Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
N
ngraph
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
ngraph
Commits
97a9dbb3
Unverified
Commit
97a9dbb3
authored
Jul 02, 2019
by
Scott Cyphers
Committed by
GitHub
Jul 02, 2019
Browse files
Options
Browse Files
Download
Plain Diff
Merge branch 'master' into tomdol/plaidml
parents
b534a674
05535a35
Hide whitespace changes
Inline
Side-by-side
Showing
11 changed files
with
672 additions
and
71 deletions
+672
-71
Jenkinsfile
.ci/onnx/onnxruntime/Jenkinsfile
+133
-0
proxy.patch
.ci/onnx/onnxruntime/proxy.patch
+23
-0
CONTRIB.md
CONTRIB.md
+3
-1
cpu_call_frame.cpp
src/ngraph/runtime/cpu/cpu_call_frame.cpp
+0
-2
sigmoid_multiply.hpp
src/ngraph/runtime/cpu/kernel/sigmoid_multiply.hpp
+68
-36
CMakeLists.txt
src/ngraph/runtime/plaidml/CMakeLists.txt
+1
-0
plaidml_builder.hpp
src/ngraph/runtime/plaidml/plaidml_builder.hpp
+2
-1
plaidml_ops_quantize.cpp
src/ngraph/runtime/plaidml/plaidml_ops_quantize.cpp
+288
-0
unit_test.manifest
src/ngraph/runtime/plaidml/unit_test.manifest
+1
-31
lstm_fwd_large_batch_no_clip.prototxt
test/models/onnx/lstm_fwd_large_batch_no_clip.prototxt
+107
-0
onnx_import_rnn.in.cpp
test/onnx/onnx_import_rnn.in.cpp
+46
-0
No files found.
.ci/onnx/onnxruntime/Jenkinsfile
0 → 100644
View file @
97a9dbb3
// ******************************************************************************
// Copyright 2018-2019 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// ******************************************************************************
try
{
if
(
LABEL
.
trim
()
==
""
)
{
throw
new
Exception
();}
}
catch
(
Exception
e
){
LABEL
=
"onnx && ci"
};
echo
"${LABEL}"
NGRPAH_REPOSITORY
=
"https://github.com/NervanaSystems/ngraph.git"
NGRAPH_COMMIT_HASH
=
"${ghprbActualCommit}"
// particular nGraph PR commit hash
ONNX_REPOSITORY
=
"https://github.com/NervanaSystems/onnxruntime.git"
ONNX_RUNTIME_BRANCH
=
"release"
def
main
(){
timeout
(
activity:
true
,
time:
15
)
{
try
{
stage
(
"CloneRepos"
){
CloneRepos
()
}
stage
(
"Apply Patch"
){
ApplyPatch
()
}
stage
(
"Onnx Models"
){
BuildAndTest
()
}
}
catch
(
e
)
{
// Set result to ABORTED if exception contains exit code of a process interrupted by SIGTERM
if
(
"$e"
.
contains
(
"143"
))
{
currentBuild
.
result
=
"ABORTED"
}
else
{
currentBuild
.
result
=
"FAILURE"
}
}
stage
(
"Clean"
){
Clean
()
}
}
}
def
CloneRepos
()
{
dir
(
"ngraph"
){
checkout
([
$class
:
'GitSCM'
,
branches:
[[
name:
"${NGRAPH_COMMIT_HASH}"
]],
doGenerateSubmoduleConfigurations:
false
,
extensions:
[[
$class
:
'SubmoduleOption'
,
disableSubmodules:
false
,
parentCredentials:
true
,
recursiveSubmodules:
true
,
reference:
''
,
trackingSubmodules:
false
,
timeout:
15
]],
submoduleCfg:
[],
userRemoteConfigs:
[[
refspec:
'+refs/pull/*:refs/remotes/origin/pr/*'
,
url:
"${NGRPAH_REPOSITORY}"
]]
])
}
dir
(
"onnxruntime"
)
{
checkout
([
$class
:
'GitSCM'
,
branches:
[[
name:
"${ONNX_RUNTIME_BRANCH}"
]],
doGenerateSubmoduleConfigurations:
false
,
extensions:
[[
$class
:
'SubmoduleOption'
,
disableSubmodules:
false
,
parentCredentials:
true
,
recursiveSubmodules:
true
,
reference:
''
,
trackingSubmodules:
false
,
timeout:
15
]],
submoduleCfg:
[],
userRemoteConfigs:
[[
url:
"${ONNX_REPOSITORY}"
]]
])
}
}
def
ApplyPatch
(){
dir
(
"onnxruntime"
){
echo
"Update cmake/external/ngraph.cmake with ${NGRAPH_COMMIT_HASH}"
sh
"""
sed -i 's/set(ngraph_TAG ".*")/set(ngraph_TAG "${NGRAPH_COMMIT_HASH}")/g' cmake/external/ngraph.cmake
grep -q "${NGRAPH_COMMIT_HASH}" cmake/external/ngraph.cmake
"""
echo
"Add proxy to tools/ci_build/github/linux/docker/Dockerfile.ubuntu"
sh
"""
sed -i 's|{HTTP_PROXY}|${env.http_proxy}|g' ../ngraph/.ci/onnx/onnxruntime/proxy.patch
sed -i 's|{SOCKS_PROXY}|${env.socks_proxy}|g' ../ngraph/.ci/onnx/onnxruntime/proxy.patch
grep -q "${env.http_proxy}" ../ngraph/.ci/onnx/onnxruntime/proxy.patch
git apply ../ngraph/.ci/onnx/onnxruntime/proxy.patch
"""
}
}
def
BuildAndTest
(){
dir
(
"onnxruntime"
){
sh
"mkdir -p `pwd`/build/models && chmod 777 `pwd`/build/models"
sh
"""
//!/bin/bash
./tools/ci_build/github/linux/run_dockerbuild.sh \
-o ubuntu16.04 \
-d ngraph \
-r `pwd`/build -x '--use_ngraph --use_full_protobuf --test_data_url https://onnxruntimetestdata.blob.core.windows.net/models/20190327.zip --test_data_checksum 45166d81c021c8aae212b53c92101792'
"""
}
}
def
Clean
(){
deleteDir
()
}
node
(
LABEL
)
{
main
()
}
.ci/onnx/onnxruntime/proxy.patch
0 → 100644
View file @
97a9dbb3
diff --git a/tools/ci_build/github/linux/docker/Dockerfile.ubuntu b/tools/ci_build/github/linux/docker/Dockerfile.ubuntu
index bdff95e1..cd9c0008 100644
--- a/tools/ci_build/github/linux/docker/Dockerfile.ubuntu
+++ b/tools/ci_build/github/linux/docker/Dockerfile.ubuntu
@@ -3,6 +3,18 @@ FROM ubuntu:${OS_VERSION}
ARG PYTHON_VERSION=3.5
+ENV http_proxy={HTTP_PROXY}
+ENV socks_proxy={SOCKS_PROXY}
+ENV https_proxy={HTTP_PROXY}
+ENV ftp_proxy={HTTP_PROXY}
+ENV rsync_proxy={HTTP_PROXY}
+ENV no_proxy=intel.com,.intel.com,localhost
+ENV HTTP_PROXY={HTTP_PROXY}
+ENV HTTPS_PROXY={HTTP_PROXY}
+ENV FTP_PROXY={HTTP_PROXY}
+ENV SOCKS_PROXY={SOCKS_PROXY}
+ENV NO_PROXY=intel.com,.intel.com,localhost
+
ADD scripts /tmp/scripts
RUN /tmp/scripts/install_ubuntu.sh -p ${PYTHON_VERSION} && /tmp/scripts/install_deps.sh && rm -rf /tmp/scripts
CONTRIB.md
View file @
97a9dbb3
Contributor Guidelines
Contributor Guidelines
======================
======================
https://ngraph.nervanasys.com/docs/latest/project/code-contributor-README.html
The latest version of this file can be found at:
https://ngraph.nervanasys.com/docs/latest/project/contribution-guide.html
License
License
...
...
src/ngraph/runtime/cpu/cpu_call_frame.cpp
View file @
97a9dbb3
...
@@ -216,8 +216,6 @@ void runtime::cpu::CPU_CallFrame::setup_runtime_context()
...
@@ -216,8 +216,6 @@ void runtime::cpu::CPU_CallFrame::setup_runtime_context()
{
{
// single thread for codegen
// single thread for codegen
NGRAPH_CHECK
(
m_num_ctx
==
1
);
NGRAPH_CHECK
(
m_num_ctx
==
1
);
ctx
->
mkldnn_primitives
.
swap
(
mkldnn_emitter
->
get_mkldnn_primitives
());
ctx
->
mkldnn_workspaces
=
mkldnn_emitter
->
get_mkldnn_workspaces
();
}
}
ctx
->
states
=
m_external_function
->
m_states
.
data
();
ctx
->
states
=
m_external_function
->
m_states
.
data
();
...
...
src/ngraph/runtime/cpu/kernel/sigmoid_multiply.hpp
View file @
97a9dbb3
...
@@ -57,28 +57,28 @@ namespace ngraph
...
@@ -57,28 +57,28 @@ namespace ngraph
{
{
case
0
/*Logistic|Logistic*/
:
case
0
/*Logistic|Logistic*/
:
{
{
auto
c
=
(
in0
.
exp
()
*
in1
.
exp
())
/
((
in0
.
exp
()
+
1.
f
)
*
(
in1
.
exp
()
+
1.
f
));
auto
c
=
1.
f
/
(((
-
in0
).
exp
()
+
1.
f
)
*
((
-
in1
)
.
exp
()
+
1.
f
));
out_tm
.
device
(
out_tm
.
device
(
ngraph
::
runtime
::
cpu
::
executor
::
GetCPUExecutor
().
get_device
(
arena
))
=
c
;
ngraph
::
runtime
::
cpu
::
executor
::
GetCPUExecutor
().
get_device
(
arena
))
=
c
;
}
}
break
;
break
;
case
1
/*Logistic|Tanh*/
:
case
1
/*Logistic|Tanh*/
:
{
{
auto
c
=
(
in0
.
exp
()
*
in1
.
tanh
())
/
(
in0
.
exp
()
+
1.
f
);
auto
c
=
in1
.
tanh
()
/
((
-
in0
)
.
exp
()
+
1.
f
);
out_tm
.
device
(
out_tm
.
device
(
ngraph
::
runtime
::
cpu
::
executor
::
GetCPUExecutor
().
get_device
(
arena
))
=
c
;
ngraph
::
runtime
::
cpu
::
executor
::
GetCPUExecutor
().
get_device
(
arena
))
=
c
;
}
}
break
;
break
;
case
2
/*Logistic|Identity*/
:
case
2
/*Logistic|Identity*/
:
{
{
auto
c
=
(
in0
.
exp
()
*
in1
)
/
(
in0
.
exp
()
+
1.
f
);
auto
c
=
in1
/
((
-
in0
)
.
exp
()
+
1.
f
);
out_tm
.
device
(
out_tm
.
device
(
ngraph
::
runtime
::
cpu
::
executor
::
GetCPUExecutor
().
get_device
(
arena
))
=
c
;
ngraph
::
runtime
::
cpu
::
executor
::
GetCPUExecutor
().
get_device
(
arena
))
=
c
;
}
}
break
;
break
;
case
3
/*Tanh|Logistic*/
:
case
3
/*Tanh|Logistic*/
:
{
{
auto
c
=
(
in0
.
tanh
()
*
in1
.
exp
())
/
(
in1
.
exp
()
+
1.
f
);
auto
c
=
in0
.
tanh
()
/
((
-
in1
)
.
exp
()
+
1.
f
);
out_tm
.
device
(
out_tm
.
device
(
ngraph
::
runtime
::
cpu
::
executor
::
GetCPUExecutor
().
get_device
(
arena
))
=
c
;
ngraph
::
runtime
::
cpu
::
executor
::
GetCPUExecutor
().
get_device
(
arena
))
=
c
;
}
}
...
@@ -99,7 +99,7 @@ namespace ngraph
...
@@ -99,7 +99,7 @@ namespace ngraph
break
;
break
;
case
6
/*Identity|Logistic*/
:
case
6
/*Identity|Logistic*/
:
{
{
auto
c
=
(
in0
*
in1
.
exp
())
/
(
in1
.
exp
()
+
1.
f
);
auto
c
=
in0
/
((
-
in1
)
.
exp
()
+
1.
f
);
out_tm
.
device
(
out_tm
.
device
(
ngraph
::
runtime
::
cpu
::
executor
::
GetCPUExecutor
().
get_device
(
arena
))
=
c
;
ngraph
::
runtime
::
cpu
::
executor
::
GetCPUExecutor
().
get_device
(
arena
))
=
c
;
}
}
...
@@ -141,10 +141,15 @@ namespace ngraph
...
@@ -141,10 +141,15 @@ namespace ngraph
{
{
case
0
/*Logistic|Logistic*/
:
case
0
/*Logistic|Logistic*/
:
{
{
auto
i0
=
delta
*
(
in1
.
exp
()
*
in0
.
exp
())
/
auto
in0_neg_exp
=
(
-
in0
).
exp
();
((
in1
.
exp
()
+
1.
f
)
*
((
in0
.
exp
()
+
1.
f
)
*
(
in0
.
exp
()
+
1.
f
)));
auto
in0_log_denominator
=
in0_neg_exp
+
1.
f
;
auto
i1
=
delta
*
(
in0
.
exp
()
*
in1
.
exp
())
/
auto
in1_neg_exp
=
(
-
in1
).
exp
();
((
in0
.
exp
()
+
1.
f
)
*
((
in1
.
exp
()
+
1.
f
)
*
(
in1
.
exp
()
+
1.
f
)));
auto
in1_log_denominator
=
in1_neg_exp
+
1.
f
;
auto
i0
=
delta
*
in0_neg_exp
/
(
in1_log_denominator
*
in0_log_denominator
*
in0_log_denominator
);
auto
i1
=
delta
*
in1_neg_exp
/
(
in0_log_denominator
*
in1_log_denominator
*
in1_log_denominator
);
i0_delta
.
device
(
ngraph
::
runtime
::
cpu
::
executor
::
GetCPUExecutor
().
get_device
(
i0_delta
.
device
(
ngraph
::
runtime
::
cpu
::
executor
::
GetCPUExecutor
().
get_device
(
arena
))
=
i0
;
arena
))
=
i0
;
i1_delta
.
device
(
ngraph
::
runtime
::
cpu
::
executor
::
GetCPUExecutor
().
get_device
(
i1_delta
.
device
(
ngraph
::
runtime
::
cpu
::
executor
::
GetCPUExecutor
().
get_device
(
...
@@ -153,12 +158,17 @@ namespace ngraph
...
@@ -153,12 +158,17 @@ namespace ngraph
break
;
break
;
case
1
/*Logistic|Tanh*/
:
case
1
/*Logistic|Tanh*/
:
{
{
auto
in0_neg_exp
=
(
-
in0
).
exp
();
auto
in0_log_denominator
=
in0_neg_exp
+
1.
f
;
auto
in1_2exp
=
(
in1
*
2.
f
).
exp
();
auto
in1_tanh_denominator
=
in1_2exp
+
1.
f
;
auto
i0
=
auto
i0
=
delta
*
((
(
in1
*
2.
f
).
exp
()
-
1.
f
)
*
in0
.
exp
()
)
/
delta
*
((
in1_2exp
-
1.
f
)
*
in0_neg_exp
)
/
(
((
in1
*
2.
f
).
exp
()
+
1.
f
)
*
((
in0
.
exp
()
+
1.
f
)
*
(
in0
.
exp
()
+
1.
f
))
);
(
in1_tanh_denominator
*
in0_log_denominator
*
in0_log_denominator
);
auto
i1
=
delta
*
(
in0
.
exp
()
*
(
4.
f
*
(
in1
*
2.
f
).
exp
()))
/
auto
i1
=
((
in0
.
exp
()
+
1.
f
)
*
delta
*
(
4.
f
*
in1_2exp
)
/
(((
in1
*
2.
f
).
exp
()
+
1.
f
)
*
((
in1
*
2.
f
).
exp
()
+
1.
f
))
);
(
in0_log_denominator
*
in1_tanh_denominator
*
in1_tanh_denominator
);
i0_delta
.
device
(
ngraph
::
runtime
::
cpu
::
executor
::
GetCPUExecutor
().
get_device
(
i0_delta
.
device
(
ngraph
::
runtime
::
cpu
::
executor
::
GetCPUExecutor
().
get_device
(
arena
))
=
i0
;
arena
))
=
i0
;
i1_delta
.
device
(
ngraph
::
runtime
::
cpu
::
executor
::
GetCPUExecutor
().
get_device
(
i1_delta
.
device
(
ngraph
::
runtime
::
cpu
::
executor
::
GetCPUExecutor
().
get_device
(
...
@@ -167,9 +177,12 @@ namespace ngraph
...
@@ -167,9 +177,12 @@ namespace ngraph
break
;
break
;
case
2
/*Logistic|Identity*/
:
case
2
/*Logistic|Identity*/
:
{
{
auto
i0
=
auto
in0_neg_exp
=
(
-
in0
).
exp
();
delta
*
(
in1
*
in0
.
exp
())
/
((
in0
.
exp
()
+
1.
f
)
*
(
in0
.
exp
()
+
1.
f
));
auto
in0_log_denominator
=
in0_neg_exp
+
1.
f
;
auto
i1
=
delta
*
in0
.
exp
()
/
((
in0
.
exp
()
+
1.
f
));
auto
i0
=
delta
*
(
in1
*
in0_neg_exp
)
/
(
in0_log_denominator
*
in0_log_denominator
);
auto
i1
=
delta
/
in0_log_denominator
;
i0_delta
.
device
(
ngraph
::
runtime
::
cpu
::
executor
::
GetCPUExecutor
().
get_device
(
i0_delta
.
device
(
ngraph
::
runtime
::
cpu
::
executor
::
GetCPUExecutor
().
get_device
(
arena
))
=
i0
;
arena
))
=
i0
;
i1_delta
.
device
(
ngraph
::
runtime
::
cpu
::
executor
::
GetCPUExecutor
().
get_device
(
i1_delta
.
device
(
ngraph
::
runtime
::
cpu
::
executor
::
GetCPUExecutor
().
get_device
(
...
@@ -178,12 +191,17 @@ namespace ngraph
...
@@ -178,12 +191,17 @@ namespace ngraph
break
;
break
;
case
3
/*Tanh|Logistic*/
:
case
3
/*Tanh|Logistic*/
:
{
{
auto
i0
=
delta
*
(
in1
.
exp
()
*
(
4.
f
*
(
in0
*
2.
f
).
exp
()))
/
auto
in0_2exp
=
(
in0
*
2.
f
).
exp
();
((
in1
.
exp
()
+
1.
f
)
*
((
in0
*
2.
f
).
exp
()
+
1.
f
)
*
auto
in0_tanh_denominator
=
in0_2exp
+
1.
f
;
((
in0
*
2.
f
).
exp
()
+
1.
f
));
auto
in1_neg_exp
=
(
-
in1
).
exp
();
auto
in1_log_denominator
=
in1_neg_exp
+
1.
f
;
auto
i0
=
delta
*
(
4.
f
*
in0_2exp
)
/
(
in1_log_denominator
*
in0_tanh_denominator
*
in0_tanh_denominator
);
auto
i1
=
auto
i1
=
delta
*
((
(
in0
*
2.
f
).
exp
()
-
1.
f
)
*
in1
.
exp
()
)
/
delta
*
((
in0_2exp
-
1.
f
)
*
in1_neg_exp
)
/
(
((
in0
*
2.
f
).
exp
()
+
1.
f
)
*
((
in1
.
exp
()
+
1.
f
)
*
(
in1
.
exp
()
+
1.
f
))
);
(
in0_tanh_denominator
*
in1_log_denominator
*
in1_log_denominator
);
i0_delta
.
device
(
ngraph
::
runtime
::
cpu
::
executor
::
GetCPUExecutor
().
get_device
(
i0_delta
.
device
(
ngraph
::
runtime
::
cpu
::
executor
::
GetCPUExecutor
().
get_device
(
arena
))
=
i0
;
arena
))
=
i0
;
i1_delta
.
device
(
ngraph
::
runtime
::
cpu
::
executor
::
GetCPUExecutor
().
get_device
(
i1_delta
.
device
(
ngraph
::
runtime
::
cpu
::
executor
::
GetCPUExecutor
().
get_device
(
...
@@ -192,12 +210,17 @@ namespace ngraph
...
@@ -192,12 +210,17 @@ namespace ngraph
break
;
break
;
case
4
/*Tanh|Tanh*/
:
case
4
/*Tanh|Tanh*/
:
{
{
auto
i0
=
delta
*
(((
in1
*
2.
f
).
exp
()
-
1.
f
)
*
(
4.
f
*
(
in0
*
2.
f
).
exp
()))
/
auto
in0_2exp
=
(
in0
*
2.
f
).
exp
();
(((
in1
*
2.
f
).
exp
()
+
1.
f
)
*
auto
in0_tanh_denominator
=
in0_2exp
+
1.
f
;
(((
in0
*
2.
f
).
exp
()
+
1.
f
)
*
((
in0
*
2.
f
).
exp
()
+
1.
f
)));
auto
in1_2exp
=
(
in1
*
2.
f
).
exp
();
auto
i1
=
delta
*
(((
in0
*
2.
f
).
exp
()
-
1.
f
)
*
(
4.
f
*
(
in1
*
2.
f
).
exp
()))
/
auto
in1_tanh_denominator
=
in1_2exp
+
1.
f
;
(((
in0
*
2.
f
).
exp
()
+
1.
f
)
*
(((
in1
*
2.
f
).
exp
()
+
1.
f
)
*
((
in1
*
2.
f
).
exp
()
+
1.
f
)));
auto
i0
=
delta
*
(
in1_2exp
-
1.
f
)
*
4.
f
*
in0_2exp
/
(
in1_tanh_denominator
*
in0_tanh_denominator
*
in0_tanh_denominator
);
auto
i1
=
delta
*
(
in0_2exp
-
1.
f
)
*
4.
f
*
in1_2exp
/
(
in0_tanh_denominator
*
in1_tanh_denominator
*
in1_tanh_denominator
);
i0_delta
.
device
(
ngraph
::
runtime
::
cpu
::
executor
::
GetCPUExecutor
().
get_device
(
i0_delta
.
device
(
ngraph
::
runtime
::
cpu
::
executor
::
GetCPUExecutor
().
get_device
(
arena
))
=
i0
;
arena
))
=
i0
;
i1_delta
.
device
(
ngraph
::
runtime
::
cpu
::
executor
::
GetCPUExecutor
().
get_device
(
i1_delta
.
device
(
ngraph
::
runtime
::
cpu
::
executor
::
GetCPUExecutor
().
get_device
(
...
@@ -206,9 +229,12 @@ namespace ngraph
...
@@ -206,9 +229,12 @@ namespace ngraph
break
;
break
;
case
5
/*Tanh|Identity*/
:
case
5
/*Tanh|Identity*/
:
{
{
auto
i0
=
delta
*
(
in1
*
(
4.
f
*
(
in0
*
2.
f
).
exp
()))
/
auto
in0_2exp
=
(
in0
*
2.
f
).
exp
();
(((
in0
*
2.
f
).
exp
()
+
1.
f
)
*
((
in0
*
2.
f
).
exp
()
+
1.
f
));
auto
in0_tanh_denominator
=
in0_2exp
+
1.
f
;
auto
i1
=
delta
*
((
in0
*
2.
f
).
exp
()
-
1.
f
)
/
((
in0
*
2.
f
).
exp
()
+
1.
f
);
auto
i0
=
delta
*
in1
*
4.
f
*
in0_2exp
/
(
in0_tanh_denominator
*
in0_tanh_denominator
);
auto
i1
=
delta
*
(
in0_2exp
-
1.
f
)
/
in0_tanh_denominator
;
i0_delta
.
device
(
ngraph
::
runtime
::
cpu
::
executor
::
GetCPUExecutor
().
get_device
(
i0_delta
.
device
(
ngraph
::
runtime
::
cpu
::
executor
::
GetCPUExecutor
().
get_device
(
arena
))
=
i0
;
arena
))
=
i0
;
i1_delta
.
device
(
ngraph
::
runtime
::
cpu
::
executor
::
GetCPUExecutor
().
get_device
(
i1_delta
.
device
(
ngraph
::
runtime
::
cpu
::
executor
::
GetCPUExecutor
().
get_device
(
...
@@ -217,9 +243,12 @@ namespace ngraph
...
@@ -217,9 +243,12 @@ namespace ngraph
break
;
break
;
case
6
/*Identity|Logistic*/
:
case
6
/*Identity|Logistic*/
:
{
{
auto
i0
=
delta
*
(
in1
.
exp
())
/
(
in1
.
exp
()
+
1.
f
);
auto
in1_neg_exp
=
(
-
in1
).
exp
();
auto
in1_log_denominator
=
in1_neg_exp
+
1.
f
;
auto
i0
=
delta
*
1.
f
/
in1_log_denominator
;
auto
i1
=
auto
i1
=
delta
*
(
in0
*
in1
.
exp
())
/
((
in1
.
exp
()
+
1.
f
)
*
(
in1
.
exp
()
+
1.
f
)
);
delta
*
in0
*
in1_neg_exp
/
(
in1_log_denominator
*
in1_log_denominator
);
i0_delta
.
device
(
ngraph
::
runtime
::
cpu
::
executor
::
GetCPUExecutor
().
get_device
(
i0_delta
.
device
(
ngraph
::
runtime
::
cpu
::
executor
::
GetCPUExecutor
().
get_device
(
arena
))
=
i0
;
arena
))
=
i0
;
i1_delta
.
device
(
ngraph
::
runtime
::
cpu
::
executor
::
GetCPUExecutor
().
get_device
(
i1_delta
.
device
(
ngraph
::
runtime
::
cpu
::
executor
::
GetCPUExecutor
().
get_device
(
...
@@ -228,9 +257,12 @@ namespace ngraph
...
@@ -228,9 +257,12 @@ namespace ngraph
break
;
break
;
case
7
/*Identity|Tanh*/
:
case
7
/*Identity|Tanh*/
:
{
{
auto
i0
=
delta
*
((
in1
*
2.
f
).
exp
()
-
1.
f
)
/
((
in1
*
2.
f
).
exp
()
+
1.
f
);
auto
in1_2exp
=
(
in1
*
2.
f
).
exp
();
auto
i1
=
delta
*
(
in0
*
(
4.
f
*
(
in1
*
2.
f
).
exp
()))
/
auto
in1_tanh_denominator
=
in1_2exp
+
1.
f
;
(((
in1
*
2.
f
).
exp
()
+
1.
f
)
*
((
in1
*
2.
f
).
exp
()
+
1.
f
));
auto
i0
=
delta
*
(
in1_2exp
-
1.
f
)
/
in1_tanh_denominator
;
auto
i1
=
delta
*
(
in0
*
(
4.
f
*
in1_2exp
))
/
(
in1_tanh_denominator
*
in1_tanh_denominator
);
i0_delta
.
device
(
ngraph
::
runtime
::
cpu
::
executor
::
GetCPUExecutor
().
get_device
(
i0_delta
.
device
(
ngraph
::
runtime
::
cpu
::
executor
::
GetCPUExecutor
().
get_device
(
arena
))
=
i0
;
arena
))
=
i0
;
i1_delta
.
device
(
ngraph
::
runtime
::
cpu
::
executor
::
GetCPUExecutor
().
get_device
(
i1_delta
.
device
(
ngraph
::
runtime
::
cpu
::
executor
::
GetCPUExecutor
().
get_device
(
...
...
src/ngraph/runtime/plaidml/CMakeLists.txt
View file @
97a9dbb3
...
@@ -41,6 +41,7 @@ set(SRC
...
@@ -41,6 +41,7 @@ set(SRC
plaidml_ops_one_hot.cpp
plaidml_ops_one_hot.cpp
plaidml_ops_passthrough.cpp
plaidml_ops_passthrough.cpp
plaidml_ops_pool.cpp
plaidml_ops_pool.cpp
plaidml_ops_quantize.cpp
plaidml_ops_reduce.cpp
plaidml_ops_reduce.cpp
plaidml_ops_replace_slice.cpp
plaidml_ops_replace_slice.cpp
plaidml_ops_replicate.cpp
plaidml_ops_replicate.cpp
...
...
src/ngraph/runtime/plaidml/plaidml_builder.hpp
View file @
97a9dbb3
...
@@ -188,7 +188,8 @@ class ngraph::runtime::plaidml::builder::Elementwise final : public Statement
...
@@ -188,7 +188,8 @@ class ngraph::runtime::plaidml::builder::Elementwise final : public Statement
{
{
public
:
public
:
Elementwise
(
std
::
string
lhs
,
std
::
string
rhs
);
Elementwise
(
std
::
string
lhs
,
std
::
string
rhs
);
void
set_lhs
(
const
std
::
string
&
lhs
)
{
m_lhs
=
lhs
;
}
void
set_rhs
(
const
std
::
string
&
rhs
)
{
m_rhs
=
rhs
;
}
private
:
private
:
friend
class
Function
;
friend
class
Function
;
...
...
src/ngraph/runtime/plaidml/plaidml_ops_quantize.cpp
0 → 100644
View file @
97a9dbb3
//*****************************************************************************
// Copyright 2017-2019 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#include "ngraph/op/dequantize.hpp"
#include "ngraph/op/quantize.hpp"
#include "ngraph/runtime/plaidml/plaidml_impl.hpp"
namespace
ngraph
{
namespace
runtime
{
namespace
plaidml
{
NGRAPH_PLAIDML_OP_CLASS
(
ImplDequantize
,
OpImpl
<
op
::
Dequantize
>
);
NGRAPH_PLAIDML_OP_CLASS
(
ImplQuantize
,
OpImpl
<
op
::
Quantize
>
);
}
}
}
void
ngraph
::
runtime
::
plaidml
::
ImplDequantize
::
Apply
()
{
check_inputs
(
3
);
check_outputs
(
1
);
const
auto
&
axes
=
op
().
get_axes
();
const
auto
&
input_shape
=
op
().
get_input_shape
(
0
);
const
auto
&
scale_shape
=
op
().
get_input_shape
(
1
);
const
auto
&
zp_shape
=
op
().
get_input_shape
(
2
);
const
auto
&
input_type
=
op
().
get_input_element_type
(
0
);
if
(
!
input_type
.
is_signed
()
&&
input_type
.
size
()
>=
8
)
{
throw
std
::
runtime_error
(
"PlaidML does not yet support dequantizing from uint64+"
);
}
if
(
scale_shape
!=
zp_shape
)
{
throw
std
::
runtime_error
(
"Dequantize given mismatched scale & zero point shapes."
);
}
if
(
scale_shape
.
size
()
!=
axes
.
size
())
{
std
::
ostringstream
msg
;
msg
<<
"Dequantize received "
<<
axes
.
size
()
<<
" axes to use for scale & zero point, but those tensors have "
<<
scale_shape
.
size
()
<<
" dimensions instead."
;
throw
std
::
runtime_error
(
msg
.
str
());
}
std
::
vector
<
std
::
string
>
short_idxs
;
for
(
size_t
i
=
0
;
i
<
input_shape
.
size
();
++
i
)
{
if
(
axes
.
count
(
i
))
{
std
::
ostringstream
name
;
name
<<
"i"
<<
i
;
short_idxs
.
push_back
(
name
.
str
());
}
}
builder
::
ContractionInput
scale_input
{
"S"
};
builder
::
ContractionInput
neg_zp_input
{
"NegZ"
};
for
(
const
auto
&
idx
:
short_idxs
)
{
scale_input
.
add_indices
({
idx
});
neg_zp_input
.
add_indices
({
idx
});
}
std
::
function
<
std
::
string
(
std
::
string
)
>
cast_uint_to_wider_int
=
[
input_type
](
std
::
string
tensor_name
)
{
std
::
ostringstream
cast_str
;
if
(
!
input_type
.
is_signed
())
{
cast_str
<<
"as_int("
<<
tensor_name
<<
", "
<<
2
*
8
*
input_type
.
size
()
<<
")"
;
}
else
{
cast_str
<<
tensor_name
;
}
return
cast_str
.
str
();
};
builder
::
Elementwise
CastI
{
"CastI"
,
cast_uint_to_wider_int
(
"I"
)};
builder
::
Elementwise
CastZ
{
"CastZ"
,
cast_uint_to_wider_int
(
"Z"
)};
auto
f
=
start_tile_function
();
f
.
add
(
builder
::
Input
{
op_input
(
0
),
"I"
}.
add_dims
(
"I"
,
0
,
input_shape
.
size
()))
.
add
(
builder
::
Input
{
op_input
(
1
),
"S"
}.
add_dims
(
"S"
,
0
,
scale_shape
.
size
()))
.
add
(
builder
::
Input
{
op_input
(
2
),
"Z"
}.
add_dims
(
"Z"
,
0
,
zp_shape
.
size
()))
.
add
(
builder
::
Output
{
"O"
})
.
add
(
CastI
)
.
add
(
CastZ
)
.
add
(
builder
::
Elementwise
{
"NegZ"
,
"-CastZ"
})
.
add
(
builder
::
BinaryContraction
{
"="
,
"+"
}
.
set
(
builder
::
ContractionOutput
{
"Offset"
}
.
add_indices
(
"i"
,
0
,
input_shape
.
size
())
.
add_dims
(
"I"
,
0
,
input_shape
.
size
()))
.
set_lhs
(
builder
::
ContractionInput
{
"CastI"
}.
add_indices
(
"i"
,
0
,
input_shape
.
size
()))
.
set_rhs
(
neg_zp_input
))
.
add
(
builder
::
BinaryContraction
{
"="
,
"*"
}
.
set
(
builder
::
ContractionOutput
{
"O"
}
.
add_indices
(
"i"
,
0
,
input_shape
.
size
())
.
add_dims
(
"I"
,
0
,
input_shape
.
size
()))
.
set_lhs
(
builder
::
ContractionInput
{
"Offset"
}.
add_indices
(
"i"
,
0
,
input_shape
.
size
()))
.
set_rhs
(
scale_input
));
set_output
(
f
.
finalize
());
}
void
ngraph
::
runtime
::
plaidml
::
ImplQuantize
::
Apply
()
{
check_inputs
(
3
);
check_outputs
(
1
);
const
auto
&
type
=
op
().
get_output_element_type
(
0
);
const
auto
&
axes
=
op
().
get_axes
();
const
auto
&
round_mode
=
op
().
get_round_mode
();
const
auto
&
input_shape
=
op
().
get_input_shape
(
0
);
const
auto
&
scale_shape
=
op
().
get_input_shape
(
1
);
const
auto
&
zp_shape
=
op
().
get_input_shape
(
2
);
std
::
function
<
std
::
string
(
std
::
string
)
>
cast_to_output_type
=
[
type
](
std
::
string
tensor_name
)
{
std
::
ostringstream
cast_str
;
if
(
type
.
is_signed
())
{
cast_str
<<
"as_int"
;
}
else
{
cast_str
<<
"as_uint"
;
}
cast_str
<<
"("
<<
tensor_name
<<
", "
<<
8
*
type
.
size
()
<<
")"
;
return
cast_str
.
str
();
};
if
(
scale_shape
!=
zp_shape
)
{
throw
std
::
runtime_error
(
"Quantize given mismatched scale & zero point shapes."
);
}
if
(
scale_shape
.
size
()
!=
axes
.
size
())
{
std
::
ostringstream
msg
;
msg
<<
"Quantize received "
<<
axes
.
size
()
<<
" axes to use for scale & zero point, but those tensors have "
<<
scale_shape
.
size
()
<<
" dimensions instead."
;
throw
std
::
runtime_error
(
msg
.
str
());
}
std
::
vector
<
std
::
string
>
short_idxs
;
for
(
size_t
i
=
0
;
i
<
input_shape
.
size
();
++
i
)
{
if
(
axes
.
count
(
i
))
{
std
::
ostringstream
name
;
name
<<
"i"
<<
i
;
short_idxs
.
push_back
(
name
.
str
());
}
}
if
(
!
type
.
is_integral
())
{
throw
std
::
runtime_error
(
"Quantize output type must be integral"
);
}
builder
::
Elementwise
Rounded
{
"Rounded"
,
""
};
builder
::
Elementwise
Clamped
{
"Clamped"
,
""
};
builder
::
Elementwise
O
{
"O"
,
""
};
int64_t
q_min
;
int64_t
q_max
;
std
::
ostringstream
clamp_formula
;
if
(
type
.
size
()
>
4
)
{
// PlaidML doesn't support quantization clamping for types wider than 32 bits
if
(
!
type
.
is_signed
())
{
clamp_formula
<<
"Uncast < 0 ? 0 : Uncast"
;
}
else
{
clamp_formula
<<
"Uncast"
;
}
}
else
{
if
(
type
.
is_signed
())
{
q_max
=
(
1
<<
(
8
*
type
.
size
()
-
1
))
-
1
;
q_min
=
-
q_max
-
1
;
}
else
{
q_max
=
(
1
<<
(
8
*
type
.
size
()))
-
1
;
q_min
=
0
;
}
clamp_formula
<<
"Uncast < "
<<
q_min
<<
" ? "
<<
q_min
<<
" : "
<<
"(Uncast > "
<<
q_max
<<
" ? "
<<
q_max
<<
" : Uncast)"
;
}
Clamped
.
set_rhs
(
clamp_formula
.
str
());
std
::
ostringstream
round_formula
;
std
::
string
lower_rounded_int
;
switch
(
round_mode
)
{
case
ngraph
:
:
op
::
Quantize
::
RoundMode
::
ROUND_DOWN
:
Rounded
.
set_rhs
(
"floor(Frac)"
);
break
;
case
ngraph
:
:
op
::
Quantize
::
RoundMode
::
ROUND_UP
:
Rounded
.
set_rhs
(
"ceil(Frac)"
);
break
;
case
ngraph
:
:
op
::
Quantize
::
RoundMode
::
ROUND_NEAREST_DOWNWARD
:
Rounded
.
set_rhs
(
"ceil(Frac - 0.5)"
);
break
;
case
ngraph
:
:
op
::
Quantize
::
RoundMode
::
ROUND_NEAREST_UPWARD
:
Rounded
.
set_rhs
(
"floor(Frac + 0.5)"
);
break
;
case
ngraph
:
:
op
::
Quantize
::
RoundMode
::
ROUND_TOWARD_ZERO
:
Rounded
.
set_rhs
(
"Frac > 0 ? floor(Frac) : ceil(Frac)"
);
break
;
case
ngraph
:
:
op
::
Quantize
::
RoundMode
::
ROUND_TOWARD_INFINITY
:
Rounded
.
set_rhs
(
"Frac < 0 ? floor(Frac) : ceil(Frac)"
);
break
;
case
ngraph
:
:
op
::
Quantize
::
RoundMode
::
ROUND_NEAREST_TOWARD_ZERO
:
Rounded
.
set_rhs
(
"Frac > 0 ? ceil(Frac - 0.5) : floor(Frac + 0.5)"
);
break
;
case
ngraph
:
:
op
::
Quantize
::
RoundMode
::
ROUND_NEAREST_TOWARD_INFINITY
:
Rounded
.
set_rhs
(
"Frac < 0 ? ceil(Frac - 0.5) : floor(Frac + 0.5)"
);
break
;
case
ngraph
:
:
op
::
Quantize
::
RoundMode
::
ROUND_NEAREST_TOWARD_EVEN
:
// This is ugly, but it produces correct output
lower_rounded_int
=
cast_to_output_type
(
"ceil(Frac - 0.5)"
);
round_formula
<<
"2 * ("
<<
lower_rounded_int
<<
" / 2) == "
<<
lower_rounded_int
<<
" ? ceil(Frac - 0.5) : floor(Frac + 0.5)"
;
Rounded
.
set_rhs
(
round_formula
.
str
());
break
;
default
:
throw
std
::
runtime_error
(
"Requested quantize round mode not yet implemented in PlaidML"
);
}
O
.
set_rhs
(
cast_to_output_type
(
"Clamped"
));
builder
::
ContractionInput
scale_recip_input
{
"SRecip"
};
builder
::
ContractionInput
zp_input
{
"Z"
};
for
(
const
auto
&
idx
:
short_idxs
)
{
scale_recip_input
.
add_indices
({
idx
});
zp_input
.
add_indices
({
idx
});
}
auto
f
=
start_tile_function
();
f
.
add
(
builder
::
Input
{
op_input
(
0
),
"I"
}.
add_dims
(
"I"
,
0
,
input_shape
.
size
()))
.
add
(
builder
::
Input
{
op_input
(
1
),
"S"
}.
add_dims
(
"S"
,
0
,
scale_shape
.
size
()))
.
add
(
builder
::
Input
{
op_input
(
2
),
"Z"
}.
add_dims
(
"Z"
,
0
,
zp_shape
.
size
()))
.
add
(
builder
::
Output
{
"O"
})
.
add
(
builder
::
Elementwise
{
"SRecip"
,
"1 / S"
})
.
add
(
builder
::
BinaryContraction
{
"="
,
"*"
}
.
set
(
builder
::
ContractionOutput
{
"Frac"
}
.
add_indices
(
"i"
,
0
,
input_shape
.
size
())
.
add_dims
(
"I"
,
0
,
input_shape
.
size
()))
.
set_lhs
(
builder
::
ContractionInput
{
"I"
}.
add_indices
(
"i"
,
0
,
input_shape
.
size
()))
.
set_rhs
(
scale_recip_input
))
.
add
(
Rounded
)
.
add
(
builder
::
BinaryContraction
{
"="
,
"+"
}
.
set
(
builder
::
ContractionOutput
{
"Uncast"
}
.
add_indices
(
"i"
,
0
,
input_shape
.
size
())
.
add_dims
(
"I"
,
0
,
input_shape
.
size
()))
.
set_lhs
(
builder
::
ContractionInput
{
"Rounded"
}.
add_indices
(
"i"
,
0
,
input_shape
.
size
()))
.
set_rhs
(
zp_input
))
.
add
(
Clamped
)
.
add
(
O
);
set_output
(
f
.
finalize
());
}
src/ngraph/runtime/plaidml/unit_test.manifest
View file @
97a9dbb3
...
@@ -60,37 +60,7 @@ generate_mask
...
@@ -60,37 +60,7 @@ generate_mask
generate_mask2
generate_mask2
avg_pool_3d
avg_pool_3d
avg_pool_3d_uneven_strided_padded_include_in_computation
avg_pool_3d_uneven_strided_padded_include_in_computation
quantize_dynamic_offset # Quantization/Dequantization is unimplemented
quantize_clamp_int32 # Requires fp64 inputs, which won't work on GPUs
dequantize_dynamic_offset # Quantization/Dequantization is unimplemented
dequantize_int8_zero_offset # Quantization/Dequantization is unimplemented
dequantize_int32 # Quantization/Dequantization is unimplemented
dequantize_int32_zero_offset # Quantization/Dequantization is unimplemented
dequantize_zero_offset # Quantization/Dequantization is unimplemented
quantize_ROUND_NEAREST_TOWARD_ZERO # Quantization/Dequantization is unimplemented
quantize_ROUND_NEAREST_UPWARD # Quantization/Dequantization is unimplemented
quantize_ROUND_NEAREST_DOWNWARD # Quantization/Dequantization is unimplemented
quantize_ROUND_NEAREST_TOWARD_EVEN # Quantization/Dequantization is unimplemented
quantize_ROUND_NEAREST_TOWARD_INFINITY # Quantization/Dequantization is unimplemented
quantize_ROUND_TOWARD_INFINITY # Quantization/Dequantization is unimplemented
quantize_ROUND_TOWARD_ZERO # Quantization/Dequantization is unimplemented
quantize_ROUND_UP # Quantization/Dequantization is unimplemented
quantize_ROUND_DOWN # Quantization/Dequantization is unimplemented
quantize # Quantization/Dequantization is unimplemented
quantize_zero_offset # Quantization/Dequantization is unimplemented
quantize_axes # Quantization/Dequantization is unimplemented
quantize_dynamic_offset # Quantization/Dequantization is unimplemented
quantize_int8 # Quantization/Dequantization is unimplemented
quantize_int8_zero_offset # Quantization/Dequantization is unimplemented
quantize_int32 # Quantization/Dequantization is unimplemented
quantize_int32_zero_offset # Quantization/Dequantization is unimplemented
quantize_clamp # Quantization/Dequantization is unimplemented
quantize_clamp_int8 # Quantization/Dequantization is unimplemented
quantize_clamp_int32 # Quantization/Dequantization is unimplemented
quantize_clamp_int32_zero_offset # Quantization/Dequantization is unimplemented
quantize_clamp_uint8 # Quantization/Dequantization is unimplemented
dequantize # Quantization/Dequantization is unimplemented
dequantize_axes # Quantization/Dequantization is unimplemented
dequantize_int8 # Quantization/Dequantization is unimplemented
numeric_float_nan
numeric_float_nan
numeric_double_nan
numeric_double_nan
shape_of_scalar
shape_of_scalar
...
...
test/models/onnx/lstm_fwd_large_batch_no_clip.prototxt
0 → 100644
View file @
97a9dbb3
ir_version: 4
producer_name: "nGraph ONNX Importer"
graph {
node {
input: "X"
input: "W"
input: "R"
output: ""
output: "Y_h"
op_type: "LSTM"
attribute {
name: "clip"
f: 9999.0
type: FLOAT
}
attribute {
name: "direction"
s: "forward"
type: STRING
}
attribute {
name: "hidden_size"
i: 3
type: INT
}
}
name: "compute_graph"
input {
name: "X"
type {
tensor_type {
elem_type: 1
shape {
dim {
dim_value: 2
}
dim {
dim_value: 32
}
dim {
dim_value: 1
}
}
}
}
}
input {
name: "W"
type {
tensor_type {
elem_type: 1
shape {
dim {
dim_value: 1
}
dim {
dim_value: 12
}
dim {
dim_value: 1
}
}
}
}
}
input {
name: "R"
type {
tensor_type {
elem_type: 1
shape {
dim {
dim_value: 1
}
dim {
dim_value: 12
}
dim {
dim_value: 3
}
}
}
}
}
output {
name: "Y_h"
type {
tensor_type {
elem_type: 1
shape {
dim {
dim_value: 1
}
dim {
dim_value: 32
}
dim {
dim_value: 3
}
}
}
}
}
}
opset_import {
version: 7
}
test/onnx/onnx_import_rnn.in.cpp
View file @
97a9dbb3
...
@@ -20,6 +20,7 @@
...
@@ -20,6 +20,7 @@
#include <fstream>
#include <fstream>
#include <iterator>
#include <iterator>
#include <limits>
#include <limits>
#include <numeric>
#include <sstream>
#include <sstream>
#include <stdexcept>
#include <stdexcept>
#include <vector>
#include <vector>
...
@@ -203,3 +204,48 @@ NGRAPH_TEST(onnx_${BACKEND_NAME}, model_lstm_fwd_hardsigmoid_activation)
...
@@ -203,3 +204,48 @@ NGRAPH_TEST(onnx_${BACKEND_NAME}, model_lstm_fwd_hardsigmoid_activation)
test_case
.
set_tolerance
(
6
);
test_case
.
set_tolerance
(
6
);
test_case
.
run
();
test_case
.
run
();
}
}
NGRAPH_TEST
(
onnx_
$
{
BACKEND_NAME
},
model_lstm_fwd_large_batch_no_clip
)
{
auto
function
=
onnx_import
::
import_onnx_model
(
file_util
::
path_join
(
SERIALIZED_ZOO
,
"onnx/lstm_fwd_large_batch_no_clip.prototxt"
));
auto
test_case
=
ngraph
::
test
::
NgraphTestCase
(
function
,
"${BACKEND_NAME}"
);
std
::
size_t
seq_length
=
2
;
std
::
size_t
batch_size
=
32
;
std
::
size_t
input_size
=
1
;
std
::
size_t
hidden_size
=
3
;
std
::
vector
<
float
>
in_X
(
seq_length
*
batch_size
*
input_size
);
std
::
iota
(
std
::
begin
(
in_X
),
std
::
end
(
in_X
),
1.
f
);
std
::
vector
<
float
>
in_R
(
4
*
hidden_size
*
hidden_size
,
0.1
f
);
// X
test_case
.
add_input
<
float
>
(
in_X
);
// W
test_case
.
add_input
<
float
>
(
{
0.1
f
,
0.2
f
,
0.3
f
,
0.4
f
,
1.
f
,
2.
f
,
3.
f
,
4.
f
,
10.
f
,
11.
f
,
12.
f
,
13.
f
});
// R
test_case
.
add_input
<
float
>
(
in_R
);
// Y_h_data
test_case
.
add_expected_output
<
float
>
(
Shape
{
1
,
batch_size
,
hidden_size
},
{
0.90387899
f
,
0.9135572
f
,
0.91772245
f
,
0.90897038
f
,
0.92132433
f
,
0.92825467
f
,
0.91365823
f
,
0.92815113
f
,
0.93676105
f
,
0.91799162
f
,
0.93406357
f
,
0.94344562
f
,
0.92199681
f
,
0.93912057
f
,
0.94859476
f
,
0.92569357
f
,
0.94340185
f
,
0.95250664
f
,
0.92909964
f
,
0.94699686
f
,
0.95545127
f
,
0.93223207
f
,
0.94999634
f
,
0.95765468
f
,
0.93510761
f
,
0.9524867
f
,
0.95929726
f
,
0.93774272
f
,
0.9545467
f
,
0.96051891
f
,
0.9401536
f
,
0.95624603
f
,
0.96142619
f
,
0.94235605
f
,
0.95764499
f
,
0.96209939
f
,
0.94436539
f
,
0.95879495
f
,
0.96259862
f
,
0.94619635
f
,
0.95973921
f
,
0.96296872
f
,
0.94786299
f
,
0.96051397
f
,
0.96324302
f
,
0.94937864
f
,
0.96114929
f
,
0.96344629
f
,
0.95075587
f
,
0.96167006
f
,
0.96359692
f
,
0.95200645
f
,
0.96209679
f
,
0.96370852
f
,
0.95314133
f
,
0.9624464
f
,
0.9637912
f
,
0.95417069
f
,
0.96273278
f
,
0.96385246
f
,
0.95510395
f
,
0.96296733
f
,
0.96389785
f
,
0.95594975
f
,
0.96315942
f
,
0.96393147
f
,
0.95671607
f
,
0.96331673
f
,
0.96395638
f
,
0.9574102
f
,
0.96344554
f
,
0.96397483
f
,
0.9580388
f
,
0.96355102
f
,
0.9639885
f
,
0.95860795
f
,
0.96363739
f
,
0.96399863
f
,
0.95912322
f
,
0.96370811
f
,
0.96400613
f
,
0.95958963
f
,
0.96376601
f
,
0.96401169
f
,
0.96001179
f
,
0.96381342
f
,
0.96401581
f
,
0.96039386
f
,
0.96385224
f
,
0.96401886
f
,
0.96073964
f
,
0.96388402
f
,
0.96402112
f
,
0.96105254
f
,
0.96391004
f
,
0.96402279
f
});
test_case
.
run
();
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment