpooling
parents
54c0a66b
a1880375
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
135 additions
and
20 deletions
+135
-20
cpu_emitter.cpp
src/ngraph/runtime/cpu/cpu_emitter.cpp
+131
-20
cpu_emitter.hpp
src/ngraph/runtime/cpu/cpu_emitter.hpp
+2
-0
cpu_external_function.cpp
src/ngraph/runtime/cpu/cpu_external_function.cpp
+2
-0
No files found.
src/ngraph/runtime/cpu/cpu_emitter.cpp
View file @
a87675fe
...
...
@@ -63,6 +63,36 @@ static string eigen_matrix_format(const ngraph::Shape& shape, const ngraph::Stri
return
ss
.
str
();
}
// Mapping from POD types to MKLDNN data types
// An empty string implies the corresponding MKLDNN data type
// is not supported
static
const
unordered_map
<
string
,
const
string
>
mkldnn_data_type_map
{
{
"char"
,
"memory::data_type::s8"
},
{
"float"
,
"memory::data_type::f32"
},
{
"double"
,
""
},
{
"int8_t"
,
"memory::data_type::s8"
},
{
"int16_t"
,
"memory::data_type::s16"
},
{
"int32_t"
,
"memory::data_type::s32"
},
{
"int64_t"
,
""
},
{
"uint8_t"
,
"memory::data_type::u8"
},
{
"uint16_t"
,
""
},
{
"uint32_t"
,
""
},
{
"uint64_t"
,
""
}};
static
const
string
&
get_mkldnn_data_type
(
const
string
&
type
)
{
auto
it
=
mkldnn_data_type_map
.
find
(
type
);
if
(
it
==
mkldnn_data_type_map
.
end
()
||
it
->
second
.
empty
())
throw
ngraph_error
(
"No MKLDNN data type exists for the given element type"
);
return
it
->
second
;
}
void
runtime
::
cpu
::
CPU_Emitter
::
EmitMKLDNNPreamble
(
codegen
::
CodeWriter
&
writer
)
{
writer
<<
"using namespace mkldnn;
\n
"
;
writer
<<
"auto cpu_engine = engine(engine::cpu, 0);
\n
"
;
}
void
runtime
::
cpu
::
CPU_Emitter
::
EmitNop
(
codegen
::
CodeWriter
&
writer
,
const
ngraph
::
Node
*
n
,
const
vector
<
runtime
::
cpu
::
TensorViewWrapper
>&
args
,
...
...
@@ -1823,16 +1853,18 @@ void runtime::cpu::CPU_Emitter::EmitConvolution(codegen::CodeWriter& writer,
images_dilated
=
images_dilated
||
(
s
!=
1
);
}
// TODO(jmenon): MKLDNN streams should be static so we need to either implement
// codegen for statics or move primitive and stream construction out
// of the generated function and only generate code to run/rerun the stream
if
(
!
filter_dilated
&&
!
images_dilated
&&
arg0_rank
==
4
&&
arg1_rank
==
4
&&
args
[
0
].
get_element_type
()
==
element
::
f32
)
{
string
et
=
"memory::data_type::f32"
;
const
string
&
et
=
get_mkldnn_data_type
(
args
[
0
].
get_element_type
().
c_type_string
())
;
writer
<<
"{
\n
"
;
writer
.
indent
++
;
writer
<<
"using namespace mkldnn;
\n
"
;
writer
<<
"auto cpu_engine = engine(engine::cpu, 0);
\n
"
;
writer
<<
"auto input_data_desc = memory::desc({"
<<
join
(
arg0_shape
)
<<
"}, "
<<
et
<<
", memory::format::nchw);
\n
"
;
writer
<<
"auto weights_desc = memory::desc({"
<<
join
(
arg1_shape
)
<<
"}, "
<<
et
...
...
@@ -1870,13 +1902,11 @@ void runtime::cpu::CPU_Emitter::EmitConvolution(codegen::CodeWriter& writer,
window_dilation_strides_adjusted
.
push_back
(
s
-
1
);
}
string
et
=
"memory::data_type::f32"
;
const
string
&
et
=
get_mkldnn_data_type
(
args
[
0
].
get_element_type
().
c_type_string
())
;
writer
<<
"{
\n
"
;
writer
.
indent
++
;
writer
<<
"using namespace mkldnn;
\n
"
;
writer
<<
"auto cpu_engine = engine(engine::cpu, 0);
\n
"
;
writer
<<
"auto input_data_desc = memory::desc({"
<<
join
(
arg0_shape
)
<<
"}, "
<<
et
<<
", memory::format::nchw);
\n
"
;
writer
<<
"auto weights_desc = memory::desc({"
<<
join
(
arg1_shape
)
<<
"}, "
<<
et
...
...
@@ -1941,14 +1971,52 @@ void runtime::cpu::CPU_Emitter::EmitMaxPool(codegen::CodeWriter& writer,
auto
max_pool
=
static_cast
<
const
op
::
MaxPool
*>
(
n
);
auto
arg_shape
=
args
[
0
].
get_shape
();
auto
arg_rank
=
arg_shape
.
size
();
auto
result_shape
=
out
[
0
].
get_shape
();
writer
<<
"kernel::max_pool<"
<<
out
[
0
].
get_type
()
<<
">("
<<
args
[
0
].
get_name
()
<<
",
\n
"
;
writer
<<
" "
<<
out
[
0
].
get_name
()
<<
",
\n
"
;
writer
<<
" {"
<<
join
(
arg_shape
)
<<
"},
\n
"
;
writer
<<
" {"
<<
join
(
result_shape
)
<<
"},
\n
"
;
writer
<<
" {"
<<
join
(
max_pool
->
get_window_shape
())
<<
"},
\n
"
;
writer
<<
" {"
<<
join
(
max_pool
->
get_window_movement_strides
())
<<
"});
\n
"
;
// TODO(jmenon): Optimize for 1D
// TODO(jmenon): Remove element type restriction
if
(
arg_rank
==
4
&&
max_pool
->
get_window_shape
().
size
()
==
2
&&
args
[
0
].
get_element_type
()
==
element
::
f32
)
{
const
string
&
et
=
get_mkldnn_data_type
(
args
[
0
].
get_element_type
().
c_type_string
());
writer
<<
"{
\n
"
;
writer
.
indent
++
;
writer
<<
"auto input_data_desc = memory::desc({"
<<
join
(
arg_shape
)
<<
"}, "
<<
et
<<
", memory::format::nchw);
\n
"
;
writer
<<
"auto result_desc = memory::desc({"
<<
join
(
result_shape
)
<<
"}, "
<<
et
<<
", memory::format::nchw);
\n
"
;
writer
<<
"auto input_data = memory({input_data_desc, cpu_engine}, "
<<
args
[
0
].
get_name
()
<<
");
\n
"
;
writer
<<
"auto result = memory({result_desc, cpu_engine}, "
<<
out
[
0
].
get_name
()
<<
");
\n
"
;
// TODO(jmenon): Use a workspace
writer
<<
"auto max_pooling = pooling_forward({"
<<
"{prop_kind::forward_inference, algorithm::pooling_max, "
<<
"input_data_desc, result_desc, {"
<<
join
(
max_pool
->
get_window_movement_strides
())
<<
"}, {"
<<
join
(
max_pool
->
get_window_shape
())
<<
"}, {0, 0}, "
<<
"{0, 0}, padding_kind::zero}, cpu_engine}, "
<<
"input_data, result);
\n
"
;
writer
<<
"auto s = stream(stream::kind::eager);
\n
"
<<
"s.submit({max_pooling}).wait();
\n
"
;
writer
.
indent
--
;
writer
<<
"}
\n
"
;
}
else
{
writer
<<
"kernel::max_pool<"
<<
out
[
0
].
get_type
()
<<
">("
<<
args
[
0
].
get_name
()
<<
",
\n
"
;
writer
<<
" "
<<
out
[
0
].
get_name
()
<<
",
\n
"
;
writer
<<
" {"
<<
join
(
arg_shape
)
<<
"},
\n
"
;
writer
<<
" {"
<<
join
(
result_shape
)
<<
"},
\n
"
;
writer
<<
" {"
<<
join
(
max_pool
->
get_window_shape
())
<<
"},
\n
"
;
writer
<<
" {"
<<
join
(
max_pool
->
get_window_movement_strides
())
<<
"});
\n
"
;
}
}
void
runtime
::
cpu
::
CPU_Emitter
::
EmitReverse
(
codegen
::
CodeWriter
&
writer
,
...
...
@@ -2077,16 +2145,59 @@ void runtime::cpu::CPU_Emitter::EmitAvgPool(codegen::CodeWriter& writer,
auto
avg_pool
=
static_cast
<
const
op
::
AvgPool
*>
(
n
);
auto
arg_shape
=
args
[
0
].
get_shape
();
auto
arg_rank
=
arg_shape
.
size
();
auto
result_shape
=
out
[
0
].
get_shape
();
writer
<<
"kernel::avg_pool<"
<<
out
[
0
].
get_type
()
<<
">("
<<
args
[
0
].
get_name
()
<<
",
\n
"
;
writer
<<
" "
<<
out
[
0
].
get_name
()
<<
",
\n
"
;
writer
<<
" {"
<<
join
(
arg_shape
)
<<
"},
\n
"
;
writer
<<
" {"
<<
join
(
result_shape
)
<<
"},
\n
"
;
writer
<<
" {"
<<
join
(
avg_pool
->
get_window_shape
())
<<
"},
\n
"
;
writer
<<
" {"
<<
join
(
avg_pool
->
get_window_movement_strides
())
<<
"},
\n
"
;
writer
<<
" {"
<<
join
(
avg_pool
->
get_padding_below
())
<<
"},
\n
"
;
writer
<<
" {"
<<
join
(
avg_pool
->
get_padding_above
())
<<
"});
\n
"
;
// TODO(jmenon): Refactor into an MKLDNN Pooling emitter that handles
// all pooling variants
// TODO(jmenon): Optimize for 1D
// TODO(jmenon): Remove element type restriction
if
(
arg_rank
==
4
&&
avg_pool
->
get_window_shape
().
size
()
==
2
&&
args
[
0
].
get_element_type
()
==
element
::
f32
)
{
const
string
&
et
=
get_mkldnn_data_type
(
args
[
0
].
get_element_type
().
c_type_string
());
writer
<<
"{
\n
"
;
writer
.
indent
++
;
writer
<<
"auto input_data_desc = memory::desc({"
<<
join
(
arg_shape
)
<<
"}, "
<<
et
<<
", memory::format::nchw);
\n
"
;
writer
<<
"auto result_desc = memory::desc({"
<<
join
(
result_shape
)
<<
"}, "
<<
et
<<
", memory::format::nchw);
\n
"
;
writer
<<
"auto input_data = memory({input_data_desc, cpu_engine}, "
<<
args
[
0
].
get_name
()
<<
");
\n
"
;
writer
<<
"auto result = memory({result_desc, cpu_engine}, "
<<
out
[
0
].
get_name
()
<<
");
\n
"
;
// TODO(jmenon): Use a workspace
writer
<<
"auto avg_pooling = pooling_forward({"
<<
"{prop_kind::forward_inference, algorithm::pooling_avg, "
<<
"input_data_desc, result_desc, {"
<<
join
(
avg_pool
->
get_window_movement_strides
())
<<
"}, {"
<<
join
(
avg_pool
->
get_window_shape
())
<<
"}, "
<<
"{"
<<
join
(
avg_pool
->
get_padding_below
())
<<
"}, "
<<
"{"
<<
join
(
avg_pool
->
get_padding_above
())
<<
"}, "
<<
"padding_kind::zero}, cpu_engine}, "
<<
"input_data, result);
\n
"
;
writer
<<
"auto s = stream(stream::kind::eager);
\n
"
<<
"s.submit({avg_pooling}).wait();
\n
"
;
writer
.
indent
--
;
writer
<<
"}
\n
"
;
}
else
{
writer
<<
"kernel::avg_pool<"
<<
out
[
0
].
get_type
()
<<
">("
<<
args
[
0
].
get_name
()
<<
",
\n
"
;
writer
<<
" "
<<
out
[
0
].
get_name
()
<<
",
\n
"
;
writer
<<
" {"
<<
join
(
arg_shape
)
<<
"},
\n
"
;
writer
<<
" {"
<<
join
(
result_shape
)
<<
"},
\n
"
;
writer
<<
" {"
<<
join
(
avg_pool
->
get_window_shape
())
<<
"},
\n
"
;
writer
<<
" {"
<<
join
(
avg_pool
->
get_window_movement_strides
())
<<
"},
\n
"
;
writer
<<
" {"
<<
join
(
avg_pool
->
get_padding_below
())
<<
"},
\n
"
;
writer
<<
" {"
<<
join
(
avg_pool
->
get_padding_above
())
<<
"});
\n
"
;
}
}
void
runtime
::
cpu
::
CPU_Emitter
::
EmitPad
(
codegen
::
CodeWriter
&
writer
,
...
...
src/ngraph/runtime/cpu/cpu_emitter.hpp
View file @
a87675fe
...
...
@@ -93,6 +93,8 @@ namespace ngraph
static
void
EMITTER_DECL
(
EmitAvgPool
);
static
void
EMITTER_DECL
(
EmitPad
);
static
void
EmitMKLDNNPreamble
(
codegen
::
CodeWriter
&
writer
);
private
:
static
std
::
string
emit_vector
(
const
TensorViewWrapper
&
,
const
std
::
string
&
name
=
""
);
...
...
src/ngraph/runtime/cpu/cpu_external_function.cpp
View file @
a87675fe
...
...
@@ -481,6 +481,8 @@ using namespace ngraph::runtime;
writer
<<
"tbb::flow::graph G;
\n\n
"
;
}
runtime
::
cpu
::
CPU_Emitter
::
EmitMKLDNNPreamble
(
writer
);
bool
temporaries_used
=
false
;
size_t
worst_case_tmp_size
=
0
;
for
(
shared_ptr
<
Node
>
node
:
current_function
->
get_ordered_ops
())
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment