Commit 86bc31cc authored by Nagy Mostafa's avatar Nagy Mostafa Committed by nmostafa

[MLIR] Move mlir related classes to MLIR namespace (#23)

* Move dialect and types to mlir namespace

* PR fixes and some cleanup

* Merge fix
parent ea441a6e
...@@ -51,37 +51,35 @@ using namespace ngraph::runtime::ngmlir; ...@@ -51,37 +51,35 @@ using namespace ngraph::runtime::ngmlir;
#define COMPILE_OP_DECL(op_name) \ #define COMPILE_OP_DECL(op_name) \
create_op<op_name>(MLIRCompiler & compiler, const ngraph::Node* ng_node) create_op<op_name>(MLIRCompiler & compiler, const ngraph::Node* ng_node)
namespace ngraph MLIRCompiler::MLIRCompiler(const ngraph::op::CompiledKernel* compiled_kernel,
{
MLIRCompiler::MLIRCompiler(const ngraph::op::CompiledKernel* compiled_kernel,
const std::vector<void*>& external_tensors) const std::vector<void*>& external_tensors)
: m_compiled_kernel(compiled_kernel) : m_compiled_kernel(compiled_kernel)
, m_external_tensors(external_tensors) , m_external_tensors(external_tensors)
{ {
NGRAPH_ASSERT((m_compiled_kernel->get_arguments().size() + NGRAPH_ASSERT((m_compiled_kernel->get_arguments().size() +
m_compiled_kernel->get_kernel_outputs().size()) == external_tensors.size()) m_compiled_kernel->get_kernel_outputs().size()) == external_tensors.size())
<< "Number of arguments and outputs doesn't match number of tensors"; << "Number of arguments and outputs doesn't match number of tensors";
} }
void MLIRCompiler::init_mlir() void MLIRCompiler::init_mlir()
{ {
mlir::registerDialect<NGDialect>(); mlir::registerDialect<mlir::NGDialect>();
// Register any LLVM command line options // Register any LLVM command line options
llvm::cl::ParseEnvironmentOptions("ngraph", "MLIR_LLVM_OPTIONS", ""); llvm::cl::ParseEnvironmentOptions("ngraph", "MLIR_LLVM_OPTIONS", "");
} }
void MLIRCompiler::compile_and_run() void MLIRCompiler::compile_and_run()
{ {
build_module(); // MLIR gen build_module(); // MLIR gen
lower_dialect(); lower_dialect();
optimize(); optimize();
bind_arguments(); bind_arguments();
execute(); execute();
cleanup(); cleanup();
} }
void MLIRCompiler::build_module() void MLIRCompiler::build_module()
{ {
// initialize an empty module // initialize an empty module
m_module = make_unique<mlir::Module>(&m_context); m_module = make_unique<mlir::Module>(&m_context);
...@@ -131,76 +129,77 @@ namespace ngraph ...@@ -131,76 +129,77 @@ namespace ngraph
{ {
m_module->dump(); m_module->dump();
} }
} }
mlir::Type MLIRCompiler::get_mlir_type(const descriptor::Tensor* tensor) mlir::Type MLIRCompiler::get_mlir_type(const descriptor::Tensor* tensor)
{ {
SmallVector<int64_t, 4> shape; SmallVector<int64_t, 4> shape;
for (auto d : tensor->get_shape()) for (auto d : tensor->get_shape())
{ {
shape.push_back(d); shape.push_back(d);
} }
return NGTensorType::get(&m_context, get_mlir_type(tensor->get_element_type()), shape); return mlir::NGTensorType::get(&m_context, get_mlir_type(tensor->get_element_type()), shape);
} }
mlir::Type MLIRCompiler::get_mlir_type(const element::Type& type) mlir::Type MLIRCompiler::get_mlir_type(const element::Type& type)
{ {
switch (type.get_type_enum()) switch (type.get_type_enum())
{ {
case ngraph::element::Type_t::undefined: case ngraph::element::Type_t::undefined:
case ngraph::element::Type_t::dynamic: case ngraph::element::Type_t::dynamic:
default: NGRAPH_FAIL() << "MLIR: Unsupported NGraph types"; break; default: NGRAPH_FAIL() << "MLIR: Unsupported NGraph types"; break;
case ngraph::element::Type_t::bf16: return NGFloatType::getBF16(&m_context); case ngraph::element::Type_t::bf16: return mlir::NGFloatType::getBF16(&m_context);
case ngraph::element::Type_t::f32: return NGFloatType::getF32(&m_context); case ngraph::element::Type_t::f32: return mlir::NGFloatType::getF32(&m_context);
case ngraph::element::Type_t::f64: return NGFloatType::getF64(&m_context); case ngraph::element::Type_t::f64: return mlir::NGFloatType::getF64(&m_context);
case ngraph::element::Type_t::i8: return NGIntegerType::getInt8(&m_context); case ngraph::element::Type_t::i8: return mlir::NGIntegerType::getInt8(&m_context);
case ngraph::element::Type_t::u8: case ngraph::element::Type_t::u8:
case ngraph::element::Type_t::boolean: return NGIntegerType::getUInt8(&m_context); case ngraph::element::Type_t::boolean: return mlir::NGIntegerType::getUInt8(&m_context);
case ngraph::element::Type_t::i16: return NGIntegerType::getInt16(&m_context); case ngraph::element::Type_t::i16: return mlir::NGIntegerType::getInt16(&m_context);
case ngraph::element::Type_t::u16: return NGIntegerType::getInt16(&m_context); case ngraph::element::Type_t::u16: return mlir::NGIntegerType::getInt16(&m_context);
case ngraph::element::Type_t::i32: return NGIntegerType::getInt32(&m_context); case ngraph::element::Type_t::i32: return mlir::NGIntegerType::getInt32(&m_context);
case ngraph::element::Type_t::u32: return NGIntegerType::getUInt32(&m_context); case ngraph::element::Type_t::u32: return mlir::NGIntegerType::getUInt32(&m_context);
case ngraph::element::Type_t::i64: return NGIntegerType::getInt64(&m_context); case ngraph::element::Type_t::i64: return mlir::NGIntegerType::getInt64(&m_context);
case ngraph::element::Type_t::u64: return NGIntegerType::getUInt64(&m_context); case ngraph::element::Type_t::u64: return mlir::NGIntegerType::getUInt64(&m_context);
} }
NGRAPH_FAIL(); // Unreachable NGRAPH_FAIL(); // Unreachable
return mlir::Type(); return mlir::Type();
} }
void MLIRCompiler::update_tensor_value(descriptor::Tensor* tensor, mlir::Value* value) void MLIRCompiler::update_tensor_value(descriptor::Tensor* tensor, mlir::Value* value)
{ {
NGRAPH_ASSERT(m_tensor_to_value_map.find(tensor) == m_tensor_to_value_map.end()) NGRAPH_ASSERT(m_tensor_to_value_map.find(tensor) == m_tensor_to_value_map.end())
<< "tensor value already defined"; << "tensor value already defined";
TensorInfo tensor_info{value}; TensorInfo tensor_info{value};
m_tensor_to_value_map.insert(TensorToInfo(tensor, tensor_info)); m_tensor_to_value_map.insert(TensorToInfo(tensor, tensor_info));
} }
MLIRCompiler::TensorInfo MLIRCompiler::get_tensor_value(descriptor::Tensor* tensor) MLIRCompiler::TensorInfo MLIRCompiler::get_tensor_value(descriptor::Tensor* tensor)
{ {
auto it = m_tensor_to_value_map.find(tensor); auto it = m_tensor_to_value_map.find(tensor);
NGRAPH_ASSERT(it != m_tensor_to_value_map.end()) << "Undefined tensor"; NGRAPH_ASSERT(it != m_tensor_to_value_map.end()) << "Undefined tensor";
return it->second; return it->second;
} }
void MLIRCompiler::lower_dialect() void MLIRCompiler::lower_dialect()
{ {
mlir::PassManager pm; mlir::PassManager pm;
pm.addPass(createDialectLoweringPass(this)); pm.addPass(mlir::createDialectLoweringPass(this));
pm.addPass(mlir::createCanonicalizerPass()); pm.addPass(mlir::createCanonicalizerPass());
pm.run(m_module.get()); pm.run(m_module.get());
if (failed(m_module->verify())) if (failed(m_module->verify()))
...@@ -211,23 +210,23 @@ namespace ngraph ...@@ -211,23 +210,23 @@ namespace ngraph
{ {
m_module->dump(); m_module->dump();
} }
} }
void MLIRCompiler::optimize() void MLIRCompiler::optimize()
{ {
mlir::PassManager pm; mlir::PassManager pm;
// Lower affine ops // Lower affine ops
pm.addPass(mlir::createLowerAffinePass()); pm.addPass(mlir::createLowerAffinePass());
auto rr = pm.run(m_module.get()); auto rr = pm.run(m_module.get());
(void)rr; (void)rr;
assert(succeeded(rr) && "affine loop lowering failed"); assert(succeeded(rr) && "affine loop lowering failed");
} }
// MLIR builders // MLIR builders
#define TI(x) std::type_index(typeid(x)) #define TI(x) std::type_index(typeid(x))
void MLIRCompiler::build_ng_dialect() void MLIRCompiler::build_ng_dialect()
{ {
const NodeVector& sub_graph = m_compiled_kernel->get_node_list(); const NodeVector& sub_graph = m_compiled_kernel->get_node_list();
NGRAPH_ASSERT(sub_graph.size() == 1) << "Supporting code-gen for a single node for now"; NGRAPH_ASSERT(sub_graph.size() == 1) << "Supporting code-gen for a single node for now";
...@@ -247,52 +246,51 @@ namespace ngraph ...@@ -247,52 +246,51 @@ namespace ngraph
} }
create_return(); create_return();
} }
template <> template <>
mlir::Value* MLIRCompiler::COMPILE_OP_DECL(ngraph::op::Add) mlir::Value* MLIRCompiler::COMPILE_OP_DECL(ngraph::op::Add)
{ {
return compiler.create_binary_op<NGAddOp>(ng_node); return compiler.create_binary_op<mlir::NGAddOp>(ng_node);
} }
template <> template <>
mlir::Value* MLIRCompiler::COMPILE_OP_DECL(ngraph::op::MatmulBias) mlir::Value* MLIRCompiler::COMPILE_OP_DECL(ngraph::op::MatmulBias)
{ {
// TODO(dcab): Implement all the variants of a Matmul/MatmulBias op. // TODO(dcab): Implement all the variants of a Matmul/MatmulBias op.
// Keeping it simple for now. // Keeping it simple for now.
NGRAPH_ASSERT(ng_node->get_arguments().size() == 2) NGRAPH_ASSERT(ng_node->get_arguments().size() == 2)
<< "Bias is not supported in MatmulBias operation"; << "Bias is not supported in MatmulBias operation";
return compiler.create_binary_op<NGMatMulBiasOp>(ng_node); return compiler.create_binary_op<mlir::NGMatMulBiasOp>(ng_node);
} }
const MLIRCompiler::MLIRCompOpMap MLIRCompiler::op_dispatcher{ const MLIRCompiler::MLIRCompOpMap MLIRCompiler::op_dispatcher{
{TI(ngraph::op::Add), &MLIRCompiler::create_op<ngraph::op::Add>}, {TI(ngraph::op::Add), &MLIRCompiler::create_op<ngraph::op::Add>},
{TI(ngraph::op::MatmulBias), &MLIRCompiler::create_op<ngraph::op::MatmulBias>}}; {TI(ngraph::op::MatmulBias), &MLIRCompiler::create_op<ngraph::op::MatmulBias>}};
template <typename BinOp> template <typename BinOp>
mlir::Value* MLIRCompiler::create_binary_op(const ngraph::Node* ng_node) mlir::Value* MLIRCompiler::create_binary_op(const ngraph::Node* ng_node)
{ {
auto lhs = ng_node->get_argument(0)->get_output_tensor_ptr(); auto lhs = ng_node->get_argument(0)->get_output_tensor_ptr();
auto rhs = ng_node->get_argument(1)->get_output_tensor_ptr(); auto rhs = ng_node->get_argument(1)->get_output_tensor_ptr();
auto lhs_v = get_tensor_value(lhs.get()).m_value; auto lhs_v = get_tensor_value(lhs.get()).m_value;
auto rhs_v = get_tensor_value(rhs.get()).m_value; auto rhs_v = get_tensor_value(rhs.get()).m_value;
return m_builder->create<BinOp>(mlir::UnknownLoc::get(&m_context), lhs_v, rhs_v) return m_builder->create<BinOp>(mlir::UnknownLoc::get(&m_context), lhs_v, rhs_v).getResult();
.getResult(); }
}
void MLIRCompiler::create_return() void MLIRCompiler::create_return()
{ {
std::vector<mlir::Value*> value_list; std::vector<mlir::Value*> value_list;
for (auto output : m_compiled_kernel->get_kernel_outputs()) for (auto output : m_compiled_kernel->get_kernel_outputs())
{ {
value_list.push_back(get_tensor_value(output->get_output_tensor_ptr().get()).m_value); value_list.push_back(get_tensor_value(output->get_output_tensor_ptr().get()).m_value);
} }
m_builder->create<NGReturnOp>(mlir::UnknownLoc::get(&m_context), value_list); m_builder->create<mlir::NGReturnOp>(mlir::UnknownLoc::get(&m_context), value_list);
} }
void MLIRCompiler::bind_arguments() void MLIRCompiler::bind_arguments()
{ {
NGRAPH_ASSERT(m_module && "MLIR module is not ready."); NGRAPH_ASSERT(m_module && "MLIR module is not ready.");
mlir::Function* func = m_module->getNamedFunction("main"); mlir::Function* func = m_module->getNamedFunction("main");
...@@ -325,10 +323,10 @@ namespace ngraph ...@@ -325,10 +323,10 @@ namespace ngraph
// inserting memory manager ptr in right location ? // inserting memory manager ptr in right location ?
NGRAPH_ASSERT(m_invoke_args.size() == get_mem_mgr_arg_id(func)); NGRAPH_ASSERT(m_invoke_args.size() == get_mem_mgr_arg_id(func));
m_invoke_args.push_back(static_cast<void*>(mem_mgr_arg)); m_invoke_args.push_back(static_cast<void*>(mem_mgr_arg));
} }
void MLIRCompiler::execute() void MLIRCompiler::execute()
{ {
NGRAPH_ASSERT(m_module && "MLIR module is not ready."); NGRAPH_ASSERT(m_module && "MLIR module is not ready.");
// Lower Standard dialect to LLVM dialect. // Lower Standard dialect to LLVM dialect.
...@@ -354,13 +352,12 @@ namespace ngraph ...@@ -354,13 +352,12 @@ namespace ngraph
// uniformity reasons, it takes a list of type-erased pointers to arguments. // uniformity reasons, it takes a list of type-erased pointers to arguments.
// Please, note that 'invoke' method is overloaded with a parameter pack version. // Please, note that 'invoke' method is overloaded with a parameter pack version.
// Make sure the MutableArrayRef version is invoked. // Make sure the MutableArrayRef version is invoked.
auto invocationResult = auto invocationResult = m_engine->invoke("main", llvm::MutableArrayRef<void*>(m_invoke_args));
m_engine->invoke("main", llvm::MutableArrayRef<void*>(m_invoke_args));
NGRAPH_ASSERT(!invocationResult) << "JIT invocation of 'main' failed\n"; NGRAPH_ASSERT(!invocationResult) << "JIT invocation of 'main' failed\n";
} }
void MLIRCompiler::cleanup() void MLIRCompiler::cleanup()
{ {
// Free void double pointer arguments without freeing external tensor data. // Free void double pointer arguments without freeing external tensor data.
for (auto* arg : m_invoke_args) for (auto* arg : m_invoke_args)
{ {
...@@ -373,10 +370,10 @@ namespace ngraph ...@@ -373,10 +370,10 @@ namespace ngraph
// Free allocated memory for JIT'ed code temps // Free allocated memory for JIT'ed code temps
m_mem_mgr.freeAll(); m_mem_mgr.freeAll();
} }
SmallVector<void*, 8> MLIRCompiler::allocate_memref_args(mlir::Function* func) SmallVector<void*, 8> MLIRCompiler::allocate_memref_args(mlir::Function* func)
{ {
SmallVector<void*, 8> args; SmallVector<void*, 8> args;
args.reserve(func->getNumArguments()); args.reserve(func->getNumArguments());
for (const auto& arg : func->getArguments()) for (const auto& arg : func->getArguments())
...@@ -388,10 +385,10 @@ namespace ngraph ...@@ -388,10 +385,10 @@ namespace ngraph
args.push_back(descriptor); args.push_back(descriptor);
} }
return args; return args;
} }
mlir::StaticFloatMemRef* MLIRCompiler::allocate_memref_descriptor(mlir::Type type) mlir::StaticFloatMemRef* MLIRCompiler::allocate_memref_descriptor(mlir::Type type)
{ {
auto memRefType = type.dyn_cast<mlir::MemRefType>(); auto memRefType = type.dyn_cast<mlir::MemRefType>();
if (!memRefType) if (!memRefType)
return nullptr; return nullptr;
...@@ -403,5 +400,4 @@ namespace ngraph ...@@ -403,5 +400,4 @@ namespace ngraph
reinterpret_cast<mlir::StaticFloatMemRef*>(malloc(sizeof(mlir::StaticFloatMemRef))); reinterpret_cast<mlir::StaticFloatMemRef*>(malloc(sizeof(mlir::StaticFloatMemRef)));
descriptor->data = nullptr; descriptor->data = nullptr;
return descriptor; return descriptor;
}
} }
...@@ -18,11 +18,8 @@ ...@@ -18,11 +18,8 @@
#include "ops.hpp" #include "ops.hpp"
#include "type.hpp" #include "type.hpp"
using namespace ngraph::runtime::ngmlir; using namespace mlir;
/// Register a dialect and its types
/// Usage:
/// mlir::registerDialect<ngraph::runtime::ngmlir::Dialect>();
NGDialect::NGDialect(mlir::MLIRContext* ctx) NGDialect::NGDialect(mlir::MLIRContext* ctx)
: mlir::Dialect("ng", ctx) : mlir::Dialect("ng", ctx)
{ {
......
...@@ -23,13 +23,8 @@ ...@@ -23,13 +23,8 @@
#include "mlir/IR/TypeSupport.h" #include "mlir/IR/TypeSupport.h"
#include "mlir/IR/Types.h" #include "mlir/IR/Types.h"
#include "ngraph/assertion.hpp" #include "ngraph/assertion.hpp"
namespace mlir
namespace ngraph
{ {
namespace runtime
{
namespace ngmlir
{
class NGDialect : public mlir::Dialect class NGDialect : public mlir::Dialect
{ {
public: public:
...@@ -41,6 +36,4 @@ namespace ngraph ...@@ -41,6 +36,4 @@ namespace ngraph
} }
void printType(mlir::Type type, llvm::raw_ostream& os) const override; void printType(mlir::Type type, llvm::raw_ostream& os) const override;
}; };
}
}
} }
...@@ -26,47 +26,40 @@ using llvm::raw_string_ostream; ...@@ -26,47 +26,40 @@ using llvm::raw_string_ostream;
using llvm::SmallVector; using llvm::SmallVector;
using llvm::StringRef; using llvm::StringRef;
using llvm::Twine; using llvm::Twine;
using namespace mlir;
namespace ngraph // TODO:
// - Move verifiers and other OP helpers (e.g. getSomeAttribute()) to separate files
//
// - Op helpers: Since it is not possible to add arbitrary code (and would complicate the .td file)
// to Ops classes, we will add helper classes with static methods for each Op that needs it
// Additional verification methods
// Tensor type checks are already verified by the caller of these methods
template <typename T>
static mlir::LogicalResult verifyUnaryArithOp(T* op)
{ {
namespace runtime
{
namespace ngmlir
{
// TODO:
// - Move verifiers and other OP helpers (e.g. getSomeAttribute()) to separate files
//
// - Op helpers: Since it is not possible to add arbitrary code (and would complicate the .td file)
// to Ops classes, we will add helper classes with static methods for each Op that needs it
// Additional verification methods
// Tensor type checks are already verified by the caller of these methods
template <typename T>
static mlir::LogicalResult verifyUnaryArithOp(T* op)
{
// TODO: Check matching element types // TODO: Check matching element types
return mlir::success(); return mlir::success();
} }
// Additional verification methods // Additional verification methods
// Tensor type checks are already verified by the caller of these methods // Tensor type checks are already verified by the caller of these methods
template <typename T> template <typename T>
static mlir::LogicalResult verifyBinaryArithOp(T* op) static mlir::LogicalResult verifyBinaryArithOp(T* op)
{ {
// TODO: Check matching element types // TODO: Check matching element types
return mlir::success(); return mlir::success();
} }
template <typename T> template <typename T>
static mlir::LogicalResult verifyOp(T* op) static mlir::LogicalResult verifyOp(T* op)
{ {
return op->emitOpError("Unsupported verifier for this operation"); return op->emitOpError("Unsupported verifier for this operation");
} }
// Per op specializations // Per op specializations
template <> template <>
mlir::LogicalResult verifyOp<NGMatMulBiasOp>(NGMatMulBiasOp* op) mlir::LogicalResult verifyOp<NGMatMulBiasOp>(NGMatMulBiasOp* op)
{ {
// Verify that we have 2 operands // Verify that we have 2 operands
// Bias operand must be null for now (not implemented) // Bias operand must be null for now (not implemented)
if (op->getNumOperands() != 2) if (op->getNumOperands() != 2)
...@@ -92,17 +85,10 @@ namespace ngraph ...@@ -92,17 +85,10 @@ namespace ngraph
// TODO(dcab): Improve verification: matching types, proper shapes, etc. // TODO(dcab): Improve verification: matching types, proper shapes, etc.
return mlir::success(); return mlir::success();
} }
}
}
using namespace mlir; namespace mlir
namespace runtime {
{
namespace ngmlir
{
#define GET_OP_CLASSES #define GET_OP_CLASSES
#include "ops.cpp.inc" #include "ops.cpp.inc"
}
}
} }
...@@ -22,19 +22,8 @@ ...@@ -22,19 +22,8 @@
#include "mlir/IR/StandardTypes.h" #include "mlir/IR/StandardTypes.h"
#include "mlir/Support/STLExtras.h" #include "mlir/Support/STLExtras.h"
namespace ngraph namespace mlir
{ {
namespace runtime
{
namespace ngmlir
{
// TODO: We shouldn't have this here, but we need to expose mlir types for the .inc file to use
// we cannot forward declare the mlir types since they rely on the Ops we are defining (see. Op<NGAddOp, ...>)
//
// Other ways to avoid namespace pollution ?
using namespace mlir;
#define GET_OP_CLASSES #define GET_OP_CLASSES
#include "ops.h.inc" #include "ops.h.inc"
}
}
} }
...@@ -40,7 +40,7 @@ include "mlir/IR/OpBase.td" ...@@ -40,7 +40,7 @@ include "mlir/IR/OpBase.td"
// This defines records equivalent to NGraph types. It doesn't generate code. // This defines records equivalent to NGraph types. It doesn't generate code.
// This is used as a type in the DAG input/outputs. // This is used as a type in the DAG input/outputs.
// Constraints (CPred) are used to type-check args/results of that type during op verification // Constraints (CPred) are used to type-check args/results of that type during op verification
def NG_TensorType : Type<CPred<"{0}.isa<ngraph::runtime::ngmlir::NGTensorType>()">, def NG_TensorType : Type<CPred<"{0}.isa<mlir::NGTensorType>()">,
"NGraph Tensor Type">; "NGraph Tensor Type">;
// A generic un-typed MemRef. Used for Fake instructions inserted during dialect lowering // A generic un-typed MemRef. Used for Fake instructions inserted during dialect lowering
......
...@@ -31,12 +31,10 @@ using llvm::SmallVector; ...@@ -31,12 +31,10 @@ using llvm::SmallVector;
using llvm::StringRef; using llvm::StringRef;
using llvm::Twine; using llvm::Twine;
namespace ngraph using namespace mlir;
{
using namespace runtime::ngmlir;
unsigned NGIntegerType::getWidth() const unsigned NGIntegerType::getWidth() const
{ {
switch (getKind()) switch (getKind())
{ {
case NG_I8_TYPE_ID: case NG_I8_TYPE_ID:
...@@ -50,10 +48,10 @@ namespace ngraph ...@@ -50,10 +48,10 @@ namespace ngraph
default: NGRAPH_FAIL() << "Invalid type ID"; default: NGRAPH_FAIL() << "Invalid type ID";
} }
return 0; return 0;
} }
bool NGIntegerType::isSigned() const bool NGIntegerType::isSigned() const
{ {
switch (getKind()) switch (getKind())
{ {
case NG_I8_TYPE_ID: case NG_I8_TYPE_ID:
...@@ -67,19 +65,17 @@ namespace ngraph ...@@ -67,19 +65,17 @@ namespace ngraph
default: NGRAPH_FAIL() << "Invalid type ID"; default: NGRAPH_FAIL() << "Invalid type ID";
} }
return false; return false;
} }
/// Creates TensorType objects. They all point to the same storage if /// Creates TensorType objects. They all point to the same storage if
/// element type and shape are the same. /// element type and shape are the same.
NGTensorType NGTensorType::get(mlir::MLIRContext* context, EltType eltType, Shape shape) NGTensorType NGTensorType::get(MLIRContext* context, EltType eltType, Shape shape)
{ {
return Base::get(context, NGTypeKind::NG_TENSOR_TYPE_ID, eltType, shape); return Base::get(context, NGTypeKind::NG_TENSOR_TYPE_ID, eltType, shape);
} }
mlir::MemRefType NGTensorType::toMemref() MemRefType NGTensorType::toMemref()
{ {
auto memRefType = auto memRefType = MemRefType::get(getShape(), getElementType(), {/* no map used */}, 0);
mlir::MemRefType::get(getShape(), getElementType(), {/* no map used */}, 0);
return memRefType; return memRefType;
}
} }
...@@ -23,12 +23,8 @@ ...@@ -23,12 +23,8 @@
#include "mlir/IR/StandardTypes.h" #include "mlir/IR/StandardTypes.h"
#include "mlir/IR/TypeSupport.h" #include "mlir/IR/TypeSupport.h"
#include "mlir/IR/Types.h" #include "mlir/IR/Types.h"
namespace ngraph namespace mlir
{ {
namespace runtime
{
namespace ngmlir
{
using llvm::raw_ostream; using llvm::raw_ostream;
enum NGTypeKind enum NGTypeKind
...@@ -120,10 +116,7 @@ namespace ngraph ...@@ -120,10 +116,7 @@ namespace ngraph
/// Convert to equivalent std type /// Convert to equivalent std type
/// std types are sign-agnostic. /// std types are sign-agnostic.
mlir::Type toStdType() const mlir::Type toStdType() const { return mlir::IntegerType::get(getWidth(), getContext()); }
{
return mlir::IntegerType::get(getWidth(), getContext());
}
/// Check if signed type /// Check if signed type
bool isSigned() const; bool isSigned() const;
...@@ -224,8 +217,7 @@ namespace ngraph ...@@ -224,8 +217,7 @@ namespace ngraph
}; };
/// NGraph Tensor Type /// NGraph Tensor Type
class NGTensorType class NGTensorType : public mlir::Type::TypeBase<NGTensorType, mlir::Type, NGTensorTypeStorage>
: public mlir::Type::TypeBase<NGTensorType, mlir::Type, NGTensorTypeStorage>
{ {
public: public:
using Base::Base; using Base::Base;
...@@ -255,6 +247,4 @@ namespace ngraph ...@@ -255,6 +247,4 @@ namespace ngraph
/// for llvm RTTI /// for llvm RTTI
static bool kindof(unsigned kind) { return kind == NGTypeKind::NG_TENSOR_TYPE_ID; } static bool kindof(unsigned kind) { return kind == NGTypeKind::NG_TENSOR_TYPE_ID; }
}; };
}
}
} }
...@@ -131,7 +131,7 @@ namespace ...@@ -131,7 +131,7 @@ namespace
// we find out output values by looking at returned values // we find out output values by looking at returned values
// any return should return all outputs of the subgraph // any return should return all outputs of the subgraph
f->walk<ngmlir::NGReturnOp>([this, &outputCount](ngmlir::NGReturnOp ret) { f->walk<NGReturnOp>([this, &outputCount](NGReturnOp ret) {
for (unsigned i = 0; i < ret.getNumOperands(); i++) for (unsigned i = 0; i < ret.getNumOperands(); i++)
{ {
this->m_outputValueMap.insert(std::pair<Value*, unsigned>(ret.getOperand(i), i)); this->m_outputValueMap.insert(std::pair<Value*, unsigned>(ret.getOperand(i), i));
...@@ -151,7 +151,7 @@ namespace ...@@ -151,7 +151,7 @@ namespace
// however, due to how DialectConversion framework works, new func is only // however, due to how DialectConversion framework works, new func is only
// materialized after conversion is done (rewriter->getFunction, or even rewriter->getInsertionBlock()->getFunction() // materialized after conversion is done (rewriter->getFunction, or even rewriter->getInsertionBlock()->getFunction()
// will give you the original func). This makes it very convoluted to insert instructions at entry block. // will give you the original func). This makes it very convoluted to insert instructions at entry block.
auto op = rewriter->create<ngmlir::NGFakeInputOp>(rewriter->getUnknownLoc(), auto op = rewriter->create<NGFakeInputOp>(rewriter->getUnknownLoc(),
IndexType::get(getModule().getContext())); IndexType::get(getModule().getContext()));
// will be fixed later to read passed arg instead. // will be fixed later to read passed arg instead.
m_memMgrDefs.push_back(op.getResult()); m_memMgrDefs.push_back(op.getResult());
...@@ -170,7 +170,7 @@ namespace ...@@ -170,7 +170,7 @@ namespace
if (it != outputMap.end()) if (it != outputMap.end())
{ {
unsigned argId = (*it).second; unsigned argId = (*it).second;
auto fakeOp = rewriter.create<ngmlir::NGFakeInputOp>( auto fakeOp = rewriter.create<NGFakeInputOp>(
op->getLoc(), op->getLoc(),
m_dialectLowerer.convertType( m_dialectLowerer.convertType(
origResult->getType()) /* convert to lowered type */ origResult->getType()) /* convert to lowered type */
...@@ -183,7 +183,7 @@ namespace ...@@ -183,7 +183,7 @@ namespace
} }
else else
{ {
auto tensorType = origResult->getType().cast<ngmlir::NGTensorType>(); auto tensorType = origResult->getType().cast<NGTensorType>();
auto callBackFunc = getCallDecl("__mlir_allocate", auto callBackFunc = getCallDecl("__mlir_allocate",
{rewriter.getIndexType(), rewriter.getIndexType()}, {rewriter.getIndexType(), rewriter.getIndexType()},
{tensorType.toMemref()}, {tensorType.toMemref()},
...@@ -237,8 +237,7 @@ namespace ...@@ -237,8 +237,7 @@ namespace
for (auto value : m_loweredOutputValues) for (auto value : m_loweredOutputValues)
{ {
auto op = value->getDefiningOp(); auto op = value->getDefiningOp();
NGRAPH_ASSERT(op->isa<ngmlir::NGFakeInputOp>()) NGRAPH_ASSERT(op->isa<NGFakeInputOp>()) << "output value not defined by fake output?";
<< "output value not defined by fake output?";
value->replaceAllUsesWith(entryBlock->getArgument(oldFuncType.getNumInputs() + i)); value->replaceAllUsesWith(entryBlock->getArgument(oldFuncType.getNumInputs() + i));
op->erase(); op->erase();
i++; i++;
...@@ -269,23 +268,23 @@ namespace ...@@ -269,23 +268,23 @@ namespace
// NGDialect converters // NGDialect converters
Type DialectLowerer::convertType(Type t) Type DialectLowerer::convertType(Type t)
{ {
if (auto tensor = t.dyn_cast<ngmlir::NGTensorType>()) if (auto tensor = t.dyn_cast<NGTensorType>())
{ {
return tensor.toMemref(); return tensor.toMemref();
} }
// element type // element type
if (auto type = t.dyn_cast<ngmlir::NGFloatType>()) if (auto type = t.dyn_cast<NGFloatType>())
{ {
// Float // Float
// float types are already std type // float types are already std type
return type; return type;
} }
if (auto type = t.dyn_cast<ngmlir::NGIntegerType>()) if (auto type = t.dyn_cast<NGIntegerType>())
{ {
// map it to std type // map it to std type
return type.toStdType(); return type.toStdType();
} }
if (auto type = t.dyn_cast<ngmlir::NGBoolType>()) if (auto type = t.dyn_cast<NGBoolType>())
{ {
return type.toStdType(); return type.toStdType();
} }
...@@ -298,7 +297,7 @@ namespace ...@@ -298,7 +297,7 @@ namespace
ArrayRef<Value*> operands, ArrayRef<Value*> operands,
FuncBuilder& rewriter) const FuncBuilder& rewriter) const
{ {
auto add = op->cast<ngmlir::NGAddOp>(); auto add = op->cast<NGAddOp>();
auto loc = add.getLoc(); auto loc = add.getLoc();
Value *origResult, *newResult; Value *origResult, *newResult;
...@@ -335,7 +334,7 @@ namespace ...@@ -335,7 +334,7 @@ namespace
ArrayRef<Value*> operands, ArrayRef<Value*> operands,
FuncBuilder& rewriter) const FuncBuilder& rewriter) const
{ {
auto matmul = op->cast<ngmlir::NGMatMulBiasOp>(); auto matmul = op->cast<NGMatMulBiasOp>();
auto loc = matmul.getLoc(); auto loc = matmul.getLoc();
NGRAPH_ASSERT(operands.size() == 2) << "Bias is not supported yet in MatmulBias operation"; NGRAPH_ASSERT(operands.size() == 2) << "Bias is not supported yet in MatmulBias operation";
...@@ -406,16 +405,10 @@ namespace ...@@ -406,16 +405,10 @@ namespace
} }
} }
namespace ngraph namespace mlir
{ {
namespace runtime Pass* createDialectLoweringPass(ngraph::runtime::ngmlir::MLIRCompiler* compiler)
{
namespace ngmlir
{
Pass* createDialectLoweringPass(MLIRCompiler* compiler)
{ {
return new DialectLoweringPass(*compiler); return new DialectLoweringPass(*compiler);
} }
}
}
} }
...@@ -16,9 +16,9 @@ ...@@ -16,9 +16,9 @@
#pragma once #pragma once
#include "contrib/mlir/compiler.hpp"
#include "mlir/Pass/Pass.h" #include "mlir/Pass/Pass.h"
#include "mlir/Support/LLVM.h" #include "mlir/Support/LLVM.h"
namespace ngraph namespace ngraph
{ {
namespace runtime namespace runtime
...@@ -26,8 +26,10 @@ namespace ngraph ...@@ -26,8 +26,10 @@ namespace ngraph
namespace ngmlir namespace ngmlir
{ {
class MLIRCompiler; class MLIRCompiler;
mlir::Pass* createDialectLoweringPass(MLIRCompiler* compiler);
} }
} }
} }
namespace mlir
{
mlir::Pass* createDialectLoweringPass(ngraph::runtime::ngmlir::MLIRCompiler* compiler);
}
...@@ -22,7 +22,7 @@ class OP##Conversion : public mlir::DialectOpConversion \ ...@@ -22,7 +22,7 @@ class OP##Conversion : public mlir::DialectOpConversion \
{\ {\
public:\ public:\
explicit OP##Conversion(mlir::MLIRContext *context, DialectLoweringPass& pass)\ explicit OP##Conversion(mlir::MLIRContext *context, DialectLoweringPass& pass)\
: mlir::DialectOpConversion(ngraph::runtime::ngmlir::OP::getOperationName(), 1, context),\ : mlir::DialectOpConversion(mlir::OP::getOperationName(), 1, context),\
m_pass(pass)\ m_pass(pass)\
{} \ {} \
SmallVector<Value *, 4> rewrite(Operation *op, ArrayRef<Value *> operands, FuncBuilder &rewriter) const override; \ SmallVector<Value *, 4> rewrite(Operation *op, ArrayRef<Value *> operands, FuncBuilder &rewriter) const override; \
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment