Commit 86bc31cc authored by Nagy Mostafa's avatar Nagy Mostafa Committed by nmostafa

[MLIR] Move mlir related classes to MLIR namespace (#23)

* Move dialect and types to mlir namespace

* PR fixes and some cleanup

* Merge fix
parent ea441a6e
This diff is collapsed.
......@@ -18,11 +18,8 @@
#include "ops.hpp"
#include "type.hpp"
using namespace ngraph::runtime::ngmlir;
using namespace mlir;
/// Register a dialect and its types
/// Usage:
/// mlir::registerDialect<ngraph::runtime::ngmlir::Dialect>();
NGDialect::NGDialect(mlir::MLIRContext* ctx)
: mlir::Dialect("ng", ctx)
{
......
......@@ -23,13 +23,8 @@
#include "mlir/IR/TypeSupport.h"
#include "mlir/IR/Types.h"
#include "ngraph/assertion.hpp"
namespace ngraph
namespace mlir
{
namespace runtime
{
namespace ngmlir
{
class NGDialect : public mlir::Dialect
{
public:
......@@ -41,6 +36,4 @@ namespace ngraph
}
void printType(mlir::Type type, llvm::raw_ostream& os) const override;
};
}
}
}
......@@ -26,47 +26,40 @@ using llvm::raw_string_ostream;
using llvm::SmallVector;
using llvm::StringRef;
using llvm::Twine;
namespace ngraph
using namespace mlir;
// TODO:
// - Move verifiers and other OP helpers (e.g. getSomeAttribute()) to separate files
//
// - Op helpers: Since it is not possible to add arbitrary code (and would complicate the .td file)
// to Ops classes, we will add helper classes with static methods for each Op that needs it
// Additional verification methods
// Tensor type checks are already verified by the caller of these methods
template <typename T>
static mlir::LogicalResult verifyUnaryArithOp(T* op)
{
namespace runtime
{
namespace ngmlir
{
// TODO:
// - Move verifiers and other OP helpers (e.g. getSomeAttribute()) to separate files
//
// - Op helpers: Since it is not possible to add arbitrary code (and would complicate the .td file)
// to Ops classes, we will add helper classes with static methods for each Op that needs it
// Additional verification methods
// Tensor type checks are already verified by the caller of these methods
template <typename T>
static mlir::LogicalResult verifyUnaryArithOp(T* op)
{
// TODO: Check matching element types
return mlir::success();
}
}
// Additional verification methods
// Tensor type checks are already verified by the caller of these methods
template <typename T>
static mlir::LogicalResult verifyBinaryArithOp(T* op)
{
// Additional verification methods
// Tensor type checks are already verified by the caller of these methods
template <typename T>
static mlir::LogicalResult verifyBinaryArithOp(T* op)
{
// TODO: Check matching element types
return mlir::success();
}
}
template <typename T>
static mlir::LogicalResult verifyOp(T* op)
{
template <typename T>
static mlir::LogicalResult verifyOp(T* op)
{
return op->emitOpError("Unsupported verifier for this operation");
}
}
// Per op specializations
template <>
mlir::LogicalResult verifyOp<NGMatMulBiasOp>(NGMatMulBiasOp* op)
{
// Per op specializations
template <>
mlir::LogicalResult verifyOp<NGMatMulBiasOp>(NGMatMulBiasOp* op)
{
// Verify that we have 2 operands
// Bias operand must be null for now (not implemented)
if (op->getNumOperands() != 2)
......@@ -92,17 +85,10 @@ namespace ngraph
// TODO(dcab): Improve verification: matching types, proper shapes, etc.
return mlir::success();
}
}
}
}
using namespace mlir;
namespace runtime
{
namespace ngmlir
{
namespace mlir
{
#define GET_OP_CLASSES
#include "ops.cpp.inc"
}
}
}
......@@ -22,19 +22,8 @@
#include "mlir/IR/StandardTypes.h"
#include "mlir/Support/STLExtras.h"
namespace ngraph
namespace mlir
{
namespace runtime
{
namespace ngmlir
{
// TODO: We shouldn't have this here, but we need to expose mlir types for the .inc file to use
// we cannot forward declare the mlir types since they rely on the Ops we are defining (see. Op<NGAddOp, ...>)
//
// Other ways to avoid namespace pollution ?
using namespace mlir;
#define GET_OP_CLASSES
#include "ops.h.inc"
}
}
}
......@@ -40,7 +40,7 @@ include "mlir/IR/OpBase.td"
// This defines records equivalent to NGraph types. It doesn't generate code.
// This is used as a type in the DAG input/outputs.
// Constraints (CPred) are used to type-check args/results of that type during op verification
def NG_TensorType : Type<CPred<"{0}.isa<ngraph::runtime::ngmlir::NGTensorType>()">,
def NG_TensorType : Type<CPred<"{0}.isa<mlir::NGTensorType>()">,
"NGraph Tensor Type">;
// A generic un-typed MemRef. Used for Fake instructions inserted during dialect lowering
......
......@@ -31,12 +31,10 @@ using llvm::SmallVector;
using llvm::StringRef;
using llvm::Twine;
namespace ngraph
{
using namespace runtime::ngmlir;
using namespace mlir;
unsigned NGIntegerType::getWidth() const
{
unsigned NGIntegerType::getWidth() const
{
switch (getKind())
{
case NG_I8_TYPE_ID:
......@@ -50,10 +48,10 @@ namespace ngraph
default: NGRAPH_FAIL() << "Invalid type ID";
}
return 0;
}
}
bool NGIntegerType::isSigned() const
{
bool NGIntegerType::isSigned() const
{
switch (getKind())
{
case NG_I8_TYPE_ID:
......@@ -67,19 +65,17 @@ namespace ngraph
default: NGRAPH_FAIL() << "Invalid type ID";
}
return false;
}
}
/// Creates TensorType objects. They all point to the same storage if
/// element type and shape are the same.
NGTensorType NGTensorType::get(mlir::MLIRContext* context, EltType eltType, Shape shape)
{
/// Creates TensorType objects. They all point to the same storage if
/// element type and shape are the same.
NGTensorType NGTensorType::get(MLIRContext* context, EltType eltType, Shape shape)
{
return Base::get(context, NGTypeKind::NG_TENSOR_TYPE_ID, eltType, shape);
}
}
mlir::MemRefType NGTensorType::toMemref()
{
auto memRefType =
mlir::MemRefType::get(getShape(), getElementType(), {/* no map used */}, 0);
MemRefType NGTensorType::toMemref()
{
auto memRefType = MemRefType::get(getShape(), getElementType(), {/* no map used */}, 0);
return memRefType;
}
}
......@@ -23,12 +23,8 @@
#include "mlir/IR/StandardTypes.h"
#include "mlir/IR/TypeSupport.h"
#include "mlir/IR/Types.h"
namespace ngraph
namespace mlir
{
namespace runtime
{
namespace ngmlir
{
using llvm::raw_ostream;
enum NGTypeKind
......@@ -120,10 +116,7 @@ namespace ngraph
/// Convert to equivalent std type
/// std types are sign-agnostic.
mlir::Type toStdType() const
{
return mlir::IntegerType::get(getWidth(), getContext());
}
mlir::Type toStdType() const { return mlir::IntegerType::get(getWidth(), getContext()); }
/// Check if signed type
bool isSigned() const;
......@@ -224,8 +217,7 @@ namespace ngraph
};
/// NGraph Tensor Type
class NGTensorType
: public mlir::Type::TypeBase<NGTensorType, mlir::Type, NGTensorTypeStorage>
class NGTensorType : public mlir::Type::TypeBase<NGTensorType, mlir::Type, NGTensorTypeStorage>
{
public:
using Base::Base;
......@@ -255,6 +247,4 @@ namespace ngraph
/// for llvm RTTI
static bool kindof(unsigned kind) { return kind == NGTypeKind::NG_TENSOR_TYPE_ID; }
};
}
}
}
......@@ -131,7 +131,7 @@ namespace
// we find out output values by looking at returned values
// any return should return all outputs of the subgraph
f->walk<ngmlir::NGReturnOp>([this, &outputCount](ngmlir::NGReturnOp ret) {
f->walk<NGReturnOp>([this, &outputCount](NGReturnOp ret) {
for (unsigned i = 0; i < ret.getNumOperands(); i++)
{
this->m_outputValueMap.insert(std::pair<Value*, unsigned>(ret.getOperand(i), i));
......@@ -151,7 +151,7 @@ namespace
// however, due to how DialectConversion framework works, new func is only
// materialized after conversion is done (rewriter->getFunction, or even rewriter->getInsertionBlock()->getFunction()
// will give you the original func). This makes it very convoluted to insert instructions at entry block.
auto op = rewriter->create<ngmlir::NGFakeInputOp>(rewriter->getUnknownLoc(),
auto op = rewriter->create<NGFakeInputOp>(rewriter->getUnknownLoc(),
IndexType::get(getModule().getContext()));
// will be fixed later to read passed arg instead.
m_memMgrDefs.push_back(op.getResult());
......@@ -170,7 +170,7 @@ namespace
if (it != outputMap.end())
{
unsigned argId = (*it).second;
auto fakeOp = rewriter.create<ngmlir::NGFakeInputOp>(
auto fakeOp = rewriter.create<NGFakeInputOp>(
op->getLoc(),
m_dialectLowerer.convertType(
origResult->getType()) /* convert to lowered type */
......@@ -183,7 +183,7 @@ namespace
}
else
{
auto tensorType = origResult->getType().cast<ngmlir::NGTensorType>();
auto tensorType = origResult->getType().cast<NGTensorType>();
auto callBackFunc = getCallDecl("__mlir_allocate",
{rewriter.getIndexType(), rewriter.getIndexType()},
{tensorType.toMemref()},
......@@ -237,8 +237,7 @@ namespace
for (auto value : m_loweredOutputValues)
{
auto op = value->getDefiningOp();
NGRAPH_ASSERT(op->isa<ngmlir::NGFakeInputOp>())
<< "output value not defined by fake output?";
NGRAPH_ASSERT(op->isa<NGFakeInputOp>()) << "output value not defined by fake output?";
value->replaceAllUsesWith(entryBlock->getArgument(oldFuncType.getNumInputs() + i));
op->erase();
i++;
......@@ -269,23 +268,23 @@ namespace
// NGDialect converters
Type DialectLowerer::convertType(Type t)
{
if (auto tensor = t.dyn_cast<ngmlir::NGTensorType>())
if (auto tensor = t.dyn_cast<NGTensorType>())
{
return tensor.toMemref();
}
// element type
if (auto type = t.dyn_cast<ngmlir::NGFloatType>())
if (auto type = t.dyn_cast<NGFloatType>())
{
// Float
// float types are already std type
return type;
}
if (auto type = t.dyn_cast<ngmlir::NGIntegerType>())
if (auto type = t.dyn_cast<NGIntegerType>())
{
// map it to std type
return type.toStdType();
}
if (auto type = t.dyn_cast<ngmlir::NGBoolType>())
if (auto type = t.dyn_cast<NGBoolType>())
{
return type.toStdType();
}
......@@ -298,7 +297,7 @@ namespace
ArrayRef<Value*> operands,
FuncBuilder& rewriter) const
{
auto add = op->cast<ngmlir::NGAddOp>();
auto add = op->cast<NGAddOp>();
auto loc = add.getLoc();
Value *origResult, *newResult;
......@@ -335,7 +334,7 @@ namespace
ArrayRef<Value*> operands,
FuncBuilder& rewriter) const
{
auto matmul = op->cast<ngmlir::NGMatMulBiasOp>();
auto matmul = op->cast<NGMatMulBiasOp>();
auto loc = matmul.getLoc();
NGRAPH_ASSERT(operands.size() == 2) << "Bias is not supported yet in MatmulBias operation";
......@@ -406,16 +405,10 @@ namespace
}
}
namespace ngraph
namespace mlir
{
namespace runtime
{
namespace ngmlir
{
Pass* createDialectLoweringPass(MLIRCompiler* compiler)
Pass* createDialectLoweringPass(ngraph::runtime::ngmlir::MLIRCompiler* compiler)
{
return new DialectLoweringPass(*compiler);
}
}
}
}
......@@ -16,9 +16,9 @@
#pragma once
#include "contrib/mlir/compiler.hpp"
#include "mlir/Pass/Pass.h"
#include "mlir/Support/LLVM.h"
namespace ngraph
{
namespace runtime
......@@ -26,8 +26,10 @@ namespace ngraph
namespace ngmlir
{
class MLIRCompiler;
mlir::Pass* createDialectLoweringPass(MLIRCompiler* compiler);
}
}
}
namespace mlir
{
mlir::Pass* createDialectLoweringPass(ngraph::runtime::ngmlir::MLIRCompiler* compiler);
}
......@@ -22,7 +22,7 @@ class OP##Conversion : public mlir::DialectOpConversion \
{\
public:\
explicit OP##Conversion(mlir::MLIRContext *context, DialectLoweringPass& pass)\
: mlir::DialectOpConversion(ngraph::runtime::ngmlir::OP::getOperationName(), 1, context),\
: mlir::DialectOpConversion(mlir::OP::getOperationName(), 1, context),\
m_pass(pass)\
{} \
SmallVector<Value *, 4> rewrite(Operation *op, ArrayRef<Value *> operands, FuncBuilder &rewriter) const override; \
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment