Commit a32fdab5 authored by Fenglei's avatar Fenglei Committed by Robert Kimball

fix old style cast error (#632)

parent 490e4e63
...@@ -53,12 +53,12 @@ void cuda_)" + name + "(" + data_type + ...@@ -53,12 +53,12 @@ void cuda_)" + name + "(" + data_type +
//convert runtime ptr to driver api ptr //convert runtime ptr to driver api ptr
CUdeviceptr d_ptr_in, d_ptr_out; CUdeviceptr d_ptr_in, d_ptr_out;
d_ptr_in = (CUdeviceptr)in; d_ptr_in = CUdeviceptr(in);
d_ptr_out = (CUdeviceptr)out; d_ptr_out = CUdeviceptr(out);
void* args_list[] = {&d_ptr_in, &d_ptr_out, &repeat_size, &repeat_times, &count}; void* args_list[] = {&d_ptr_in, &d_ptr_out, &repeat_size, &repeat_times, &count};
CUDA_SAFE_CALL(cuLaunchKernel(*CudaFunctionPool::instance().get(name).get(), CUDA_SAFE_CALL(cuLaunchKernel(*CudaFunctionPool::instance().get(name).get(),
count, static_cast<unsigned int>(count),
1, 1,
1, // grid dim 1, // grid dim
1, 1,
......
...@@ -183,7 +183,6 @@ cudnnSetOpTensorDescriptor(opTensorDesc, ...@@ -183,7 +183,6 @@ cudnnSetOpTensorDescriptor(opTensorDesc,
return; return;
} }
const ngraph::op::Dot* dot = static_cast<const ngraph::op::Dot*>(node);
const Shape& arg0_shape = args[0].get_shape(); const Shape& arg0_shape = args[0].get_shape();
const Shape& arg1_shape = args[1].get_shape(); const Shape& arg1_shape = args[1].get_shape();
if (arg0_shape.empty() || arg1_shape.empty()) if (arg0_shape.empty() || arg1_shape.empty())
...@@ -504,15 +503,11 @@ cudnnSetOpTensorDescriptor(opTensorDesc, ...@@ -504,15 +503,11 @@ cudnnSetOpTensorDescriptor(opTensorDesc,
writer.indent++; writer.indent++;
auto arg_shape = args[0].get_shape(); auto arg_shape = args[0].get_shape();
auto arg_rank = arg_shape.size(); auto arg_rank = arg_shape.size();
auto result_shape = out[0].get_shape(); auto result_shape = out[0].get_shape();
auto& result_element_type = out[0].get_element_type();
auto input_order = reshape->get_input_order(); auto input_order = reshape->get_input_order();
bool same_layout = is_sorted(input_order.begin(), input_order.end()); bool same_layout = is_sorted(input_order.begin(), input_order.end());
size_t result_shape_product = 1; size_t result_shape_product = 1;
for (auto i : result_shape) for (auto i : result_shape)
{ {
result_shape_product *= i; result_shape_product *= i;
......
...@@ -427,9 +427,6 @@ using namespace std; ...@@ -427,9 +427,6 @@ using namespace std;
for (shared_ptr<Function> current_function : for (shared_ptr<Function> current_function :
pass_manager.get_state().get_functions()) pass_manager.get_state().get_functions())
{ {
bool temporaries_used = false;
size_t worst_case_tmp_size = 0;
set<string> output_names; set<string> output_names;
for (shared_ptr<Node> op : current_function->get_results()) for (shared_ptr<Node> op : current_function->get_results())
{ {
...@@ -454,18 +451,6 @@ using namespace std; ...@@ -454,18 +451,6 @@ using namespace std;
continue; continue;
} }
string match_function_name; string match_function_name;
for (size_t j = i + 1; j < op_list.size(); j++)
{
if (0) //op_list[i]->is_functionally_identical(*op_list[j]))
{
if (match_function_name.empty())
{
match_function_name = "func_" + op_list[i]->get_name();
match_functions.insert({op_list[i].get(), match_function_name});
}
match_functions.insert({op_list[j].get(), match_function_name});
}
}
if (!match_function_name.empty()) if (!match_function_name.empty())
{ {
writer << "static void " << match_function_name << "("; writer << "static void " << match_function_name << "(";
...@@ -545,9 +530,6 @@ using namespace std; ...@@ -545,9 +530,6 @@ using namespace std;
writer << "{\n"; writer << "{\n";
writer.indent++; writer.indent++;
for (shared_ptr<Function> current_function :
pass_manager.get_state().get_functions())
{
for (shared_ptr<Node> node : current_function->get_ordered_ops()) for (shared_ptr<Node> node : current_function->get_ordered_ops())
{ {
const op::Constant* c = dynamic_cast<op::Constant*>(node.get()); const op::Constant* c = dynamic_cast<op::Constant*>(node.get());
...@@ -558,15 +540,14 @@ using namespace std; ...@@ -558,15 +540,14 @@ using namespace std;
writer << "if(" << tv->get_tensor().get_name() << " == NULL)\n"; writer << "if(" << tv->get_tensor().get_name() << " == NULL)\n";
writer << "{\n"; writer << "{\n";
writer.indent++; writer.indent++;
writer << "runtime::gpu::cuda_memcpyHtD(" writer << "runtime::gpu::cuda_memcpyHtD(" << tv->get_tensor().get_name()
<< tv->get_tensor().get_name() << ", " << ", " << tv->get_tensor().get_name() << "_cpu, "
<< tv->get_tensor().get_name() << "_cpu, "
<< tv->get_tensor().size() << ");\n"; << tv->get_tensor().size() << ");\n";
writer.indent--; writer.indent--;
writer << "}\n"; writer << "}\n";
} }
} }
}
bool temporaries_used = false; bool temporaries_used = false;
size_t worst_case_tmp_size = 0; size_t worst_case_tmp_size = 0;
for (shared_ptr<Node> node : current_function->get_ordered_ops()) for (shared_ptr<Node> node : current_function->get_ordered_ops())
......
...@@ -41,7 +41,7 @@ runtime::gpu::GPU_TensorView::GPU_TensorView(const ngraph::element::Type& elemen ...@@ -41,7 +41,7 @@ runtime::gpu::GPU_TensorView::GPU_TensorView(const ngraph::element::Type& elemen
m_buffer_size = shape_size(shape) * element_type.size(); m_buffer_size = shape_size(shape) * element_type.size();
if (m_buffer_size > 0) if (m_buffer_size > 0)
{ {
cudaMalloc((void**)&m_allocated_buffer_pool, m_buffer_size); cudaMalloc(static_cast<void**>(&m_allocated_buffer_pool), m_buffer_size);
} }
} }
......
...@@ -50,7 +50,7 @@ void runtime::gpu::check_cuda_errors(CUresult err) ...@@ -50,7 +50,7 @@ void runtime::gpu::check_cuda_errors(CUresult err)
void* runtime::gpu::create_gpu_buffer(size_t buffer_size) void* runtime::gpu::create_gpu_buffer(size_t buffer_size)
{ {
void* allocated_buffer_pool; void* allocated_buffer_pool;
cudaMalloc((void**)&allocated_buffer_pool, buffer_size); cudaMalloc(static_cast<void**>(&allocated_buffer_pool), buffer_size);
return allocated_buffer_pool; return allocated_buffer_pool;
} }
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment