Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
N
ngraph
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
ngraph
Commits
9b3846f4
Commit
9b3846f4
authored
Jul 11, 2019
by
Robert Kimball
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
revert nbench changes for now
parent
8ba7eb9e
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
1 addition
and
150 deletions
+1
-150
benchmark.cpp
src/tools/nbench/benchmark.cpp
+0
-126
benchmark.hpp
src/tools/nbench/benchmark.hpp
+0
-8
nbench.cpp
src/tools/nbench/nbench.cpp
+1
-16
No files found.
src/tools/nbench/benchmark.cpp
View file @
9b3846f4
...
...
@@ -109,11 +109,6 @@ void init_real_tv(shared_ptr<runtime::Tensor> tv, T min, T max)
static
void
random_init
(
shared_ptr
<
runtime
::
Tensor
>
tv
)
{
element
::
Type
et
=
tv
->
get_element_type
();
#if !(defined(__GNUC__) && (__GNUC__ == 4 && __GNUC_MINOR__ == 8))
#pragma GCC diagnostic push
#pragma GCC diagnostic error "-Wswitch"
#pragma GCC diagnostic error "-Wswitch-enum"
#endif
switch
(
et
.
get_type_enum
())
{
case
element
:
:
Type_t
::
boolean
:
init_int_tv
<
char
>
(
tv
,
0
,
1
);
break
;
...
...
@@ -127,15 +122,8 @@ static void random_init(shared_ptr<runtime::Tensor> tv)
case
element
:
:
Type_t
::
u16
:
init_int_tv
<
uint16_t
>
(
tv
,
0
,
1
);
break
;
case
element
:
:
Type_t
::
u32
:
init_int_tv
<
uint32_t
>
(
tv
,
0
,
1
);
break
;
case
element
:
:
Type_t
::
u64
:
init_int_tv
<
uint64_t
>
(
tv
,
0
,
1
);
break
;
case
element
:
:
Type_t
::
undefined
:
case
element
:
:
Type_t
::
dynamic
:
case
element
:
:
Type_t
::
bf16
:
case
element
:
:
Type_t
::
f16
:
default
:
throw
runtime_error
(
"unsupported type"
);
}
#if !(defined(__GNUC__) && (__GNUC__ == 4 && __GNUC_MINOR__ == 8))
#pragma GCC diagnostic pop
#endif
}
vector
<
runtime
::
PerformanceCounter
>
run_benchmark
(
shared_ptr
<
Function
>
f
,
...
...
@@ -228,117 +216,3 @@ vector<runtime::PerformanceCounter> run_benchmark(shared_ptr<Function> f,
vector
<
runtime
::
PerformanceCounter
>
perf_data
=
compiled_func
->
get_performance_data
();
return
perf_data
;
}
vector
<
runtime
::
PerformanceCounter
>
run_benchmark_double_buffered
(
shared_ptr
<
Function
>
f
,
const
string
&
backend_name
,
size_t
iterations
,
bool
timing_detail
,
int
warmup_iterations
,
bool
copy_data
)
{
stopwatch
timer
;
timer
.
start
();
auto
backend
=
runtime
::
Backend
::
create
(
backend_name
);
auto
compiled_func
=
backend
->
compile
(
f
,
timing_detail
);
timer
.
stop
();
cout
.
imbue
(
locale
(
""
));
cout
<<
"compile time: "
<<
timer
.
get_milliseconds
()
<<
"ms"
<<
endl
;
set_denormals_flush_to_zero
();
// array<vector<shared_ptr<runtime::HostTensor>>, 2> args_data_set;
// array<vector<shared_ptr<runtime::Tensor>>, 2> args_set;
// array<vector<shared_ptr<runtime::HostTensor>>, 2> results_data_set;
// array<vector<shared_ptr<runtime::Tensor>>, 2> results_set;
// for (size_t i = 0; i < 2; i++)
// {
// vector<shared_ptr<runtime::HostTensor>> args_data;
// vector<shared_ptr<runtime::Tensor>> args;
// for (shared_ptr<op::Parameter> param : f->get_parameters())
// {
// auto tensor = backend->create_tensor(param->get_element_type(), param->get_shape());
// auto tensor_data =
// make_shared<runtime::HostTensor>(param->get_element_type(), param->get_shape());
// random_init(tensor_data);
// tensor->write(tensor_data->get_data_ptr(),
// tensor_data->get_element_count() *
// tensor_data->get_element_type().size());
// args.push_back(tensor);
// args_data.push_back(tensor_data);
// }
// args_set[i] = args;
// args_data_set[i] = args_data;
// vector<shared_ptr<runtime::Tensor>> results;
// vector<shared_ptr<runtime::HostTensor>> results_data;
// for (shared_ptr<Node> out : f->get_results())
// {
// auto result = backend->create_tensor(out->get_element_type(), out->get_shape());
// auto result_data =
// make_shared<runtime::HostTensor>(out->get_element_type(), out->get_shape());
// results.push_back(result);
// results_data.push_back(result_data);
// }
// results_set[i] = results;
// results_data_set[i] = results_data;
// }
// stopwatch t1;
// // Before we start we write the first iteration's data
// size_t buffer_number = 0;
// auto args = args_set[buffer_number];
// auto args_data = args_data_set[buffer_number];
// for (size_t arg_index = 0; arg_index < args.size(); arg_index++)
// {
// const shared_ptr<runtime::Tensor>& arg = args[arg_index];
// const shared_ptr<runtime::HostTensor>& data = args_data[arg_index];
// arg->begin_write(data->get_data_ptr(),
// data->get_element_count() * data->get_element_type().size(),
// buffer_number);
// }
// const vector<shared_ptr<runtime::Tensor>>& results = results_set[buffer_number];
// const vector<shared_ptr<runtime::HostTensor>>& results_data = results_data_set[buffer_number];
// for (size_t i = 0; i < iterations + warmup_iterations; i++)
// {
// if (i == warmup_iterations)
// {
// t1.start();
// }
// future<void> exec_future = compiled_func->begin_execute(results, args);
// if (i > 0)
// {
// for (size_t result_index = 0; result_index < results.size(); result_index++)
// {
// const shared_ptr<runtime::HostTensor>& data = results_data[result_index];
// const shared_ptr<runtime::Tensor>& result = results[result_index];
// result->begin_read(data->get_data_ptr(),
// data->get_element_count() * data->get_element_type().size(),
// (buffer_number - 1) & 1);
// }
// }
// buffer_number = (buffer_number + 1) & 1;
// for (size_t arg_index = 0; arg_index < args.size(); arg_index++)
// {
// const shared_ptr<runtime::Tensor>& arg = args[arg_index];
// const shared_ptr<runtime::HostTensor>& data = args_data[arg_index];
// arg->begin_write(data->get_data_ptr(),
// data->get_element_count() * data->get_element_type().size(),
// buffer_number);
// }
// exec_future.get();
// }
// for (size_t result_index = 0; result_index < results.size(); result_index++)
// {
// const shared_ptr<runtime::HostTensor>& data = results_data[result_index];
// const shared_ptr<runtime::Tensor>& result = results[result_index];
// result->begin_read(data->get_data_ptr(),
// data->get_element_count() * data->get_element_type().size(),
// (buffer_number - 1) & 1);
// }
// t1.stop();
// float time = t1.get_milliseconds();
// cout << time / iterations << "ms per iteration" << endl;
vector
<
runtime
::
PerformanceCounter
>
perf_data
=
compiled_func
->
get_performance_data
();
return
perf_data
;
}
src/tools/nbench/benchmark.hpp
View file @
9b3846f4
...
...
@@ -34,11 +34,3 @@ std::vector<ngraph::runtime::PerformanceCounter> run_benchmark(std::shared_ptr<n
bool
timing_detail
,
int
warmup_iterations
,
bool
copy_data
);
std
::
vector
<
ngraph
::
runtime
::
PerformanceCounter
>
run_benchmark_double_buffered
(
std
::
shared_ptr
<
ngraph
::
Function
>
f
,
const
std
::
string
&
backend_name
,
size_t
iterations
,
bool
timing_detail
,
int
warmup_iterations
,
bool
copy_data
);
src/tools/nbench/nbench.cpp
View file @
9b3846f4
...
...
@@ -181,7 +181,6 @@ int main(int argc, char** argv)
int
warmup_iterations
=
1
;
bool
copy_data
=
true
;
bool
dot_file
=
false
;
bool
double_buffer
=
false
;
for
(
size_t
i
=
1
;
i
<
argc
;
i
++
)
{
...
...
@@ -230,10 +229,6 @@ int main(int argc, char** argv)
{
directory
=
argv
[
++
i
];
}
else
if
(
arg
==
"--double_buffer"
)
{
double_buffer
=
true
;
}
else
if
(
arg
==
"-w"
||
arg
==
"--warmup_iterations"
)
{
try
...
...
@@ -288,7 +283,6 @@ OPTIONS
-w|--warmup_iterations Number of warm-up iterations
--no_copy_data Disable copy of input/result data every iteration
--dot Generate Graphviz dot file
--double_buffer Double buffer inputs and outputs
)###"
;
return
1
;
}
...
...
@@ -426,17 +420,8 @@ OPTIONS
{
cout
<<
"
\n
---- Benchmark ----
\n
"
;
shared_ptr
<
Function
>
f
=
deserialize
(
model
);
vector
<
runtime
::
PerformanceCounter
>
perf_data
;
if
(
double_buffer
)
{
perf_data
=
run_benchmark_double_buffered
(
f
,
backend
,
iterations
,
timing_detail
,
warmup_iterations
,
copy_data
);
}
else
{
perf_data
=
run_benchmark
(
auto
perf_data
=
run_benchmark
(
f
,
backend
,
iterations
,
timing_detail
,
warmup_iterations
,
copy_data
);
}
auto
perf_shape
=
to_perf_shape
(
f
,
perf_data
);
aggregate_perf_data
.
insert
(
aggregate_perf_data
.
end
(),
perf_shape
.
begin
(),
perf_shape
.
end
());
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment