Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
N
ngraph
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
ngraph
Commits
9f2882a2
Commit
9f2882a2
authored
Oct 14, 2017
by
Adam Procter
Committed by
Scott Cyphers
Oct 14, 2017
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Sum operation (#196)
parent
3eaf7e6f
Show whitespace changes
Inline
Side-by-side
Showing
9 changed files
with
540 additions
and
0 deletions
+540
-0
CMakeLists.txt
src/ngraph/CMakeLists.txt
+1
-0
ngraph.hpp
src/ngraph/ngraph.hpp
+1
-0
sum.cpp
src/ngraph/ops/sum.cpp
+67
-0
sum.hpp
src/ngraph/ops/sum.hpp
+44
-0
sum_matrix_columns.hpp
src/ngraph/runtime/ngvm/eigen/sum_matrix_columns.hpp
+54
-0
sum_matrix_rows.hpp
src/ngraph/runtime/ngvm/eigen/sum_matrix_rows.hpp
+53
-0
sum_to_scalar.hpp
src/ngraph/runtime/ngvm/eigen/sum_to_scalar.hpp
+53
-0
external_function.cpp
src/ngraph/runtime/ngvm/external_function.cpp
+63
-0
execute.cpp
test/execute.cpp
+204
-0
No files found.
src/ngraph/CMakeLists.txt
View file @
9f2882a2
...
@@ -39,6 +39,7 @@ set (SRC
...
@@ -39,6 +39,7 @@ set (SRC
ops/reshape.cpp
ops/reshape.cpp
ops/select.cpp
ops/select.cpp
ops/slice.cpp
ops/slice.cpp
ops/sum.cpp
ops/tuple.cpp
ops/tuple.cpp
ops/unary_elementwise_arithmetic.cpp
ops/unary_elementwise_arithmetic.cpp
ops/unary_elementwise_builtin.cpp
ops/unary_elementwise_builtin.cpp
...
...
src/ngraph/ngraph.hpp
View file @
9f2882a2
...
@@ -88,6 +88,7 @@
...
@@ -88,6 +88,7 @@
#include "ngraph/ops/sinh.hpp"
#include "ngraph/ops/sinh.hpp"
#include "ngraph/ops/slice.hpp"
#include "ngraph/ops/slice.hpp"
#include "ngraph/ops/subtract.hpp"
#include "ngraph/ops/subtract.hpp"
#include "ngraph/ops/sum.hpp"
#include "ngraph/ops/tan.hpp"
#include "ngraph/ops/tan.hpp"
#include "ngraph/ops/tanh.hpp"
#include "ngraph/ops/tanh.hpp"
#include "ngraph/ops/tuple.hpp"
#include "ngraph/ops/tuple.hpp"
...
...
src/ngraph/ops/sum.cpp
0 → 100644
View file @
9f2882a2
// ----------------------------------------------------------------------------
// Copyright 2017 Nervana Systems Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// ----------------------------------------------------------------------------
#include "ngraph/ops/sum.hpp"
#include "ngraph/function.hpp"
using
namespace
std
;
using
namespace
ngraph
::
op
;
void
Sum
::
propagate_types
()
{
if
(
m_arguments
.
size
()
!=
1
)
{
throw
ngraph_error
(
"Wrong number of arguments."
);
}
auto
arg_type
=
m_arguments
.
at
(
0
)
->
get_value_type
();
if
(
nullptr
==
arg_type
)
{
throw
ngraph_error
(
"Argument to sum is missing type."
);
}
auto
arg_tensor_view_type
=
dynamic_pointer_cast
<
const
TensorViewType
>
(
arg_type
);
if
(
nullptr
==
arg_tensor_view_type
)
{
throw
ngraph_error
(
"Argument to sum is not a tensor view"
);
}
auto
&
arg_element_type
=
arg_tensor_view_type
->
get_element_type
();
if
(
arg_element_type
==
element
::
Bool
::
element_type
())
{
throw
ngraph_error
(
"Argument for sum must have numeric element type"
);
}
auto
arg_shape
=
arg_tensor_view_type
->
get_shape
();
for
(
auto
axis
:
m_summed_axes
)
{
if
(
axis
>=
arg_shape
.
size
())
{
throw
ngraph_error
(
"Summed axis is out of bounds"
);
}
}
Shape
result_shape
;
for
(
size_t
i
=
0
;
i
<
arg_shape
.
size
();
i
++
)
{
if
(
m_summed_axes
.
count
(
i
)
==
0
)
{
result_shape
.
push_back
(
arg_shape
.
at
(
i
));
}
}
set_value_type_checked
(
make_shared
<
TensorViewType
>
(
arg_tensor_view_type
->
get_element_type
(),
result_shape
));
}
src/ngraph/ops/sum.hpp
0 → 100644
View file @
9f2882a2
// ----------------------------------------------------------------------------
// Copyright 2017 Nervana Systems Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// ----------------------------------------------------------------------------
#pragma once
#include "ngraph/ops/op.hpp"
namespace
ngraph
{
namespace
op
{
class
Sum
:
public
Builtin
{
public
:
///
/// @param arg The tensor view to be summedn.
/// @param summed_axes The axis positions (0-based) to be summed.
///
Sum
(
const
std
::
shared_ptr
<
Node
>&
arg
,
const
AxisSet
&
summed_axes
)
:
Builtin
({
arg
})
,
m_summed_axes
(
summed_axes
)
{
}
virtual
std
::
string
description
()
const
override
{
return
"Sum"
;
}
virtual
void
propagate_types
()
override
;
const
AxisSet
&
get_summed_axes
()
const
{
return
m_summed_axes
;
}
protected
:
AxisSet
m_summed_axes
;
};
}
}
src/ngraph/runtime/ngvm/eigen/sum_matrix_columns.hpp
0 → 100644
View file @
9f2882a2
// ----------------------------------------------------------------------------
// Copyright 2017 Nervana Systems Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// ----------------------------------------------------------------------------
#pragma once
#include "ngraph/runtime/ngvm/call_frame.hpp"
#include "ngraph/runtime/ngvm/eigen/utils.hpp"
#include "ngraph/runtime/ngvm/instruction.hpp"
#include "ngraph/runtime/tensor_view.hpp"
namespace
ngraph
{
namespace
runtime
{
namespace
ngvm
{
namespace
eigen
{
template
<
typename
ET
>
class
SumMatrixColumnsInstruction
:
public
Instruction
{
public
:
SumMatrixColumnsInstruction
(
const
TensorViewInfo
&
arg
,
const
TensorViewInfo
&
out
)
:
m_arg
(
arg
)
,
m_out
(
out
)
{
}
virtual
void
execute
(
CallFrame
&
call_frame
)
const
override
{
EigenVector
<
ET
>
(
call_frame
,
m_out
)
=
EigenMatrix
<
ET
>
(
call_frame
,
m_arg
).
colwise
().
sum
();
}
protected
:
TensorViewInfo
m_arg
;
TensorViewInfo
m_out
;
};
}
}
}
}
src/ngraph/runtime/ngvm/eigen/sum_matrix_rows.hpp
0 → 100644
View file @
9f2882a2
// ----------------------------------------------------------------------------
// Copyright 2017 Nervana Systems Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// ----------------------------------------------------------------------------
#pragma once
#include "ngraph/runtime/ngvm/call_frame.hpp"
#include "ngraph/runtime/ngvm/eigen/utils.hpp"
#include "ngraph/runtime/ngvm/instruction.hpp"
#include "ngraph/runtime/tensor_view.hpp"
namespace
ngraph
{
namespace
runtime
{
namespace
ngvm
{
namespace
eigen
{
template
<
typename
ET
>
class
SumMatrixRowsInstruction
:
public
Instruction
{
public
:
SumMatrixRowsInstruction
(
const
TensorViewInfo
&
arg
,
const
TensorViewInfo
&
out
)
:
m_arg
(
arg
)
,
m_out
(
out
)
{
}
virtual
void
execute
(
CallFrame
&
call_frame
)
const
override
{
EigenVector
<
ET
>
(
call_frame
,
m_out
)
=
EigenMatrix
<
ET
>
(
call_frame
,
m_arg
).
rowwise
().
sum
();
}
protected
:
TensorViewInfo
m_arg
;
TensorViewInfo
m_out
;
};
}
}
}
}
src/ngraph/runtime/ngvm/eigen/sum_to_scalar.hpp
0 → 100644
View file @
9f2882a2
// ----------------------------------------------------------------------------
// Copyright 2017 Nervana Systems Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// ----------------------------------------------------------------------------
#pragma once
#include "ngraph/runtime/ngvm/call_frame.hpp"
#include "ngraph/runtime/ngvm/eigen/utils.hpp"
#include "ngraph/runtime/ngvm/instruction.hpp"
#include "ngraph/runtime/tensor_view.hpp"
namespace
ngraph
{
namespace
runtime
{
namespace
ngvm
{
namespace
eigen
{
template
<
typename
ET
>
class
SumToScalarInstruction
:
public
Instruction
{
public
:
SumToScalarInstruction
(
const
TensorViewInfo
&
arg
,
const
TensorViewInfo
&
out
)
:
m_arg
(
arg
)
,
m_out
(
out
)
{
}
virtual
void
execute
(
CallFrame
&
call_frame
)
const
override
{
EigenArray1d
<
ET
>
(
call_frame
,
m_out
)
=
EigenArray1d
<
ET
>
(
call_frame
,
m_arg
).
sum
();
}
protected
:
TensorViewInfo
m_arg
;
TensorViewInfo
m_out
;
};
}
}
}
}
src/ngraph/runtime/ngvm/external_function.cpp
View file @
9f2882a2
...
@@ -56,6 +56,7 @@
...
@@ -56,6 +56,7 @@
#include "ngraph/ops/sinh.hpp"
#include "ngraph/ops/sinh.hpp"
#include "ngraph/ops/slice.hpp"
#include "ngraph/ops/slice.hpp"
#include "ngraph/ops/subtract.hpp"
#include "ngraph/ops/subtract.hpp"
#include "ngraph/ops/sum.hpp"
#include "ngraph/ops/tan.hpp"
#include "ngraph/ops/tan.hpp"
#include "ngraph/ops/tanh.hpp"
#include "ngraph/ops/tanh.hpp"
#include "ngraph/ops/tuple.hpp"
#include "ngraph/ops/tuple.hpp"
...
@@ -105,6 +106,9 @@
...
@@ -105,6 +106,9 @@
#include "ngraph/runtime/ngvm/eigen/sin.hpp"
#include "ngraph/runtime/ngvm/eigen/sin.hpp"
#include "ngraph/runtime/ngvm/eigen/sinh.hpp"
#include "ngraph/runtime/ngvm/eigen/sinh.hpp"
#include "ngraph/runtime/ngvm/eigen/subtract.hpp"
#include "ngraph/runtime/ngvm/eigen/subtract.hpp"
#include "ngraph/runtime/ngvm/eigen/sum_matrix_columns.hpp"
#include "ngraph/runtime/ngvm/eigen/sum_matrix_rows.hpp"
#include "ngraph/runtime/ngvm/eigen/sum_to_scalar.hpp"
#include "ngraph/runtime/ngvm/eigen/tan.hpp"
#include "ngraph/runtime/ngvm/eigen/tan.hpp"
#include "ngraph/runtime/ngvm/eigen/tanh.hpp"
#include "ngraph/runtime/ngvm/eigen/tanh.hpp"
#include "ngraph/runtime/ngvm/eigen/vector_slice.hpp"
#include "ngraph/runtime/ngvm/eigen/vector_slice.hpp"
...
@@ -824,6 +828,65 @@ ExternalFunction::OpMap& ExternalFunction::get_op_map()
...
@@ -824,6 +828,65 @@ ExternalFunction::OpMap& ExternalFunction::get_op_map()
}
}
};
};
REGISTER_TO_OP_MAP
(
op
::
Sum
)
{
auto
s
=
static_cast
<
const
op
::
Sum
*>
(
n
);
auto
s_tensor_view_type
=
dynamic_pointer_cast
<
const
TensorViewType
>
(
s
->
get_value_type
());
assert
(
nullptr
!=
s_tensor_view_type
);
auto
&
s_element_type
=
s_tensor_view_type
->
get_element_type
();
auto
s_shape
=
s_tensor_view_type
->
get_shape
();
auto
arg
=
s
->
get_arguments
().
at
(
0
);
auto
arg_type
=
arg
->
get_value_type
();
auto
arg_tensor_view_type
=
dynamic_pointer_cast
<
const
TensorViewType
>
(
arg_type
);
assert
(
nullptr
!=
arg_tensor_view_type
);
auto
arg_shape
=
arg_tensor_view_type
->
get_shape
();
auto
arg_rank
=
arg_shape
.
size
();
auto
&
summed_axes
=
s
->
get_summed_axes
();
// Trivial case: no summed axes.
if
(
summed_axes
.
size
()
==
0
)
{
PUSH_POLYMORPHIC_INSTRUCTION
(
s_element_type
,
"Sum has unhandled element type"
,
runtime
::
ngvm
::
eigen
::
CopyInstruction
,
in
.
at
(
0
).
get_index
(),
out
.
at
(
0
).
get_index
());
}
// Full reduction? Then sum to scalar.
else
if
((
arg_rank
==
1
&&
summed_axes
==
AxisSet
{
0
})
||
(
arg_rank
==
2
&&
summed_axes
==
AxisSet
{
0
,
1
}))
{
PUSH_POLYMORPHIC_INSTRUCTION
(
s_element_type
,
"Sum has unhandled element type"
,
runtime
::
ngvm
::
eigen
::
SumToScalarInstruction
,
in
[
0
],
out
[
0
]);
}
else
if
(
arg_rank
==
2
&&
summed_axes
==
AxisSet
{
1
})
{
PUSH_POLYMORPHIC_INSTRUCTION
(
s_element_type
,
"Sum has unhandled element type"
,
runtime
::
ngvm
::
eigen
::
SumMatrixRowsInstruction
,
in
[
0
],
out
[
0
]);
}
else
if
(
arg_rank
==
2
&&
summed_axes
==
AxisSet
{
0
})
{
PUSH_POLYMORPHIC_INSTRUCTION
(
s_element_type
,
"Sum has unhandled element type"
,
runtime
::
ngvm
::
eigen
::
SumMatrixColumnsInstruction
,
in
[
0
],
out
[
0
]);
}
else
{
throw
ngraph_error
(
"Sum: only vectors and matrices are currently supported"
);
}
};
REGISTER_TO_OP_MAP
(
op
::
Reshape
)
REGISTER_TO_OP_MAP
(
op
::
Reshape
)
{
{
auto
reshape
=
static_cast
<
const
op
::
Reshape
*>
(
n
);
auto
reshape
=
static_cast
<
const
op
::
Reshape
*>
(
n
);
...
...
test/execute.cpp
View file @
9f2882a2
...
@@ -2274,3 +2274,207 @@ TEST(execute, tensor_constant_int64)
...
@@ -2274,3 +2274,207 @@ TEST(execute, tensor_constant_int64)
std
::
strtol
(
"1964"
,
NULL
,
10
)}),
std
::
strtol
(
"1964"
,
NULL
,
10
)}),
result
->
get_vector
());
result
->
get_vector
());
}
}
// Trivial case with no summed axes.
TEST
(
execute
,
sum_trivial
)
{
auto
shape
=
Shape
{
2
,
2
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
element
::
Float32
::
element_type
(),
shape
);
auto
rt
=
make_shared
<
TensorViewType
>
(
element
::
Float32
::
element_type
(),
shape
);
auto
f
=
make_shared
<
Function
>
(
make_shared
<
op
::
Sum
>
(
A
,
AxisSet
{}),
rt
,
op
::
Parameters
{
A
});
auto
manager
=
runtime
::
Manager
::
get
(
"NGVM"
);
auto
external
=
manager
->
compile
(
f
);
auto
backend
=
manager
->
allocate_backend
();
auto
cf
=
backend
->
make_call_frame
(
external
);
// Create some tensors for input/output
auto
a
=
ngraph
::
runtime
::
make_tensor
<
element
::
Float32
>
(
shape
);
*
a
=
vector
<
float
>
{
1
,
2
,
3
,
4
};
auto
result
=
ngraph
::
runtime
::
make_tensor
<
element
::
Float32
>
(
shape
);
(
*
cf
)({
a
},
{
result
});
ASSERT_EQ
((
vector
<
float
>
{
1
,
2
,
3
,
4
}),
result
->
get_vector
());
}
TEST
(
execute
,
sum_to_scalar
)
{
auto
shape
=
Shape
{
2
,
2
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
element
::
Float32
::
element_type
(),
shape
);
auto
rt
=
make_shared
<
TensorViewType
>
(
element
::
Float32
::
element_type
(),
Shape
{});
auto
f
=
make_shared
<
Function
>
(
make_shared
<
op
::
Sum
>
(
A
,
AxisSet
{
0
,
1
}),
rt
,
op
::
Parameters
{
A
});
auto
manager
=
runtime
::
Manager
::
get
(
"NGVM"
);
auto
external
=
manager
->
compile
(
f
);
auto
backend
=
manager
->
allocate_backend
();
auto
cf
=
backend
->
make_call_frame
(
external
);
// Create some tensors for input/output
auto
a
=
ngraph
::
runtime
::
make_tensor
<
element
::
Float32
>
(
shape
);
*
a
=
vector
<
float
>
{
1
,
2
,
3
,
4
};
auto
result
=
ngraph
::
runtime
::
make_tensor
<
element
::
Float32
>
(
Shape
{});
(
*
cf
)({
a
},
{
result
});
ASSERT_EQ
((
vector
<
float
>
{
10
}),
result
->
get_vector
());
// For some reason I'm feeling extra paranoid about making sure reduction doesn't clobber the
// input tensors, so let's do this too.
ASSERT_EQ
((
vector
<
float
>
{
1
,
2
,
3
,
4
}),
a
->
get_vector
());
}
TEST
(
execute
,
sum_matrix_columns
)
{
auto
shape_a
=
Shape
{
3
,
2
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
element
::
Float32
::
element_type
(),
shape_a
);
auto
shape_rt
=
Shape
{
2
};
auto
rt
=
make_shared
<
TensorViewType
>
(
element
::
Float32
::
element_type
(),
shape_rt
);
auto
f
=
make_shared
<
Function
>
(
make_shared
<
op
::
Sum
>
(
A
,
AxisSet
{
0
}),
rt
,
op
::
Parameters
{
A
});
auto
manager
=
runtime
::
Manager
::
get
(
"NGVM"
);
auto
external
=
manager
->
compile
(
f
);
auto
backend
=
manager
->
allocate_backend
();
auto
cf
=
backend
->
make_call_frame
(
external
);
// Create some tensors for input/output
auto
a
=
ngraph
::
runtime
::
make_tensor
<
element
::
Float32
>
(
shape_a
);
*
a
=
vector
<
float
>
{
1
,
2
,
3
,
4
,
5
,
6
};
auto
result
=
ngraph
::
runtime
::
make_tensor
<
element
::
Float32
>
(
shape_rt
);
(
*
cf
)({
a
},
{
result
});
ASSERT_EQ
((
vector
<
float
>
{
9
,
12
}),
result
->
get_vector
());
// For some reason I'm feeling extra paranoid about making sure reduction doesn't clobber the
// input tensors, so let's do this too.
ASSERT_EQ
((
vector
<
float
>
{
1
,
2
,
3
,
4
,
5
,
6
}),
a
->
get_vector
());
}
TEST
(
execute
,
sum_matrix_rows
)
{
auto
shape_a
=
Shape
{
3
,
2
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
element
::
Float32
::
element_type
(),
shape_a
);
auto
shape_rt
=
Shape
{
3
};
auto
rt
=
make_shared
<
TensorViewType
>
(
element
::
Float32
::
element_type
(),
shape_rt
);
auto
f
=
make_shared
<
Function
>
(
make_shared
<
op
::
Sum
>
(
A
,
AxisSet
{
1
}),
rt
,
op
::
Parameters
{
A
});
auto
manager
=
runtime
::
Manager
::
get
(
"NGVM"
);
auto
external
=
manager
->
compile
(
f
);
auto
backend
=
manager
->
allocate_backend
();
auto
cf
=
backend
->
make_call_frame
(
external
);
// Create some tensors for input/output
auto
a
=
ngraph
::
runtime
::
make_tensor
<
element
::
Float32
>
(
shape_a
);
*
a
=
vector
<
float
>
{
1
,
2
,
3
,
4
,
5
,
6
};
auto
result
=
ngraph
::
runtime
::
make_tensor
<
element
::
Float32
>
(
shape_rt
);
(
*
cf
)({
a
},
{
result
});
ASSERT_EQ
((
vector
<
float
>
{
3
,
7
,
11
}),
result
->
get_vector
());
// For some reason I'm feeling extra paranoid about making sure reduction doesn't clobber the
// input tensors, so let's do this too.
ASSERT_EQ
((
vector
<
float
>
{
1
,
2
,
3
,
4
,
5
,
6
}),
a
->
get_vector
());
}
TEST
(
execute
,
sum_matrix_rows_zero
)
{
auto
shape_a
=
Shape
{
3
,
0
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
element
::
Float32
::
element_type
(),
shape_a
);
auto
shape_rt
=
Shape
{
3
};
auto
rt
=
make_shared
<
TensorViewType
>
(
element
::
Float32
::
element_type
(),
shape_rt
);
auto
f
=
make_shared
<
Function
>
(
make_shared
<
op
::
Sum
>
(
A
,
AxisSet
{
1
}),
rt
,
op
::
Parameters
{
A
});
auto
manager
=
runtime
::
Manager
::
get
(
"NGVM"
);
auto
external
=
manager
->
compile
(
f
);
auto
backend
=
manager
->
allocate_backend
();
auto
cf
=
backend
->
make_call_frame
(
external
);
// Create some tensors for input/output
auto
a
=
ngraph
::
runtime
::
make_tensor
<
element
::
Float32
>
(
shape_a
);
*
a
=
vector
<
float
>
{};
auto
result
=
ngraph
::
runtime
::
make_tensor
<
element
::
Float32
>
(
shape_rt
);
(
*
cf
)({
a
},
{
result
});
ASSERT_EQ
((
vector
<
float
>
{
0
,
0
,
0
}),
result
->
get_vector
());
// For some reason I'm feeling extra paranoid about making sure reduction doesn't clobber the
// input tensors, so let's do this too.
ASSERT_EQ
((
vector
<
float
>
{}),
a
->
get_vector
());
}
TEST
(
execute
,
sum_matrix_cols_zero
)
{
// Now the reduction (g(x:float32[2,2],y:float32[]) = reduce(x,y,f,axes={})).
auto
shape_a
=
Shape
{
0
,
2
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
element
::
Float32
::
element_type
(),
shape_a
);
auto
shape_rt
=
Shape
{
2
};
auto
rt
=
make_shared
<
TensorViewType
>
(
element
::
Float32
::
element_type
(),
shape_rt
);
auto
f
=
make_shared
<
Function
>
(
make_shared
<
op
::
Sum
>
(
A
,
AxisSet
{
0
}),
rt
,
op
::
Parameters
{
A
});
auto
manager
=
runtime
::
Manager
::
get
(
"NGVM"
);
auto
external
=
manager
->
compile
(
f
);
auto
backend
=
manager
->
allocate_backend
();
auto
cf
=
backend
->
make_call_frame
(
external
);
// Create some tensors for input/output
auto
a
=
ngraph
::
runtime
::
make_tensor
<
element
::
Float32
>
(
shape_a
);
*
a
=
vector
<
float
>
{};
auto
result
=
ngraph
::
runtime
::
make_tensor
<
element
::
Float32
>
(
shape_rt
);
(
*
cf
)({
a
},
{
result
});
ASSERT_EQ
((
vector
<
float
>
{
0
,
0
}),
result
->
get_vector
());
// For some reason I'm feeling extra paranoid about making sure reduction doesn't clobber the
// input tensors, so let's do this too.
ASSERT_EQ
((
vector
<
float
>
{}),
a
->
get_vector
());
}
TEST
(
execute
,
sum_vector_zero
)
{
auto
shape_a
=
Shape
{
0
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
element
::
Float32
::
element_type
(),
shape_a
);
auto
shape_rt
=
Shape
{};
auto
rt
=
make_shared
<
TensorViewType
>
(
element
::
Float32
::
element_type
(),
shape_rt
);
auto
f
=
make_shared
<
Function
>
(
make_shared
<
op
::
Sum
>
(
A
,
AxisSet
{
0
}),
rt
,
op
::
Parameters
{
A
});
auto
manager
=
runtime
::
Manager
::
get
(
"NGVM"
);
auto
external
=
manager
->
compile
(
f
);
auto
backend
=
manager
->
allocate_backend
();
auto
cf
=
backend
->
make_call_frame
(
external
);
// Create some tensors for input/output
auto
a
=
ngraph
::
runtime
::
make_tensor
<
element
::
Float32
>
(
shape_a
);
*
a
=
vector
<
float
>
{};
auto
result
=
ngraph
::
runtime
::
make_tensor
<
element
::
Float32
>
(
shape_rt
);
(
*
cf
)({
a
},
{
result
});
ASSERT_EQ
((
vector
<
float
>
{
0
}),
result
->
get_vector
());
// For some reason I'm feeling extra paranoid about making sure reduction doesn't clobber the
// input tensors, so let's do this too.
ASSERT_EQ
((
vector
<
float
>
{}),
a
->
get_vector
());
}
TEST
(
execute
,
sum_matrix_to_scalar_zero_by_zero
)
{
auto
shape_a
=
Shape
{
0
,
0
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
element
::
Float32
::
element_type
(),
shape_a
);
auto
shape_rt
=
Shape
{};
auto
rt
=
make_shared
<
TensorViewType
>
(
element
::
Float32
::
element_type
(),
shape_rt
);
auto
f
=
make_shared
<
Function
>
(
make_shared
<
op
::
Sum
>
(
A
,
AxisSet
{
0
,
1
}),
rt
,
op
::
Parameters
{
A
});
auto
manager
=
runtime
::
Manager
::
get
(
"NGVM"
);
auto
external
=
manager
->
compile
(
f
);
auto
backend
=
manager
->
allocate_backend
();
auto
cf
=
backend
->
make_call_frame
(
external
);
// Create some tensors for input/output
auto
a
=
ngraph
::
runtime
::
make_tensor
<
element
::
Float32
>
(
shape_a
);
*
a
=
vector
<
float
>
{};
auto
result
=
ngraph
::
runtime
::
make_tensor
<
element
::
Float32
>
(
shape_rt
);
(
*
cf
)({
a
},
{
result
});
ASSERT_EQ
((
vector
<
float
>
{
0
}),
result
->
get_vector
());
// For some reason I'm feeling extra paranoid about making sure reduction doesn't clobber the
// input tensors, so let's do this too.
ASSERT_EQ
((
vector
<
float
>
{}),
a
->
get_vector
());
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment