Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
N
ngraph
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
ngraph
Commits
8ccddb19
Commit
8ccddb19
authored
Sep 30, 2019
by
Mateusz Bencer
Committed by
Michał Karzyński
Sep 30, 2019
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[Spec] Implement Reshape:v1 (#3633)
parent
1ce31a49
Hide whitespace changes
Inline
Side-by-side
Showing
8 changed files
with
381 additions
and
98 deletions
+381
-98
dyn_reshape.cpp
src/ngraph/op/experimental/dyn_reshape.cpp
+7
-7
dyn_reshape.hpp
src/ngraph/op/experimental/dyn_reshape.hpp
+42
-35
reshape.cpp
src/ngraph/op/reshape.cpp
+137
-0
reshape.hpp
src/ngraph/op/reshape.hpp
+47
-0
opset1_upgrade.cpp
src/ngraph/pass/opset1_upgrade.cpp
+65
-54
serializer.cpp
src/ngraph/serializer.cpp
+22
-2
dyn_reshape_opset_pass.cpp
test/opset_pass/dyn_reshape_opset_pass.cpp
+47
-0
dyn_reshape.cpp
test/type_prop/dyn_reshape.cpp
+14
-0
No files found.
src/ngraph/op/experimental/dyn_reshape.cpp
View file @
8ccddb19
...
...
@@ -23,16 +23,16 @@
using
namespace
std
;
using
namespace
ngraph
;
constexpr
NodeTypeInfo
op
::
DynReshape
::
type_info
;
constexpr
NodeTypeInfo
op
::
v0
::
DynReshape
::
type_info
;
op
::
DynReshape
::
DynReshape
(
const
Output
<
Node
>&
arg
,
const
Output
<
Node
>&
pattern
,
bool
zero_flag
)
op
::
v0
::
DynReshape
::
DynReshape
(
const
Output
<
Node
>&
arg
,
const
Output
<
Node
>&
pattern
,
bool
zero_flag
)
:
Op
({
arg
,
pattern
})
,
m_zero_flag
(
zero_flag
)
{
constructor_validate_and_infer_types
();
}
void
op
::
DynReshape
::
validate_and_infer_types
()
void
op
::
v0
::
DynReshape
::
validate_and_infer_types
()
{
auto
pattern_et
=
get_input_element_type
(
1
);
// check data types
...
...
@@ -147,14 +147,14 @@ void op::DynReshape::validate_and_infer_types()
}
}
shared_ptr
<
Node
>
op
::
DynReshape
::
copy_with_new_args
(
const
NodeVector
&
new_args
)
const
shared_ptr
<
Node
>
op
::
v0
::
DynReshape
::
copy_with_new_args
(
const
NodeVector
&
new_args
)
const
{
check_new_args_count
(
this
,
new_args
);
return
make_shared
<
DynReshape
>
(
new_args
.
at
(
0
),
new_args
.
at
(
1
),
m_zero_flag
);
return
make_shared
<
v0
::
DynReshape
>
(
new_args
.
at
(
0
),
new_args
.
at
(
1
),
m_zero_flag
);
}
void
op
::
DynReshape
::
generate_adjoints
(
autodiff
::
Adjoints
&
/* adjoints */
,
const
NodeVector
&
/* deltas */
)
void
op
::
v0
::
DynReshape
::
generate_adjoints
(
autodiff
::
Adjoints
&
/* adjoints */
,
const
NodeVector
&
/* deltas */
)
{
throw
ngraph_error
(
"generate_adjoints not implemented for DynReshape"
);
}
src/ngraph/op/experimental/dyn_reshape.hpp
View file @
8ccddb19
...
...
@@ -23,46 +23,53 @@ namespace ngraph
{
namespace
op
{
/// \brief Tensor dynamic reshape operation.
///
/// "Converts" an input tensor into a new shape with the same number of elements.
/// This op does not touch the actual data. If needed, use Transpose for that purpose.
///
class
DynReshape
:
public
Op
namespace
v0
{
public
:
NGRAPH_API
static
constexpr
NodeTypeInfo
type_info
{
"DynReshape"
,
0
};
const
NodeTypeInfo
&
get_type_info
()
const
override
{
return
type_info
;
}
DynReshape
()
=
default
;
/// \brief Constructs a dynamic reshape operation. This operation does not perform
/// transpose.
/// \brief Tensor dynamic reshape operation.
///
/// \param arg The tensor to be reshaped.
/// \param pattern The node that defines output shape pattern.
/// If the input shape is \f$(a_0,\dots,a_{k-1})\f$ then the output shape must
/// be of the form \f$(b_0,\dots,b_{j-1})\f$ where \f$\Pi(a_i) = \Pi(b_i)\f$.
/// A value of -1 is allowed for at most one dimension, in which case the
/// dimension size is inferred based on element count of input tensor.
/// \param zero_flag Treats zeros in `pattern` as wildcard flags indicating a copy from
/// input shape at the same index.
DynReshape
(
const
Output
<
Node
>&
arg
,
const
Output
<
Node
>&
pattern
,
bool
zero_flag
=
false
);
/// "Converts" an input tensor into a new shape with the same number of elements.
/// This op does not touch the actual data. If needed, use Transpose for that purpose.
///
class
DynReshape
:
public
Op
{
public
:
NGRAPH_API
static
constexpr
NodeTypeInfo
type_info
{
"DynReshape"
,
0
};
const
NodeTypeInfo
&
get_type_info
()
const
override
{
return
type_info
;
}
DynReshape
()
=
default
;
/// \brief Constructs a dynamic reshape operation. This operation does not perform
/// transpose.
///
/// \param arg The tensor to be reshaped.
/// \param pattern The node that defines output shape pattern.
/// If the input shape is \f$(a_0,\dots,a_{k-1})\f$ then the output shape
/// must
/// be of the form \f$(b_0,\dots,b_{j-1})\f$ where \f$\Pi(a_i) = \Pi(b_i)\f$.
/// A value of -1 is allowed for at most one dimension, in which case the
/// dimension size is inferred based on element count of input tensor.
/// \param zero_flag Treats zeros in `pattern` as wildcard flags indicating a copy
/// from
/// input shape at the same index.
DynReshape
(
const
Output
<
Node
>&
arg
,
const
Output
<
Node
>&
pattern
,
bool
zero_flag
=
false
);
void
validate_and_infer_types
()
override
;
void
validate_and_infer_types
()
override
;
virtual
std
::
shared_ptr
<
Node
>
copy_with_new_args
(
const
NodeVector
&
new_args
)
const
override
;
virtual
std
::
shared_ptr
<
Node
>
copy_with_new_args
(
const
NodeVector
&
new_args
)
const
override
;
bool
get_zero_flag
()
const
{
return
m_zero_flag
;
}
void
set_zero_flag
(
bool
zero_flag
)
{
m_zero_flag
=
zero_flag
;
}
protected
:
virtual
void
generate_adjoints
(
autodiff
::
Adjoints
&
adjoints
,
const
NodeVector
&
deltas
)
override
;
bool
get_zero_flag
()
const
{
return
m_zero_flag
;
}
void
set_zero_flag
(
bool
zero_flag
)
{
m_zero_flag
=
zero_flag
;
}
protected
:
virtual
void
generate_adjoints
(
autodiff
::
Adjoints
&
adjoints
,
const
NodeVector
&
deltas
)
override
;
private
:
bool
m_zero_flag
;
};
private
:
bool
m_zero_flag
;
};
}
// default opset version
using
v0
::
DynReshape
;
}
}
src/ngraph/op/reshape.cpp
View file @
8ccddb19
...
...
@@ -18,6 +18,7 @@
#include <iostream>
#include "ngraph/function.hpp"
#include "ngraph/op/constant.hpp"
#include "ngraph/op/reshape.hpp"
using
namespace
std
;
...
...
@@ -145,3 +146,139 @@ void op::Reshape::generate_adjoints(autodiff::Adjoints& adjoints, const NodeVect
adjoints
.
add_delta
(
input_value
(
0
),
reshape
);
}
constexpr
NodeTypeInfo
op
::
v1
::
Reshape
::
type_info
;
op
::
v1
::
Reshape
::
Reshape
(
const
Output
<
Node
>&
arg
,
const
Output
<
Node
>&
pattern
,
bool
zero_flag
)
:
Op
({
arg
,
pattern
})
,
m_zero_flag
(
zero_flag
)
{
constructor_validate_and_infer_types
();
}
void
op
::
v1
::
Reshape
::
validate_and_infer_types
()
{
auto
pattern_et
=
get_input_element_type
(
1
);
// check data types
NODE_VALIDATION_CHECK
(
this
,
pattern_et
.
compatible
(
element
::
Type_t
::
i64
),
"Pattern must have element type i64."
);
// check shapes
const
PartialShape
&
pattern_shape
=
get_input_partial_shape
(
1
);
NODE_VALIDATION_CHECK
(
this
,
pattern_shape
.
rank
().
compatible
(
1
),
"Pattern shape must have rank 1, got "
,
pattern_shape
.
rank
(),
"."
);
Rank
output_rank
=
pattern_shape
.
rank
().
is_dynamic
()
?
Rank
::
dynamic
()
:
pattern_shape
[
0
];
set_input_is_relevant_to_shape
(
1
);
if
(
auto
const_shape
=
as_type_ptr
<
op
::
Constant
>
(
input_value
(
1
).
get_node_shared_ptr
()))
{
std
::
vector
<
int64_t
>
out_shape_val
=
const_shape
->
get_vector
<
int64_t
>
();
NODE_VALIDATION_CHECK
(
this
,
std
::
none_of
(
out_shape_val
.
begin
(),
out_shape_val
.
end
(),
[](
int64_t
v
)
{
return
v
<
-
1
;
}),
"Dim size cannot be less than -1 "
);
int
zero_dims
=
std
::
count_if
(
out_shape_val
.
begin
(),
out_shape_val
.
end
(),
[](
int64_t
v
)
{
return
v
==
0
;
});
int
negative_dims
=
std
::
count_if
(
out_shape_val
.
begin
(),
out_shape_val
.
end
(),
[](
int64_t
v
)
{
return
v
==
-
1
;
});
NODE_VALIDATION_CHECK
(
this
,
negative_dims
<=
1
,
"More than one dimension has size of -1 ("
,
negative_dims
,
")"
);
if
(
!
(
zero_dims
&&
m_zero_flag
)
&&
!
negative_dims
)
{
set_output_type
(
0
,
get_input_element_type
(
0
),
const_shape
->
get_shape_val
());
}
else
{
std
::
vector
<
Dimension
>
partial_shape
(
static_cast
<
size_t
>
(
output_rank
));
// Replace zeros and negatives with Dynamic dimensions as needed
std
::
transform
(
out_shape_val
.
begin
(),
out_shape_val
.
end
(),
partial_shape
.
begin
(),
[
&
](
const
int64_t
&
v
)
{
return
(
v
<
0
)
?
Dimension
()
:
((
v
==
0
&&
m_zero_flag
)
?
Dimension
()
:
Dimension
(
v
));
});
if
(
get_input_partial_shape
(
0
).
is_static
())
{
size_t
output_elements
=
1
;
int
negative_dim
=
-
1
;
auto
input_shape
=
get_input_partial_shape
(
0
).
to_shape
();
size_t
input_elements
=
shape_size
(
input_shape
);
for
(
size_t
i
=
0
;
i
<
static_cast
<
size_t
>
(
output_rank
);
i
++
)
{
if
(
out_shape_val
[
i
]
==
0
&&
m_zero_flag
)
{
// Copy input_shape[i] for zero values
NODE_VALIDATION_CHECK
(
this
,
i
<
input_shape
.
size
(),
"'0' dimension is out of range"
);
partial_shape
[
i
]
=
Dimension
(
input_shape
[
i
]);
output_elements
*=
input_shape
[
i
];
}
else
if
(
out_shape_val
[
i
]
==
-
1
)
{
negative_dim
=
i
;
}
else
{
output_elements
*=
out_shape_val
[
i
];
}
}
if
(
negative_dim
!=
-
1
)
{
// Infer size such that number of output elements matches
// input elements
if
(
output_elements
==
0
)
{
// TODO(amprocte): Decide if this is desired behavior here. (NumPy seems
// to fail.)
NODE_VALIDATION_CHECK
(
this
,
input_elements
==
0
,
"Cannot infer '-1' dimension with zero-size output "
"dimension unless at least one input dimension is "
"also zero-size"
);
partial_shape
[
negative_dim
]
=
Dimension
(
0
);
}
else
{
NODE_VALIDATION_CHECK
(
this
,
input_elements
%
output_elements
==
0
,
"Non-'-1' output dimensions do not evenly divide the input dimensions"
);
partial_shape
[
negative_dim
]
=
Dimension
(
input_elements
/
output_elements
);
}
}
}
set_output_type
(
0
,
get_input_element_type
(
0
),
PartialShape
(
partial_shape
));
}
}
else
{
set_output_type
(
0
,
get_input_element_type
(
0
),
PartialShape
::
dynamic
(
output_rank
));
}
}
shared_ptr
<
Node
>
op
::
v1
::
Reshape
::
copy_with_new_args
(
const
NodeVector
&
new_args
)
const
{
check_new_args_count
(
this
,
new_args
);
return
make_shared
<
v1
::
Reshape
>
(
new_args
.
at
(
0
),
new_args
.
at
(
1
),
m_zero_flag
);
}
void
op
::
v1
::
Reshape
::
generate_adjoints
(
autodiff
::
Adjoints
&
/* adjoints */
,
const
NodeVector
&
/* deltas */
)
{
throw
ngraph_error
(
"generate_adjoints not implemented for Reshape"
);
}
src/ngraph/op/reshape.hpp
View file @
8ccddb19
...
...
@@ -105,5 +105,52 @@ namespace ngraph
Shape
m_output_shape
;
bool
m_is_transpose
{
false
};
};
namespace
v1
{
/// \brief Tensor dynamic reshape operation.
///
/// "Converts" an input tensor into a new shape with the same number of elements.
/// This op does not touch the actual data. If needed, use Transpose for that purpose.
///
class
Reshape
:
public
Op
{
public
:
NGRAPH_API
static
constexpr
NodeTypeInfo
type_info
{
"DynReshape"
,
1
};
const
NodeTypeInfo
&
get_type_info
()
const
override
{
return
type_info
;
}
Reshape
()
=
default
;
/// \brief Constructs a dynamic reshape operation. This operation does not perform
/// transpose.
///
/// \param arg The tensor to be reshaped.
/// \param pattern The node that defines output shape pattern.
/// If the input shape is \f$(a_0,\dots,a_{k-1})\f$ then the output shape
/// must
/// be of the form \f$(b_0,\dots,b_{j-1})\f$ where \f$\Pi(a_i) = \Pi(b_i)\f$.
/// A value of -1 is allowed for at most one dimension, in which case the
/// dimension size is inferred based on element count of input tensor.
/// \param zero_flag Treats zeros in `pattern` as wildcard flags indicating a copy
/// from input shape at the same index.
Reshape
(
const
Output
<
Node
>&
arg
,
const
Output
<
Node
>&
pattern
,
bool
zero_flag
=
false
);
void
validate_and_infer_types
()
override
;
size_t
get_version
()
const
override
{
return
1
;
}
virtual
std
::
shared_ptr
<
Node
>
copy_with_new_args
(
const
NodeVector
&
new_args
)
const
override
;
bool
get_zero_flag
()
const
{
return
m_zero_flag
;
}
void
set_zero_flag
(
bool
zero_flag
)
{
m_zero_flag
=
zero_flag
;
}
protected
:
virtual
void
generate_adjoints
(
autodiff
::
Adjoints
&
adjoints
,
const
NodeVector
&
deltas
)
override
;
private
:
bool
m_zero_flag
;
};
}
}
}
src/ngraph/pass/opset1_upgrade.cpp
View file @
8ccddb19
...
...
@@ -18,6 +18,7 @@
#include "ngraph/op/avg_pool.hpp"
#include "ngraph/op/constant.hpp"
#include "ngraph/op/convolution.hpp"
#include "ngraph/op/experimental/dyn_reshape.hpp"
#include "ngraph/op/gather.hpp"
#include "ngraph/op/get_output_element.hpp"
#include "ngraph/op/max_pool.hpp"
...
...
@@ -25,6 +26,7 @@
#include "ngraph/op/product.hpp"
#include "ngraph/op/reduce_prod.hpp"
#include "ngraph/op/reduce_sum.hpp"
#include "ngraph/op/reshape.hpp"
#include "ngraph/op/reverse.hpp"
#include "ngraph/op/softmax.hpp"
#include "ngraph/op/sum.hpp"
...
...
@@ -233,6 +235,15 @@ bool pass::Opset1Upgrade::run_on_node(shared_ptr<Node> node)
modified
=
true
;
break
;
}
case
OP_TYPEID
:
:
DynReshape
:
{
auto
zero_flag
=
false
;
auto
replacement_node
=
make_shared
<
op
::
v1
::
Reshape
>
(
node
->
input
(
0
).
get_source_output
(),
node
->
input
(
1
).
get_source_output
(),
zero_flag
);
replace_node
(
node
,
replacement_node
);
modified
=
true
;
break
;
}
case
OP_TYPEID
:
:
Gather
:
{
auto
tmp
=
dynamic_cast
<
const
op
::
v0
::
Gather
*>
(
node
.
get
());
...
...
@@ -245,60 +256,6 @@ bool pass::Opset1Upgrade::run_on_node(shared_ptr<Node> node)
modified
=
true
;
break
;
}
case
OP_TYPEID
:
:
Product
:
{
bool
keep_dims
=
false
;
auto
replacement_node
=
make_shared
<
op
::
v1
::
ReduceProd
>
(
node
->
input
(
0
).
get_source_output
(),
node
->
input
(
1
).
get_source_output
(),
keep_dims
);
replace_node
(
node
,
replacement_node
);
modified
=
true
;
break
;
}
case
OP_TYPEID
:
:
Sum
:
{
bool
keep_dims
=
false
;
auto
replacement_node
=
make_shared
<
op
::
v1
::
ReduceSum
>
(
node
->
input
(
0
).
get_source_output
(),
node
->
input
(
1
).
get_source_output
(),
keep_dims
);
replace_node
(
node
,
replacement_node
);
modified
=
true
;
break
;
}
case
OP_TYPEID
:
:
Pad
:
{
auto
tmp
=
dynamic_cast
<
const
op
::
v0
::
Pad
*>
(
node
.
get
());
auto
padding_below
=
tmp
->
get_padding_below
();
auto
pads_begin_node
=
make_shared
<
op
::
Constant
>
(
element
::
i64
,
Shape
{
padding_below
.
size
()},
padding_below
);
auto
padding_above
=
tmp
->
get_padding_above
();
auto
pads_end_node
=
make_shared
<
op
::
Constant
>
(
element
::
i64
,
Shape
{
padding_above
.
size
()},
padding_above
);
auto
replacement_node
=
make_shared
<
op
::
v1
::
Pad
>
(
node
->
input
(
0
).
get_source_output
(),
pads_begin_node
,
pads_end_node
,
node
->
input
(
1
).
get_source_output
(),
tmp
->
get_pad_mode
());
replace_node
(
node
,
replacement_node
);
modified
=
true
;
break
;
}
case
OP_TYPEID
:
:
Softmax
:
{
auto
tmp
=
dynamic_cast
<
const
op
::
v0
::
Softmax
*>
(
node
.
get
());
AxisSet
axes
=
tmp
->
get_axes
();
NGRAPH_CHECK
(
axes
.
size
()
==
1
,
"Unable to convert Softmax:0 to Softmax:1 with zero or more than one axis. Node: "
,
*
node
);
auto
replacement_node
=
make_shared
<
op
::
v1
::
Softmax
>
(
node
->
input
(
0
).
get_source_output
(),
axes
.
to_vector
()[
0
]);
replace_node
(
node
,
replacement_node
);
modified
=
true
;
break
;
}
case
OP_TYPEID
:
:
MaxPool
:
{
auto
tmp
=
dynamic_cast
<
const
op
::
v0
::
MaxPool
*>
(
node
.
get
());
...
...
@@ -356,6 +313,35 @@ bool pass::Opset1Upgrade::run_on_node(shared_ptr<Node> node)
modified
=
true
;
break
;
}
case
OP_TYPEID
:
:
Pad
:
{
auto
tmp
=
dynamic_cast
<
const
op
::
v0
::
Pad
*>
(
node
.
get
());
auto
padding_below
=
tmp
->
get_padding_below
();
auto
pads_begin_node
=
make_shared
<
op
::
Constant
>
(
element
::
i64
,
Shape
{
padding_below
.
size
()},
padding_below
);
auto
padding_above
=
tmp
->
get_padding_above
();
auto
pads_end_node
=
make_shared
<
op
::
Constant
>
(
element
::
i64
,
Shape
{
padding_above
.
size
()},
padding_above
);
auto
replacement_node
=
make_shared
<
op
::
v1
::
Pad
>
(
node
->
input
(
0
).
get_source_output
(),
pads_begin_node
,
pads_end_node
,
node
->
input
(
1
).
get_source_output
(),
tmp
->
get_pad_mode
());
replace_node
(
node
,
replacement_node
);
modified
=
true
;
break
;
}
case
OP_TYPEID
:
:
Product
:
{
bool
keep_dims
=
false
;
auto
replacement_node
=
make_shared
<
op
::
v1
::
ReduceProd
>
(
node
->
input
(
0
).
get_source_output
(),
node
->
input
(
1
).
get_source_output
(),
keep_dims
);
replace_node
(
node
,
replacement_node
);
modified
=
true
;
break
;
}
case
OP_TYPEID
:
:
Reverse
:
{
// creates a Constant node from the v0::Reverse reversed_axes attribute
...
...
@@ -375,6 +361,31 @@ bool pass::Opset1Upgrade::run_on_node(shared_ptr<Node> node)
break
;
}
case
OP_TYPEID
:
:
Softmax
:
{
auto
tmp
=
dynamic_cast
<
const
op
::
v0
::
Softmax
*>
(
node
.
get
());
AxisSet
axes
=
tmp
->
get_axes
();
NGRAPH_CHECK
(
axes
.
size
()
==
1
,
"Unable to convert Softmax:0 to Softmax:1 with zero or more than one axis. Node: "
,
*
node
);
auto
replacement_node
=
make_shared
<
op
::
v1
::
Softmax
>
(
node
->
input
(
0
).
get_source_output
(),
axes
.
to_vector
()[
0
]);
replace_node
(
node
,
replacement_node
);
modified
=
true
;
break
;
}
case
OP_TYPEID
:
:
Sum
:
{
bool
keep_dims
=
false
;
auto
replacement_node
=
make_shared
<
op
::
v1
::
ReduceSum
>
(
node
->
input
(
0
).
get_source_output
(),
node
->
input
(
1
).
get_source_output
(),
keep_dims
);
replace_node
(
node
,
replacement_node
);
modified
=
true
;
break
;
}
default
:
break
;
}
...
...
src/ngraph/serializer.cpp
View file @
8ccddb19
...
...
@@ -1239,7 +1239,15 @@ shared_ptr<Node> JSONDeserializer::deserialize_node(json node_js)
}
case
OP_TYPEID
:
:
DynReshape
:
{
node
=
make_shared
<
op
::
DynReshape
>
(
args
[
0
],
args
[
1
]);
const
auto
zero_flag
=
node_js
.
at
(
"zero_flag"
).
get
<
bool
>
();
if
(
op_version
==
0
)
{
node
=
make_shared
<
op
::
v0
::
DynReshape
>
(
args
[
0
],
args
[
1
],
zero_flag
);
}
if
(
op_version
==
1
)
{
node
=
make_shared
<
op
::
v1
::
Reshape
>
(
args
[
0
],
args
[
1
],
zero_flag
);
}
break
;
}
case
OP_TYPEID
:
:
DynSlice
:
...
...
@@ -2672,7 +2680,19 @@ json JSONSerializer::serialize_node(const Node& n)
node
[
"ellipsis_mask"
]
=
tmp
->
get_ellipsis_mask
();
break
;
}
case
OP_TYPEID
:
:
DynReshape
:
{
break
;
case
OP_TYPEID
:
:
DynReshape
:
{
if
(
op_version
==
0
)
{
auto
tmp
=
dynamic_cast
<
const
op
::
v0
::
DynReshape
*>
(
&
n
);
node
[
"zero_flag"
]
=
tmp
->
get_zero_flag
();
}
if
(
op_version
==
1
)
{
auto
tmp
=
dynamic_cast
<
const
op
::
v1
::
Reshape
*>
(
&
n
);
node
[
"zero_flag"
]
=
tmp
->
get_zero_flag
();
}
break
;
}
case
OP_TYPEID
:
:
DynSlice
:
{
...
...
test/opset_pass/dyn_reshape_opset_pass.cpp
0 → 100644
View file @
8ccddb19
//*****************************************************************************
// Copyright 2017-2019 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "ngraph/ngraph.hpp"
#include "ngraph/pass/manager.hpp"
#include "ngraph/pass/opset1_upgrade.hpp"
#include "util/type_prop.hpp"
using
namespace
std
;
using
namespace
ngraph
;
TEST
(
serialize
,
opset1_dyn_reshape_upgrade
)
{
const
auto
arg
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
Shape
{
1
,
2
,
3
});
const
auto
pattern
=
make_shared
<
op
::
Parameter
>
(
element
::
i64
,
Shape
{
6
});
const
auto
dyn_reshape_v0
=
make_shared
<
op
::
v0
::
DynReshape
>
(
arg
,
pattern
,
true
);
const
auto
result
=
make_shared
<
op
::
Result
>
(
dyn_reshape_v0
);
auto
f
=
make_shared
<
Function
>
(
ResultVector
{
result
},
ParameterVector
{
arg
,
pattern
});
ngraph
::
pass
::
Manager
pass_manager
;
pass_manager
.
register_pass
<
pass
::
Opset1Upgrade
>
();
pass_manager
.
run_passes
(
f
);
const
auto
pass_replacement_node
=
f
->
get_result
()
->
input
(
0
).
get_source_output
().
get_node_shared_ptr
();
const
auto
reshape_v1
=
static_pointer_cast
<
op
::
v1
::
Reshape
>
(
pass_replacement_node
);
EXPECT_EQ
(
reshape_v1
->
description
(),
"DynReshape"
);
EXPECT_EQ
(
reshape_v1
->
get_version
(),
1
);
}
test/type_prop/dyn_reshape.cpp
View file @
8ccddb19
...
...
@@ -279,3 +279,17 @@ TEST(type_prop, dynreshape_pattern_et_wrong)
FAIL
()
<<
"Deduced type check failed for unexpected reason"
;
}
}
TEST
(
type_prop
,
reshape_v1_arg_rank_static_pattern_zero
)
{
auto
arg
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
Shape
{
2
,
0
,
2
,
8
});
auto
pattern
=
op
::
Constant
::
create
(
element
::
i64
,
Shape
{
4
},
{
1
,
2
,
0
,
32
});
auto
reshape_v1_static
=
make_shared
<
op
::
v1
::
Reshape
>
(
arg
,
pattern
,
true
);
EXPECT_EQ
(
reshape_v1_static
->
get_output_shape
(
0
),
Shape
({
1
,
2
,
2
,
32
}));
auto
dynamic_arg
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
PartialShape
::
dynamic
());
auto
reshape_v1_dynamic
=
make_shared
<
op
::
v1
::
Reshape
>
(
dynamic_arg
,
pattern
,
true
);
EXPECT_TRUE
(
reshape_v1_dynamic
->
get_output_partial_shape
(
0
).
same_scheme
(
PartialShape
{
1
,
2
,
Dimension
::
dynamic
(),
32
}));
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment