Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
N
ngraph
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
ngraph
Commits
8c6a5be0
Commit
8c6a5be0
authored
Aug 12, 2018
by
shssf
Committed by
Robert Kimball
Aug 12, 2018
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
IntelGPU backend: Convolution workaround operations (#1402)
parent
a3a9a9fa
Show whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
413 additions
and
65 deletions
+413
-65
CMakeLists.txt
src/ngraph/runtime/intelgpu/CMakeLists.txt
+1
-0
intelgpu_backend.cpp
src/ngraph/runtime/intelgpu/intelgpu_backend.cpp
+92
-46
intelgpu_op_convolution.cpp
src/ngraph/runtime/intelgpu/intelgpu_op_convolution.cpp
+265
-0
intelgpu_op_convolution.hpp
src/ngraph/runtime/intelgpu/intelgpu_op_convolution.hpp
+55
-0
unit_test.manifest
src/ngraph/runtime/intelgpu/unit_test.manifest
+0
-19
No files found.
src/ngraph/runtime/intelgpu/CMakeLists.txt
View file @
8c6a5be0
...
...
@@ -21,6 +21,7 @@ set(SRC
intelgpu_op_batchnorm.cpp
intelgpu_op_broadcast.cpp
intelgpu_op_custom_kernels.cpp
intelgpu_op_convolution.cpp
code_writer.cpp
)
...
...
src/ngraph/runtime/intelgpu/intelgpu_backend.cpp
View file @
8c6a5be0
...
...
@@ -34,6 +34,7 @@
#include "ngraph/runtime/intelgpu/intelgpu_layout.hpp"
#include "ngraph/runtime/intelgpu/intelgpu_op_batchnorm.hpp"
#include "ngraph/runtime/intelgpu/intelgpu_op_broadcast.hpp"
#include "ngraph/runtime/intelgpu/intelgpu_op_convolution.hpp"
#include "ngraph/runtime/intelgpu/intelgpu_op_custom_kernels.hpp"
#include "ngraph/runtime/intelgpu/intelgpu_tensor_view.hpp"
...
...
@@ -758,54 +759,44 @@ bool runtime::intelgpu::IntelGPUBackend::compile(shared_ptr<Function> func)
arguments_check
(
op
,
2
,
1
);
const
shared_ptr
<
op
::
Convolution
>
conv_op
=
static_pointer_cast
<
op
::
Convolution
>
(
op
);
const
Strides
&
conv_stride
=
conv_op
->
get_window_movement_strides
();
const
Strides
&
conv_dilation
=
conv_op
->
get_window_dilation_strides
();
const
CoordinateDiff
&
conv_padding_below
=
conv_op
->
get_padding_below
();
const
CoordinateDiff
&
conv_padding_above
=
conv_op
->
get_padding_above
();
const
Strides
&
conv_data_dilation
=
conv_op
->
get_data_dilation_strides
();
if
(
conv_stride
.
size
()
>
2
)
{
ostringstream
os
;
os
<<
"Unsupported strides for
\"
"
<<
op
->
description
()
<<
'\"'
;
throw
std
::
invalid_argument
(
os
.
str
());
}
if
(
conv_padding_below
.
size
()
>
2
||
conv_padding_above
.
size
()
>
2
)
{
ostringstream
os
;
os
<<
"Unsupported padding for
\"
"
<<
op
->
description
()
<<
'\"'
;
throw
std
::
invalid_argument
(
os
.
str
());
}
//TODO: Further clDNN version will work with different paddings above and below
if
(
conv_padding_below
.
at
(
0
)
!=
conv_padding_above
.
at
(
0
)
||
conv_padding_below
.
at
(
1
)
!=
conv_padding_above
.
at
(
1
))
{
ostringstream
os
;
os
<<
"Paddings above and below are different for
\"
"
<<
op
->
description
()
<<
'\"'
;
throw
std
::
invalid_argument
(
os
.
str
());
}
if
(
conv_dilation
.
size
()
>
2
)
{
ostringstream
os
;
os
<<
"Unsupported dilation for
\"
"
<<
op
->
description
()
<<
'\"'
;
throw
std
::
invalid_argument
(
os
.
str
());
const
Strides
&
win_stride
=
conv_op
->
get_window_movement_strides
();
const
Strides
&
win_dilation
=
conv_op
->
get_window_dilation_strides
();
const
Strides
&
data_dilation
=
conv_op
->
get_data_dilation_strides
();
const
CoordinateDiff
&
pad_below
=
conv_op
->
get_padding_below
();
const
CoordinateDiff
&
pad_above
=
conv_op
->
get_padding_above
();
// clDNN has quite limited support for Convolution operation
// following are the checks to go with workaround
if
((
win_stride
.
size
()
>
2
)
||
(
pad_below
.
size
()
>
2
||
pad_above
.
size
()
>
2
)
||
(
pad_below
.
at
(
0
)
!=
pad_above
.
at
(
0
)
||
pad_below
.
at
(
1
)
!=
pad_above
.
at
(
1
))
||
(
win_dilation
.
size
()
>
2
)
||
(
data_dilation
.
size
()
>
2
||
data_dilation
.
at
(
0
)
!=
1
||
data_dilation
.
at
(
1
)
!=
1
))
{
do_convolution_operation
(
topology
,
get_input_name
(
op
,
0
),
get_input_shape
(
op
,
0
),
get_input_name
(
op
,
1
),
get_input_shape
(
op
,
1
),
get_output_name
(
op
),
get_output_shape
(
op
),
get_output_type
(
op
),
conv_op
->
get_padding_below
(),
conv_op
->
get_window_movement_strides
(),
conv_op
->
get_window_dilation_strides
(),
conv_op
->
get_data_dilation_strides
(),
0
,
1
,
1
,
"input[batch][input_channel]"
,
"filter[output_channel][input_channel]"
,
"output[batch][output_channel]"
,
false
);
}
if
(
conv_data_dilation
.
size
()
>
2
||
conv_data_dilation
.
at
(
0
)
!=
1
||
conv_data_dilation
.
at
(
1
)
!=
1
)
else
{
ostringstream
os
;
os
<<
"Unsupported data dilation for
\"
"
<<
op
->
description
()
<<
'\"'
;
throw
std
::
invalid_argument
(
os
.
str
());
}
const
cldnn
::
tensor
input_offset
(
0
,
0
,
-
conv_padding_below
.
at
(
1
),
-
conv_padding_below
.
at
(
0
));
const
cldnn
::
tensor
strides
(
1
,
1
,
conv_stride
.
at
(
1
),
conv_stride
.
at
(
0
));
const
cldnn
::
tensor
dilation
(
1
,
1
,
conv_dilation
.
at
(
1
),
conv_dilation
.
at
(
0
));
const
cldnn
::
tensor
input_offset
(
0
,
0
,
-
pad_below
.
at
(
1
),
-
pad_below
.
at
(
0
));
const
cldnn
::
tensor
strides
(
1
,
1
,
win_stride
.
at
(
1
),
win_stride
.
at
(
0
));
const
cldnn
::
tensor
dilation
(
1
,
1
,
win_dilation
.
at
(
1
),
win_dilation
.
at
(
0
));
const
cldnn
::
convolution
cldnn_conv
(
get_output_name
(
op
),
get_input_name
(
op
,
0
),
...
...
@@ -815,6 +806,61 @@ bool runtime::intelgpu::IntelGPUBackend::compile(shared_ptr<Function> func)
dilation
);
topology
.
add
(
cldnn_conv
);
}
}
else
if
(
"ConvolutionBackpropFilters"
==
op
->
description
())
{
arguments_check
(
op
,
2
,
1
);
const
shared_ptr
<
op
::
ConvolutionBackpropFilters
>
conv_op
=
static_pointer_cast
<
op
::
ConvolutionBackpropFilters
>
(
op
);
do_convolution_operation
(
topology
,
get_input_name
(
op
,
0
),
get_input_shape
(
op
,
0
),
get_input_name
(
op
,
1
),
get_input_shape
(
op
,
1
),
get_output_name
(
op
),
get_output_shape
(
op
),
get_output_type
(
op
),
conv_op
->
get_padding_below_backward
(),
conv_op
->
get_window_movement_strides_backward
(),
conv_op
->
get_window_dilation_strides_backward
(),
conv_op
->
get_data_dilation_strides_backward
(),
1
,
0
,
0
,
"input[input_channel][batch]"
,
"filter[input_channel][output_channel]"
,
"output[output_channel][batch]"
,
false
);
}
else
if
(
"ConvolutionBackpropData"
==
op
->
description
())
{
arguments_check
(
op
,
2
,
1
);
const
shared_ptr
<
op
::
ConvolutionBackpropData
>
conv_op
=
static_pointer_cast
<
op
::
ConvolutionBackpropData
>
(
op
);
do_convolution_operation
(
topology
,
get_input_name
(
op
,
1
),
get_input_shape
(
op
,
1
),
get_input_name
(
op
,
0
),
get_input_shape
(
op
,
0
),
get_output_name
(
op
),
get_output_shape
(
op
),
get_output_type
(
op
),
conv_op
->
get_padding_below_backward
(),
conv_op
->
get_window_movement_strides_backward
(),
conv_op
->
get_window_dilation_strides_backward
(),
conv_op
->
get_data_dilation_strides_backward
(),
0
,
1
,
1
,
"input[batch][input_channel]"
,
"filter[input_channel][output_channel]"
,
"output[batch][output_channel]"
,
true
);
}
else
if
(
"Min"
==
op
->
description
())
{
arguments_check
(
op
,
1
,
1
);
...
...
src/ngraph/runtime/intelgpu/intelgpu_op_convolution.cpp
0 → 100644
View file @
8c6a5be0
/*******************************************************************************
* Copyright 2017-2018 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
#include <CPP/custom_gpu_primitive.hpp>
#include "ngraph/runtime/intelgpu/code_writer.hpp"
#include "ngraph/runtime/intelgpu/intelgpu_layout.hpp"
#include "ngraph/runtime/intelgpu/intelgpu_op_convolution.hpp"
#include "ngraph/runtime/intelgpu/intelgpu_op_custom_kernels.hpp"
using
namespace
std
;
using
namespace
ngraph
;
// this is duplication of the runtime::intelgpu::access_dims
// needs to be merged but not at the same time as this new code
static
string
array_dim
(
const
Shape
&
dimentions
,
const
string
&
var
=
"i"
,
bool
is_reversed
=
false
)
{
size_t
var_idx
=
0
;
string
buffer
;
for
(
auto
const
&
i
:
dimentions
)
{
if
(
is_reversed
)
{
buffer
+=
"["
+
to_string
(
i
)
+
" - "
+
var
+
to_string
(
var_idx
)
+
" - 1]"
;
}
else
{
buffer
+=
"["
+
var
+
to_string
(
var_idx
)
+
"]"
;
}
++
var_idx
;
}
if
(
buffer
.
empty
())
{
// it means scalar
buffer
=
"[0]"
;
}
return
buffer
;
}
// Padding, Strides and dilation are quite nice explained
// with animations here https://github.com/vdumoulin/conv_arithmetic
//
// batch axes for both input data and output data are 0
// input channel axes for both input data and filters are 1
// output channel axes for filters is 0
// output channel axis for output data is 1
// Example (Convolution):
// data[ 2, 1, 3, 5, 8 ]
// filter[ 2, 1, 2, 2, 3 ]
// output[ 2, 2, 2, 4, 6 ]
// it is like
// data[ batch, data_channel, 3, 5, 8 ]
// filter[ output_channel, data_channel, 2, 2, 3 ]
// output[ batch, output_channel, 2, 4, 6 ]
//
// Example (ConvolutionBackpropFilters):
// data[ 2, 1, 3, 5 ]
// filter[ 2, 2, 2, 4 ]
// output[ 2, 1, 2, 2 ]
// it is like
// data[ data_channel, batch, 3, 5 ]
// filter[ data_channel, output_channel, 2, 4 ]
// output[ output_channel, batch, 2, 2 ]
//
// Example (ConvolutionBackpropData):
// data[ 2, 2, 2, 4 ]
// filter[ 2, 1, 2, 2 ]
// output[ 2, 1, 3, 5 ]
// pad_below[ 1, 1 ]
// pad_above[ 1, 1 ]
// it is like
// data[ batch, data_channel, 2, 4 ]
// filter[ data_channel, output_channel, 2, 2 ]
// output[ batch, output_channel, 3, 5 ]
void
runtime
::
intelgpu
::
do_convolution_operation
(
cldnn
::
topology
&
topology
,
const
string
&
input_name
,
const
Shape
&
input_shape
,
const
string
&
filter_name
,
const
Shape
&
filter_shape
,
const
string
&
output_name
,
const
Shape
&
output_shape
,
const
element
::
Type
&
output_type
,
const
CoordinateDiff
&
pad_below
,
const
Strides
&
win_stride
,
const
Strides
&
win_dilation
,
const
Strides
&
data_dilation
,
size_t
batch_axis_data
,
size_t
input_channel_axis_data
,
size_t
output_channel_axis_result
,
const
string
&
input_order
,
const
string
&
filter_order
,
const
string
&
output_order
,
bool
reverse_filter
)
{
const
string
&
default_pad_value
=
"0.0f"
;
const
cldnn
::
layout
layout
=
IntelGPULayout
::
create_cldnn_layout
(
output_type
,
output_shape
);
const
string
entry_point_name
=
"convolution_"
+
output_name
;
const
Shape
input_data
(
input_shape
.
cbegin
()
+
2
,
input_shape
.
cend
());
const
Shape
filter_data
(
filter_shape
.
cbegin
()
+
2
,
filter_shape
.
cend
());
const
Shape
output_data
(
output_shape
.
cbegin
()
+
2
,
output_shape
.
cend
());
codegen
::
CodeWriter
writer
;
vector
<
size_t
>
gws
;
writer
<<
"__kernel void "
<<
entry_point_name
<<
"(const __global float input"
<<
array_dims
(
input_shape
)
<<
", const __global float filter"
<<
array_dims
(
filter_shape
)
<<
", __global float output"
<<
array_dims
(
output_shape
)
<<
")
\n
"
;
writer
.
block_begin
();
{
// Main function body
writer
<<
"const unsigned batch = get_global_id(0);
\n
"
;
gws
.
push_back
(
output_shape
.
at
(
batch_axis_data
));
writer
<<
"// for (uint batch = 0; batch < "
<<
output_shape
.
at
(
batch_axis_data
)
<<
"; ++batch)
\n
"
;
writer
.
block_begin
();
{
writer
<<
"const unsigned output_channel = get_global_id(1);
\n
"
;
gws
.
push_back
(
output_shape
.
at
(
output_channel_axis_result
));
writer
<<
"// for (uint output_channel = 0; output_channel < "
<<
output_shape
.
at
(
output_channel_axis_result
)
<<
"; ++output_channel)
\n
"
;
writer
.
block_begin
();
{
// The first loop over output dimensions
writer
<<
"const unsigned i0 = get_global_id(2);
\n
"
;
gws
.
push_back
(
output_data
.
at
(
0
));
writer
<<
"// for (uint i0 = 0; i0 < "
<<
output_data
.
at
(
0
)
<<
"; ++i0)
\n
"
;
writer
.
block_begin
();
{
// Loops over other output dimensions
size_t
var_idx
=
1
;
for
(
auto
i
=
output_data
.
begin
()
+
1
;
i
!=
output_data
.
end
();
++
i
)
{
writer
<<
"for (uint i"
<<
var_idx
<<
" = 0; i"
<<
var_idx
<<
" < "
<<
*
i
<<
"; ++i"
<<
var_idx
<<
")
\n
"
;
writer
.
block_begin
();
++
var_idx
;
}
writer
<<
"float result = 0.0f;
\n
"
;
writer
<<
"
\n
// Loop over input_channel
\n
"
<<
"for (uint input_channel = 0; input_channel < "
<<
input_shape
.
at
(
input_channel_axis_data
)
<<
"; ++input_channel)
\n
"
;
writer
.
block_begin
();
{
// Loop over filter
// Since first two dimensions are special, let start from third dimension
writer
<<
"// Over filter iterations
\n
"
;
var_idx
=
0
;
for
(
auto
const
&
i
:
filter_data
)
{
writer
<<
"for (uint f"
<<
var_idx
<<
" = 0; f"
<<
var_idx
<<
" < "
<<
i
<<
"; ++f"
<<
var_idx
<<
")
\n
"
;
writer
.
block_begin
();
writer
<<
"int input_idx"
<<
var_idx
<<
" = (i"
<<
var_idx
<<
" * "
<<
win_stride
.
at
(
var_idx
)
<<
" /*win_stride*/"
<<
") + (f"
<<
var_idx
<<
" * "
<<
win_dilation
.
at
(
var_idx
)
<<
" /*win_dilation*/) - "
<<
pad_below
.
at
(
var_idx
)
<<
" /*pad_below*/;
\n
"
;
++
var_idx
;
}
// Get the input value
writer
<<
"float input_pad = "
<<
default_pad_value
<<
";
\n
"
;
// Generate dilation conditionals
writer
<<
"if ("
;
var_idx
=
0
;
for
(
auto
const
&
i
:
output_data
)
{
if
(
var_idx
)
{
writer
<<
" && "
;
}
writer
<<
"(((i"
<<
var_idx
<<
" + f"
<<
var_idx
<<
") % "
<<
data_dilation
.
at
(
var_idx
)
<<
") == 0)"
;
++
var_idx
;
}
writer
<<
") /*data_dilation. If we are in a dilation gap"
", we have no source coordinate.*/
\n
"
;
writer
.
block_begin
();
{
// Generate other conditionals
writer
<<
"if ("
;
var_idx
=
0
;
for
(
auto
const
&
i
:
input_data
)
{
if
(
var_idx
)
{
writer
<<
" && "
;
}
writer
<<
"((input_idx"
<<
var_idx
<<
" >= 0) && (input_idx"
<<
var_idx
<<
" < "
<<
i
<<
"))"
;
++
var_idx
;
}
writer
<<
")
\n
"
;
writer
.
block_begin
();
{
writer
<<
"input_pad = "
<<
input_order
<<
array_dim
(
input_data
,
"input_idx"
)
<<
";
\n
"
;
}
writer
.
block_end
();
//End of other conditional generation
}
writer
.
block_end
();
//End of dilation conditional generation
// Output element calculation
writer
<<
"result += input_pad * "
<<
filter_order
<<
array_dim
(
filter_data
,
"f"
,
reverse_filter
)
<<
";
\n
"
;
// Closing brackets for filter loop
for
(
auto
const
&
i
:
filter_data
)
{
writer
.
block_end
();
}
}
writer
.
block_end
();
writer
<<
"// End input_channel loop
\n
"
;
writer
<<
output_order
<<
access_dims
(
output_data
)
<<
" = result;
\n
"
;
// Closing brackets for other output dimensions
for
(
auto
i
=
output_data
.
begin
()
+
1
;
i
!=
output_data
.
end
();
++
i
)
{
writer
.
block_end
();
}
}
// Closing brackets for the first loop over output dimensions
writer
.
block_end
();
}
// End of loop over output_channel
writer
.
block_end
();
}
// End of loop over batch
writer
.
block_end
();
}
// Main function body
writer
.
block_end
();
const
cldnn
::
custom_gpu_primitive
op_convolution
(
output_name
,
{
input_name
,
filter_name
},
{
writer
.
get_code
()},
entry_point_name
,
get_kernel_args
(
2
,
1
),
""
,
layout
,
gws
);
topology
.
add
(
op_convolution
);
}
src/ngraph/runtime/intelgpu/intelgpu_op_convolution.hpp
0 → 100644
View file @
8c6a5be0
/*******************************************************************************
* Copyright 2017-2018 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
#pragma once
#include <CPP/topology.hpp>
#include "ngraph/coordinate_diff.hpp"
#include "ngraph/shape.hpp"
#include "ngraph/strides.hpp"
#include "ngraph/type/element_type.hpp"
namespace
ngraph
{
namespace
runtime
{
namespace
intelgpu
{
// This implements Convolution nGraph operation
// nGraph uses channels in this operation but clDNN uses full input data
void
do_convolution_operation
(
cldnn
::
topology
&
topology
,
const
std
::
string
&
input_name
,
const
Shape
&
input_shape
,
const
std
::
string
&
filter_name
,
const
Shape
&
filter_shape
,
const
std
::
string
&
output_name
,
const
Shape
&
output_shape
,
const
element
::
Type
&
output_type
,
const
CoordinateDiff
&
pad_below
,
const
Strides
&
win_stride
,
const
Strides
&
win_dilation
,
const
Strides
&
data_dilation
,
size_t
batch_axis_data
,
size_t
input_channel_axis_data
,
size_t
output_channel_axis_result
,
const
std
::
string
&
input_order
,
const
std
::
string
&
filter_order
,
const
std
::
string
&
output_order
,
bool
reverse_filter
);
}
}
}
src/ngraph/runtime/intelgpu/unit_test.manifest
View file @
8c6a5be0
...
...
@@ -13,14 +13,11 @@ backwards_avgpool_n2_c2_hw4x4_numeric
backwards_avgpool_n2_c2_hw4x4_win_2x2_str_1x1_numeric
backwards_batch_norm_three_outputs
backwards_ceiling
backwards_cos
backwards_cosh
backwards_dot_scalar_tensor
backwards_dot_tensor3_tensor3
backwards_dot_tensor_scalar
backwards_dot_tensor_vector
backwards_floor
backwards_maximum
backwards_maxpool_n2c1h5w5_kh3kw3_sh2sw2
backwards_maxpool_n2_c1_hw5_3x3_str2_max
backwards_maxpool_n4c1h4w4_kh2kw2_sh1sw1
...
...
@@ -48,17 +45,11 @@ concat_matrix_int64
constant_multi_use
convert_int32_bool
convert_int32_float32
convolution_2d_1item
convolution_2d_1item_1o1i_data_dilated
convolution_2d_1item_2o1i_data_dilated
convolution_2d_1item_2o2i_data_dilated
convolution_2d_1item_5o3i_data_dilated
convolution_2d_1item_padded_1_1x1_1
convolution_2d_1item_padded_2_3x4_5
convolution_2d_2item_5o3i_data_dilated
convolution_2d_2items
convolution_2d_2items_dilated
convolution_2d_2items_dilated_padded
convolution_2d_2items_strided
convolution_2d_2items_strided_padded
convolution_2d_2items_strided_padded_same
...
...
@@ -69,16 +60,6 @@ convolution_3d_1item_large_5o3i_padded_uneven_filter_uneven_data_dilation_data_d
convolution_3d_2item_large_5o3i_padded_strided_uneven_filter_uneven_data_dilation_data_dilated
convolution_3d_2item_large_5o3i_padded_strided_uneven_filter_uneven_data_dilation_filter_dilated_data_dilated
convolution_3d_2item_large_5o3i_uneven_filter_uneven_data_dilation_data_dilated
convolution_3d_2items
convolution_4d_2items
convolution_4d_4items
convolution_4d_4items_dilated
convolution_4d_4items_padded_neg
convolution_4d_4items_strided
convolution_4d_4items_strided_dilated
convolution_4d_4items_strided_dilated_padded
convolution_4d_4items_strided_dilated_padded_neg
convolution_4d_4items_strided_dilated_padded_same
convolution_outlining
divide_by_zero_int32
dot_matrix_vector_int64
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment