Commit 862a34d3 authored by Robert Kimball's avatar Robert Kimball Committed by Sang Ik Lee

Greatly simplify the GCPU backend (#4131)

* New GCPU layout

* Passing tests

* Test passing

* Move GCPU to the gcpu directory since names must match

* Revert "Move GCPU to the gcpu directory since names must match"

This reverts commit a51f50699d0d1ab602a71226687cf053a9ade27d.

* Cleanup

* Disable some onnx tests

* Fix manifest

* style
Co-authored-by: 's avatarScott Cyphers <diyessi@users.noreply.github.com>
parent 868ba1f8
...@@ -37,59 +37,10 @@ using namespace ngraph; ...@@ -37,59 +37,10 @@ using namespace ngraph;
using descriptor::layout::DenseTensorLayout; using descriptor::layout::DenseTensorLayout;
runtime::gcpu::OP_TYPEID runtime::gcpu::GCPUExecutable::get_typeid(const NodeTypeInfo& type_info)
{
// This expands the op list in op_tbl.hpp into a list of enumerations that look like this:
// {Abs::type_info, OP_TYPEID::Abs},
// {Acos::type_info, OP_TYPEID::Acos},
// ...
static const map<NodeTypeInfo, OP_TYPEID> type_info_map{
#define NGRAPH_OP(NAME, NAMESPACE) {NAMESPACE::NAME::type_info, OP_TYPEID::NAME},
#include "ngraph/opsets/opset0_tbl.hpp"
#undef NGRAPH_OP
};
OP_TYPEID rc = OP_TYPEID::UnknownOp;
auto it = type_info_map.find(type_info);
if (it != type_info_map.end())
{
rc = it->second;
}
return rc;
}
runtime::gcpu::GCPUExecutable::GCPUExecutable(const shared_ptr<Function>& function, runtime::gcpu::GCPUExecutable::GCPUExecutable(const shared_ptr<Function>& function,
bool enable_performance_collection) bool enable_performance_collection)
: m_is_compiled{true} : INTExecutable(function, enable_performance_collection)
, m_performance_counters_enabled{enable_performance_collection}
{
m_function = clone_function(*function);
pass::Manager pass_manager;
pass_manager.register_pass<pass::LikeReplacement>();
pass_manager.register_pass<pass::FusedOpDecomposition>();
pass_manager.register_pass<pass::Opset0Downgrade>();
pass_manager.register_pass<pass::ImplicitBroadcastElimination>();
pass_manager.register_pass<pass::AssignLayout<DenseTensorLayout>>();
pass_manager.register_pass<pass::Liveness>();
pass_manager.run_passes(m_function);
for (auto node : m_function->get_ordered_ops())
{
m_nodes.push_back(node);
}
set_parameters_and_results(*m_function);
}
runtime::gcpu::GCPUExecutable::GCPUExecutable(const std::string& model_string)
: m_is_compiled{true}
, m_performance_counters_enabled{false}
{ {
m_function = deserialize(model_string);
for (auto& node : m_function->get_ordered_ops())
{
m_nodes.push_back(node);
}
set_parameters_and_results(*m_function);
} }
bool runtime::gcpu::GCPUExecutable::call(const vector<shared_ptr<runtime::Tensor>>& outputs, bool runtime::gcpu::GCPUExecutable::call(const vector<shared_ptr<runtime::Tensor>>& outputs,
...@@ -102,10 +53,6 @@ bool runtime::gcpu::GCPUExecutable::call(const vector<shared_ptr<runtime::Tensor ...@@ -102,10 +53,6 @@ bool runtime::gcpu::GCPUExecutable::call(const vector<shared_ptr<runtime::Tensor
auto host_tensor = static_pointer_cast<runtime::HostTensor>(tensor); auto host_tensor = static_pointer_cast<runtime::HostTensor>(tensor);
func_inputs.push_back(host_tensor); func_inputs.push_back(host_tensor);
} }
if (m_nan_check_enabled)
{
perform_nan_check(func_inputs);
}
// convert outputs to HostTensor // convert outputs to HostTensor
vector<shared_ptr<HostTensor>> func_outputs; vector<shared_ptr<HostTensor>> func_outputs;
...@@ -142,8 +89,8 @@ bool runtime::gcpu::GCPUExecutable::call(const vector<shared_ptr<runtime::Tensor ...@@ -142,8 +89,8 @@ bool runtime::gcpu::GCPUExecutable::call(const vector<shared_ptr<runtime::Tensor
// for each ordered op in the graph // for each ordered op in the graph
for (auto& op : m_nodes) for (auto& op : m_nodes)
{ {
auto type_id = get_typeid(op->get_type_info()); auto type_id = get_typeid(*op);
if (type_id == OP_TYPEID::Parameter) if (type_id == ngraph::runtime::interpreter::OP_TYPEID::Parameter)
{ {
continue; continue;
} }
...@@ -184,23 +131,27 @@ bool runtime::gcpu::GCPUExecutable::call(const vector<shared_ptr<runtime::Tensor ...@@ -184,23 +131,27 @@ bool runtime::gcpu::GCPUExecutable::call(const vector<shared_ptr<runtime::Tensor
#pragma GCC diagnostic ignored "-Wswitch-enum" #pragma GCC diagnostic ignored "-Wswitch-enum"
switch (type_id) switch (type_id)
{ {
case OP_TYPEID::Convert: case ngraph::runtime::interpreter::OP_TYPEID::Convert:
case OP_TYPEID::Quantize: case ngraph::runtime::interpreter::OP_TYPEID::Quantize:
case OP_TYPEID::Dequantize: case ngraph::runtime::interpreter::OP_TYPEID::Dequantize:
case OP_TYPEID::ArgMin: case ngraph::runtime::interpreter::OP_TYPEID::ArgMin:
case OP_TYPEID::ArgMax: type = op->get_input_element_type(0); break; case ngraph::runtime::interpreter::OP_TYPEID::ArgMax:
case OP_TYPEID::Equal: type = op->get_input_element_type(0);
case OP_TYPEID::Greater: break;
case OP_TYPEID::GreaterEq: case ngraph::runtime::interpreter::OP_TYPEID::Equal:
case OP_TYPEID::Less: case ngraph::runtime::interpreter::OP_TYPEID::Greater:
case OP_TYPEID::LessEq: case ngraph::runtime::interpreter::OP_TYPEID::GreaterEq:
case OP_TYPEID::NotEqual: case ngraph::runtime::interpreter::OP_TYPEID::Less:
case ngraph::runtime::interpreter::OP_TYPEID::LessEq:
case ngraph::runtime::interpreter::OP_TYPEID::NotEqual:
// Get the type of the second input, not the first // Get the type of the second input, not the first
// All BinaryElementwiseComparision ops have the same type for inputs // All BinaryElementwiseComparision ops have the same type for inputs
// Select has bool for first input and the type we are interested in for the second // Select has bool for first input and the type we are interested in for the second
type = op->get_input_element_type(1); type = op->get_input_element_type(1);
break; break;
case OP_TYPEID::TopK: type = op->get_output_element_type(1); break; case ngraph::runtime::interpreter::OP_TYPEID::TopK:
type = op->get_output_element_type(1);
break;
default: type = op->get_output_element_type(0); break; default: type = op->get_output_element_type(0); break;
} }
#pragma GCC diagnostic pop #pragma GCC diagnostic pop
...@@ -214,10 +165,6 @@ bool runtime::gcpu::GCPUExecutable::call(const vector<shared_ptr<runtime::Tensor ...@@ -214,10 +165,6 @@ bool runtime::gcpu::GCPUExecutable::call(const vector<shared_ptr<runtime::Tensor
{ {
m_timer_map[op].stop(); m_timer_map[op].stop();
} }
if (m_nan_check_enabled)
{
perform_nan_check(op_outputs, op.get());
}
} }
return true; return true;
...@@ -231,17 +178,17 @@ void runtime::gcpu::GCPUExecutable::generate_calls(const element::Type& type, ...@@ -231,17 +178,17 @@ void runtime::gcpu::GCPUExecutable::generate_calls(const element::Type& type,
stringstream ss; stringstream ss;
switch (type) switch (type)
{ {
case element::Type_t::boolean: op_engine<char>(op, out, in); break; case element::Type_t::boolean: gop_engine<char>(op, out, in); break;
case element::Type_t::f32: op_engine<float>(op, out, in); break; case element::Type_t::f32: gop_engine<float>(op, out, in); break;
case element::Type_t::f64: op_engine<double>(op, out, in); break; case element::Type_t::f64: gop_engine<double>(op, out, in); break;
case element::Type_t::i8: op_engine<int8_t>(op, out, in); break; case element::Type_t::i8: gop_engine<int8_t>(op, out, in); break;
case element::Type_t::i16: op_engine<int16_t>(op, out, in); break; case element::Type_t::i16: gop_engine<int16_t>(op, out, in); break;
case element::Type_t::i32: op_engine<int32_t>(op, out, in); break; case element::Type_t::i32: gop_engine<int32_t>(op, out, in); break;
case element::Type_t::i64: op_engine<int64_t>(op, out, in); break; case element::Type_t::i64: gop_engine<int64_t>(op, out, in); break;
case element::Type_t::u8: op_engine<uint8_t>(op, out, in); break; case element::Type_t::u8: gop_engine<uint8_t>(op, out, in); break;
case element::Type_t::u16: op_engine<uint16_t>(op, out, in); break; case element::Type_t::u16: gop_engine<uint16_t>(op, out, in); break;
case element::Type_t::u32: op_engine<uint32_t>(op, out, in); break; case element::Type_t::u32: gop_engine<uint32_t>(op, out, in); break;
case element::Type_t::u64: op_engine<uint64_t>(op, out, in); break; case element::Type_t::u64: gop_engine<uint64_t>(op, out, in); break;
case element::Type_t::undefined: case element::Type_t::undefined:
case element::Type_t::dynamic: case element::Type_t::dynamic:
case element::Type_t::u1: case element::Type_t::u1:
...@@ -251,76 +198,3 @@ void runtime::gcpu::GCPUExecutable::generate_calls(const element::Type& type, ...@@ -251,76 +198,3 @@ void runtime::gcpu::GCPUExecutable::generate_calls(const element::Type& type,
throw ngraph_error(ss.str()); throw ngraph_error(ss.str());
} }
} }
void runtime::gcpu::GCPUExecutable::set_nan_check(bool enable)
{
m_nan_check_enabled = enable;
}
vector<runtime::PerformanceCounter> runtime::gcpu::GCPUExecutable::get_performance_data() const
{
vector<runtime::PerformanceCounter> rc;
for (const pair<shared_ptr<const Node>, stopwatch> p : m_timer_map)
{
rc.emplace_back(p.first, p.second.get_total_microseconds(), p.second.get_call_count());
}
return rc;
}
void runtime::gcpu::GCPUExecutable::perform_nan_check(const vector<shared_ptr<HostTensor>>& tensors,
const Node* op)
{
size_t arg_number = 1;
for (const shared_ptr<HostTensor>& tensor : tensors)
{
const element::Type& type = tensor->get_element_type();
if (type == element::f32)
{
const float* data = tensor->get_data_ptr<float>();
for (size_t i = 0; i < tensor->get_element_count(); i++)
{
if (std::isnan(data[i]))
{
if (op)
{
throw runtime_error("nan found in op '" + op->get_name() + "' output");
}
else
{
throw runtime_error("nan found in function's input tensor number " +
to_string(arg_number));
}
}
}
}
else if (type == element::f64)
{
const double* data = tensor->get_data_ptr<double>();
for (size_t i = 0; i < tensor->get_element_count(); i++)
{
if (std::isnan(data[i]))
{
if (op)
{
throw runtime_error("nan found in op '" + op->get_name() + "' output");
}
else
{
throw runtime_error("nan found in function's input tensor number " +
to_string(arg_number));
}
}
}
}
arg_number++;
}
}
void runtime::gcpu::GCPUExecutable::save(ostream& out)
{
cpio::Writer writer(out);
string si = "INTERPRETER Save File 1.0";
writer.write("save_info", si.data(), si.size());
string model = serialize(m_function, 0);
writer.write("model", model.data(), model.size());
}
...@@ -30,6 +30,7 @@ ...@@ -30,6 +30,7 @@
#include "ngraph/runtime/generic_cpu/kernel/dot.hpp" #include "ngraph/runtime/generic_cpu/kernel/dot.hpp"
#include "ngraph/runtime/generic_cpu/kernel/reshape.hpp" #include "ngraph/runtime/generic_cpu/kernel/reshape.hpp"
#include "ngraph/runtime/host_tensor.hpp" #include "ngraph/runtime/host_tensor.hpp"
#include "ngraph/runtime/interpreter/int_executable.hpp"
#include "ngraph/runtime/reference/abs.hpp" #include "ngraph/runtime/reference/abs.hpp"
#include "ngraph/runtime/reference/acos.hpp" #include "ngraph/runtime/reference/acos.hpp"
#include "ngraph/runtime/reference/add.hpp" #include "ngraph/runtime/reference/add.hpp"
...@@ -133,17 +134,17 @@ namespace ngraph ...@@ -133,17 +134,17 @@ namespace ngraph
// ... // ...
enum class OP_TYPEID enum class OP_TYPEID
{ {
#define NGRAPH_OP(NAME, NAMESPACE) a, #define NGRAPH_OP(NAME, NAMESPACE) NAME,
#include "ngraph/opsets/opset0_tbl.hpp" #include "ngraph/opsets/opset0_tbl.hpp"
#undef NGRAPH_OP #undef NGRAPH_OP
UnknownOp UnknownOp
}; };
} }
} // namespace gcpu }
} // namespace runtime }
} // namespace ngraph }
class ngraph::runtime::gcpu::GCPUExecutable : public Executable class ngraph::runtime::gcpu::GCPUExecutable : public runtime::interpreter::INTExecutable
{ {
friend class GCPUBackend; friend class GCPUBackend;
...@@ -154,1504 +155,44 @@ public: ...@@ -154,1504 +155,44 @@ public:
bool call(const std::vector<std::shared_ptr<Tensor>>& outputs, bool call(const std::vector<std::shared_ptr<Tensor>>& outputs,
const std::vector<std::shared_ptr<Tensor>>& intputs) override; const std::vector<std::shared_ptr<Tensor>>& intputs) override;
virtual void save(std::ostream& output_stream) override;
void set_nan_check(bool enable);
std::vector<PerformanceCounter> get_performance_data() const override;
private: private:
GCPUExecutable(const std::string& model_string);
int get_alignment() const { return 64; } int get_alignment() const { return 64; }
bool m_is_compiled = false;
bool m_nan_check_enabled = false;
bool m_performance_counters_enabled = false;
std::shared_ptr<Function> m_function;
std::unordered_map<std::shared_ptr<const Node>, stopwatch> m_timer_map;
std::vector<std::shared_ptr<Node>> m_nodes;
std::unordered_map<const Node*, std::shared_ptr<ngraph::State>> m_states;
std::set<std::string> m_unsupported_op_name_list;
static OP_TYPEID get_typeid(const NodeTypeInfo& type_info);
static void perform_nan_check(const std::vector<std::shared_ptr<HostTensor>>&,
const Node* op = nullptr);
void generate_calls(const element::Type& type, void generate_calls(const element::Type& type,
const Node& op, const Node& op,
const std::vector<std::shared_ptr<HostTensor>>& outputs, const std::vector<std::shared_ptr<HostTensor>>& outputs,
const std::vector<std::shared_ptr<HostTensor>>& inputs); const std::vector<std::shared_ptr<HostTensor>>& inputs) override;
template <typename T> template <typename T>
void op_engine(const Node& node, void gop_engine(const Node& node,
const std::vector<std::shared_ptr<HostTensor>>& out, const std::vector<std::shared_ptr<HostTensor>>& out,
const std::vector<std::shared_ptr<HostTensor>>& args) const std::vector<std::shared_ptr<HostTensor>>& args)
{ {
// We want to check that every OP_TYPEID enumeration is included in the list. switch (INTExecutable::get_typeid(node))
// These GCC flags enable compile-time checking so that if an enumeration
// is not in the list an error is generated.
#pragma GCC diagnostic push
#pragma GCC diagnostic error "-Wswitch"
#pragma GCC diagnostic error "-Wswitch-enum"
switch (get_typeid(node.get_type_info()))
{ {
case OP_TYPEID::Abs: case ngraph::runtime::interpreter::OP_TYPEID::Broadcast:
{
size_t element_count = shape_size(node.get_output_shape(0));
reference::abs<T>(
args[0]->get_data_ptr<const T>(), out[0]->get_data_ptr<T>(), element_count);
break;
}
case OP_TYPEID::Acos:
{
size_t element_count = shape_size(node.get_output_shape(0));
reference::acos<T>(
args[0]->get_data_ptr<const T>(), out[0]->get_data_ptr<T>(), element_count);
break;
}
case OP_TYPEID::Add:
{
size_t element_count = shape_size(node.get_output_shape(0));
reference::add<T>(args[0]->get_data_ptr<const T>(),
args[1]->get_data_ptr<const T>(),
out[0]->get_data_ptr<T>(),
element_count);
break;
}
case OP_TYPEID::All:
{
const op::All* all = static_cast<const op::All*>(&node);
reference::all(args[0]->get_data_ptr<const char>(),
out[0]->get_data_ptr<char>(),
node.get_input_shape(0),
node.get_output_shape(0),
all->get_reduction_axes());
break;
}
case OP_TYPEID::AllReduce:
{
const ngraph::op::AllReduce* allreduce =
static_cast<const ngraph::op::AllReduce*>(&node);
reference::allreduce<T>(args[0]->get_data_ptr<T>(),
out[0]->get_data_ptr<T>(),
node.get_input_element_type(0),
allreduce->get_reduce_type(),
static_cast<int>(shape_size(node.get_input_shape(0))));
break;
}
case OP_TYPEID::And:
{
size_t element_count = shape_size(node.get_output_shape(0));
reference::logical_and(args[0]->get_data_ptr<const T>(),
args[1]->get_data_ptr<const T>(),
out[0]->get_data_ptr<T>(),
element_count);
break;
}
case OP_TYPEID::Any:
{
const op::Any* any = static_cast<const op::Any*>(&node);
reference::any(args[0]->get_data_ptr<const char>(),
out[0]->get_data_ptr<char>(),
node.get_input_shape(0),
node.get_output_shape(0),
any->get_reduction_axes());
break;
}
case OP_TYPEID::ArgMin:
{
const op::ArgMin* argmin = static_cast<const op::ArgMin*>(&node);
auto element_type = node.get_output_element_type(0);
if (element_type == element::i64)
{
reference::argmin<T, int64_t>(args[0]->get_data_ptr<const T>(),
out[0]->get_data_ptr<int64_t>(),
node.get_input_shape(0),
node.get_output_shape(0),
argmin->get_reduction_axis());
}
else if (element_type == element::i32)
{
reference::argmin<T, int32_t>(args[0]->get_data_ptr<const T>(),
out[0]->get_data_ptr<int32_t>(),
node.get_input_shape(0),
node.get_output_shape(0),
argmin->get_reduction_axis());
}
else
{
throw ngraph_error("Unexpected type");
}
break;
}
case OP_TYPEID::ArgMax:
{
const op::ArgMax* argmax = static_cast<const op::ArgMax*>(&node);
auto element_type = node.get_output_element_type(0);
if (element_type == element::i64)
{
reference::argmax<T, int64_t>(args[0]->get_data_ptr<const T>(),
out[0]->get_data_ptr<int64_t>(),
node.get_input_shape(0),
node.get_output_shape(0),
argmax->get_reduction_axis());
}
else if (element_type == element::i32)
{
reference::argmax<T, int32_t>(args[0]->get_data_ptr<const T>(),
out[0]->get_data_ptr<int32_t>(),
node.get_input_shape(0),
node.get_output_shape(0),
argmax->get_reduction_axis());
}
else
{
throw ngraph_error("Unexpected type");
}
break;
}
case OP_TYPEID::Asin:
{
size_t element_count = shape_size(node.get_output_shape(0));
reference::asin<T>(
args[0]->get_data_ptr<const T>(), out[0]->get_data_ptr<T>(), element_count);
break;
}
case OP_TYPEID::Atan:
{
size_t element_count = shape_size(node.get_output_shape(0));
reference::atan<T>(
args[0]->get_data_ptr<const T>(), out[0]->get_data_ptr<T>(), element_count);
break;
}
case OP_TYPEID::Atan2:
{
size_t element_count = shape_size(node.get_output_shape(0));
reference::atan2<T>(args[0]->get_data_ptr<const T>(),
args[1]->get_data_ptr<const T>(),
out[0]->get_data_ptr<T>(),
element_count);
break;
}
case OP_TYPEID::AvgPool:
{
const op::AvgPool* avg_pool = static_cast<const op::AvgPool*>(&node);
reference::avg_pool<T>(args[0]->get_data_ptr<const T>(),
out[0]->get_data_ptr<T>(),
node.get_input_shape(0),
node.get_output_shape(0),
avg_pool->get_window_shape(),
avg_pool->get_window_movement_strides(),
avg_pool->get_padding_below(),
avg_pool->get_padding_above(),
avg_pool->get_include_padding_in_avg_computation());
break;
}
case OP_TYPEID::GenerateMask:
{
bool use_seed = static_cast<bool>(args[2]->get_data_ptr<const int32_t>()[0]);
if (m_states.count(&node) == 0)
{
const op::GenerateMask* gm = static_cast<const op::GenerateMask*>(&node);
auto seed = use_seed ? gm->get_seed() : 0;
m_states[&node] = std::unique_ptr<ngraph::State>(
new ngraph::BernoulliRNGState(seed, gm->get_probability()));
}
bool training = static_cast<bool>(args[0]->get_data_ptr<const T>()[0]);
auto state = static_cast<ngraph::BernoulliRNGState*>(m_states.at(&node).get());
size_t element_count = shape_size(node.get_output_shape(0));
if (!use_seed)
{
reference::generate_mask<T>(
out[0]->get_data_ptr<T>(), element_count, state, training);
}
else
{
uint64_t seed = static_cast<uint64_t>(args[3]->get_data_ptr<const T>()[0]);
double prob = static_cast<double>(args[4]->get_data_ptr<const T>()[0]);
reference::generate_mask_no_state<T>(
out[0]->get_data_ptr<T>(), element_count, training, seed, prob);
}
break;
}
case OP_TYPEID::GetOutputElement:
{
const op::GetOutputElement* get_output_element =
static_cast<const op::GetOutputElement*>(&node);
size_t n = get_output_element->get_n();
size_t element_count = shape_size(node.get_output_shape(0));
size_t num_bytes = element_count * node.get_output_element_type(0).size();
std::memcpy(out[0]->get_data_ptr<T>(), args[n]->get_data_ptr<T>(), num_bytes);
break;
}
case OP_TYPEID::BatchMatMul:
{
reference::batch_mat_mul(args[0]->get_data_ptr<const T>(),
args[1]->get_data_ptr<const T>(),
out[0]->get_data_ptr<T>(),
node.get_input_shape(0),
node.get_input_shape(1),
node.get_output_shape(0));
break;
}
case OP_TYPEID::BatchNormTraining:
{
const ngraph::op::BatchNormTraining* bn =
static_cast<const ngraph::op::BatchNormTraining*>(&node);
reference::batch_norm_training<T>(bn->get_eps_value(),
args[0]->get_data_ptr<const T>(),
args[1]->get_data_ptr<const T>(),
args[2]->get_data_ptr<const T>(),
out[0]->get_data_ptr<T>(),
out[1]->get_data_ptr<T>(),
out[2]->get_data_ptr<T>(),
node.get_input_shape(2));
break;
}
case OP_TYPEID::BatchNormInference:
{
const ngraph::op::BatchNormInference* bn =
static_cast<const ngraph::op::BatchNormInference*>(&node);
reference::batch_norm_inference<T>(bn->get_eps_value(),
args[0]->get_data_ptr<const T>(),
args[1]->get_data_ptr<const T>(),
args[2]->get_data_ptr<const T>(),
args[3]->get_data_ptr<const T>(),
args[4]->get_data_ptr<const T>(),
out[0]->get_data_ptr<T>(),
node.get_input_shape(2));
break;
}
case OP_TYPEID::BatchNormTrainingBackprop:
{
const ngraph::op::BatchNormTrainingBackprop* bn_bprop =
static_cast<const ngraph::op::BatchNormTrainingBackprop*>(&node);
reference::batch_norm_backprop(bn_bprop->get_eps_value(),
args[0]->get_data_ptr<const T>(),
args[1]->get_data_ptr<const T>(),
args[2]->get_data_ptr<const T>(),
args[3]->get_data_ptr<const T>(),
args[4]->get_data_ptr<const T>(),
args[5]->get_data_ptr<const T>(),
out[0]->get_data_ptr<T>(),
out[1]->get_data_ptr<T>(),
out[2]->get_data_ptr<T>(),
node.get_input_shape(2));
break;
}
case OP_TYPEID::AvgPoolBackprop:
{
const op::AvgPoolBackprop* apb = static_cast<const op::AvgPoolBackprop*>(&node);
reference::avg_pool_backprop<T>(args[0]->get_data_ptr<const T>(),
out[0]->get_data_ptr<T>(),
node.get_input_shape(0),
node.get_output_shape(0),
apb->get_window_shape(),
apb->get_window_movement_strides(),
apb->get_padding_below(),
apb->get_padding_above(),
apb->get_include_padding_in_avg_computation());
break;
}
case OP_TYPEID::Broadcast:
{ {
const op::Broadcast* broadcast = static_cast<const op::Broadcast*>(&node); const op::Broadcast* broadcast = static_cast<const op::Broadcast*>(&node);
Shape in_shape = node.get_input_shape(0); Shape in_shape = node.get_input_shape(0);
Shape out_shape = node.get_output_shape(0); Shape out_shape = node.get_output_shape(0);
AxisSet broadcast_axes = broadcast->get_broadcast_axes(); AxisSet broadcast_axes = broadcast->get_broadcast_axes();
kernel::broadcast<T>(args[0]->get_data_ptr<const T>(), reference::broadcast<T>(args[0]->get_data_ptr<const T>(),
out[0]->get_data_ptr<T>(), out[0]->get_data_ptr<T>(),
in_shape, in_shape,
out_shape, out_shape,
broadcast_axes); broadcast_axes);
break;
}
case OP_TYPEID::BroadcastDistributed:
{
const ngraph::op::BroadcastDistributed* broadcast =
static_cast<const ngraph::op::BroadcastDistributed*>(&node);
int rank_ID;
rank_ID = get_distributed_interface()->get_rank();
int root_id = broadcast->get_root_id();
if (rank_ID == root_id)
{
reference::broadcastdistributed<T>(
args[0]->get_data_ptr<T>(),
node.get_input_element_type(0),
static_cast<int>(shape_size(node.get_input_shape(0))),
root_id);
auto memSize = static_cast<int>(shape_size(node.get_input_shape(0))) * sizeof(T);
memcpy(out[0]->get_data_ptr<T>(), args[0]->get_data_ptr<T>(), memSize);
}
else
{
reference::broadcastdistributed<T>(
out[0]->get_data_ptr<T>(),
node.get_input_element_type(0),
static_cast<int>(shape_size(node.get_input_shape(0))),
root_id);
}
break;
}
case OP_TYPEID::BroadcastLike: break;
case OP_TYPEID::Ceiling:
{
size_t element_count = shape_size(node.get_output_shape(0));
reference::ceiling<T>(
args[0]->get_data_ptr<const T>(), out[0]->get_data_ptr<T>(), element_count);
break;
}
case OP_TYPEID::Concat:
{
const op::Concat* concat = static_cast<const op::Concat*>(&node);
std::vector<const T*> in_args;
std::vector<Shape> in_shapes;
for (size_t i = 0; i < node.get_input_size(); i++)
{
in_args.push_back(args[i]->get_data_ptr<const T>());
in_shapes.push_back(node.get_input_shape(i));
}
reference::concat<T>(in_args,
out[0]->get_data_ptr<T>(),
in_shapes,
node.get_output_shape(0),
concat->get_concatenation_axis());
break;
}
case OP_TYPEID::Constant:
{
const op::Constant* c = static_cast<const op::Constant*>(&node);
size_t element_count = shape_size(node.get_output_shape(0));
reference::constant<T>(c->get_data_ptr<T>(), out[0]->get_data_ptr<T>(), element_count);
break;
}
case OP_TYPEID::ScalarConstantLike: break;
case OP_TYPEID::Convert:
{
// const op::Convert* c = static_cast<const op::Convert*>(&node);
element::Type type = node.get_element_type();
std::stringstream ss;
size_t element_count = shape_size(node.get_output_shape(0));
switch (type)
{
case element::Type_t::boolean:
reference::convert_to_bool<T>(
args[0]->get_data_ptr<const T>(), out[0]->get_data_ptr<char>(), element_count);
break;
case element::Type_t::f32:
reference::convert<T>(
args[0]->get_data_ptr<const T>(), out[0]->get_data_ptr<float>(), element_count);
break;
case element::Type_t::f64:
reference::convert<T>(args[0]->get_data_ptr<const T>(),
out[0]->get_data_ptr<double>(),
element_count);
break;
case element::Type_t::i8:
reference::convert<T>(args[0]->get_data_ptr<const T>(),
out[0]->get_data_ptr<int8_t>(),
element_count);
break;
case element::Type_t::i16:
reference::convert<T>(args[0]->get_data_ptr<const T>(),
out[0]->get_data_ptr<int16_t>(),
element_count);
break;
case element::Type_t::i32:
reference::convert<T>(args[0]->get_data_ptr<const T>(),
out[0]->get_data_ptr<int32_t>(),
element_count);
break;
case element::Type_t::i64:
reference::convert<T>(args[0]->get_data_ptr<const T>(),
out[0]->get_data_ptr<int64_t>(),
element_count);
break;
case element::Type_t::u8:
reference::convert<T>(args[0]->get_data_ptr<const T>(),
out[0]->get_data_ptr<uint8_t>(),
element_count);
break;
case element::Type_t::u16:
reference::convert<T>(args[0]->get_data_ptr<const T>(),
out[0]->get_data_ptr<uint16_t>(),
element_count);
break;
case element::Type_t::u32:
reference::convert<T>(args[0]->get_data_ptr<const T>(),
out[0]->get_data_ptr<uint32_t>(),
element_count);
break;
case element::Type_t::u64:
reference::convert<T>(args[0]->get_data_ptr<const T>(),
out[0]->get_data_ptr<uint64_t>(),
element_count);
break;
case element::Type_t::undefined:
case element::Type_t::dynamic:
case element::Type_t::u1:
case element::Type_t::bf16:
case element::Type_t::f16:
ss << "unsupported element type " << type << " op Convert";
throw std::runtime_error(ss.str());
}
break;
}
case OP_TYPEID::Convolution:
{
const op::Convolution* c = static_cast<const op::Convolution*>(&node);
reference::convolution<T>(args[0]->get_data_ptr<const T>(),
args[1]->get_data_ptr<const T>(),
out[0]->get_data_ptr<T>(),
node.get_input_shape(0),
node.get_input_shape(1),
node.get_output_shape(0),
c->get_window_movement_strides(),
c->get_window_dilation_strides(),
c->get_padding_below(),
c->get_padding_above(),
c->get_data_dilation_strides());
break;
}
case OP_TYPEID::ConvolutionBackpropFilters:
{
const op::ConvolutionBackpropFilters* c =
static_cast<const op::ConvolutionBackpropFilters*>(&node);
reference::convolution_backprop_filter<T>(
args[0]->get_data_ptr<const T>(), // input
args[1]->get_data_ptr<const T>(), // delta_convolution_output
out[0]->get_data_ptr<T>(), // delta_filter
c->get_input_shape(0), // input_shape
c->get_input_shape(1), // convolution_output_shape
c->get_filters_shape(), // filter_shape
c->get_window_dilation_strides_forward(),
c->get_window_movement_strides_forward(),
c->get_padding_below_forward(),
c->compute_backward_in_pad_above(),
c->get_data_dilation_strides_forward());
break;
}
case OP_TYPEID::ConvolutionBackpropData:
{
// Note that args[1] and args[0] are switched here from the usual order.
const op::ConvolutionBackpropData* c =
static_cast<const op::ConvolutionBackpropData*>(&node);
reference::convolution_backprop_in<T>(args[1]->get_data_ptr<const T>(),
args[0]->get_data_ptr<const T>(),
out[0]->get_data_ptr<T>(),
c->get_input_shape(1),
c->get_input_shape(0),
c->get_data_batch_shape(),
c->get_data_dilation_strides_forward(),
c->get_window_dilation_strides_forward(),
c->compute_backward_delta_out_pad_below(),
c->compute_backward_delta_out_pad_above(),
c->get_window_movement_strides_forward());
break;
}
case OP_TYPEID::Cos:
{
size_t element_count = shape_size(node.get_output_shape(0));
reference::cos<T>(
args[0]->get_data_ptr<const T>(), out[0]->get_data_ptr<T>(), element_count);
break;
}
case OP_TYPEID::Cosh:
{
size_t element_count = shape_size(node.get_output_shape(0));
reference::cosh<T>(
args[0]->get_data_ptr<const T>(), out[0]->get_data_ptr<T>(), element_count);
break;
}
case OP_TYPEID::Dequantize:
{
const op::Dequantize* dequantize = static_cast<const op::Dequantize*>(&node);
auto type = dequantize->get_element_type();
if (type == element::f32)
{
reference::dequantize<T>(args[0]->get_data_ptr<const T>(),
args[1]->get_data_ptr<const float>(),
args[2]->get_data_ptr<const T>(),
out[0]->get_data_ptr<float>(),
node.get_input_shape(0),
node.get_input_shape(1),
dequantize->get_axes());
}
else if (type == element::f64)
{
reference::dequantize<T>(args[0]->get_data_ptr<const T>(),
args[1]->get_data_ptr<const double>(),
args[2]->get_data_ptr<const T>(),
out[0]->get_data_ptr<double>(),
node.get_input_shape(0),
node.get_input_shape(1),
dequantize->get_axes());
}
else
{
std::stringstream ss;
ss << "unsupported element type " << type << " op Dequantize";
throw std::runtime_error(ss.str());
}
break;
}
case OP_TYPEID::Divide:
{
const op::Divide* divop = static_cast<const op::Divide*>(&node);
size_t element_count = shape_size(node.get_output_shape(0));
reference::divide<T>(args[0]->get_data_ptr<const T>(),
args[1]->get_data_ptr<const T>(),
out[0]->get_data_ptr<T>(),
element_count,
divop->is_pythondiv());
break;
}
case OP_TYPEID::Dot:
{
const op::Dot* dot = static_cast<const op::Dot*>(&node);
kernel::dot(args[0]->get_data_ptr<const T>(),
args[1]->get_data_ptr<const T>(),
out[0]->get_data_ptr<T>(),
node.get_input_shape(0),
node.get_input_shape(1),
node.get_output_shape(0),
dot->get_reduction_axes_count());
break;
}
case OP_TYPEID::DynReshape:
{
throw unsupported_op("Unsupported op '" + node.description() + "'");
break;
}
case OP_TYPEID::DynSlice:
{
throw unsupported_op("Unsupported op '" + node.description() + "'");
break;
}
case OP_TYPEID::EmbeddingLookup:
{
const op::EmbeddingLookup* embed = static_cast<const op::EmbeddingLookup*>(&node);
auto type = embed->get_argument(0)->get_element_type();
size_t element_count = shape_size(embed->get_argument(0)->get_shape());
if (type == element::f32)
{
reference::embedding<T, float>(args[0]->get_data_ptr<const float>(),
args[1]->get_data_ptr<const T>(),
out[0]->get_data_ptr<T>(),
element_count,
embed->get_shape());
}
else if (type == element::f64)
{
reference::embedding<T, double>(args[0]->get_data_ptr<const double>(),
args[1]->get_data_ptr<const T>(),
out[0]->get_data_ptr<T>(),
element_count,
embed->get_shape());
}
else if (type == element::i32)
{
reference::embedding<T, int32_t>(args[0]->get_data_ptr<const int>(),
args[1]->get_data_ptr<const T>(),
out[0]->get_data_ptr<T>(),
element_count,
embed->get_shape());
}
else if (type == element::i64)
{
reference::embedding<T, int64_t>(args[0]->get_data_ptr<const int64_t>(),
args[1]->get_data_ptr<const T>(),
out[0]->get_data_ptr<T>(),
element_count,
embed->get_shape());
}
else
{
throw ngraph_error(std::string("Unsupported index type ") + type.c_type_string() +
std::string("in EmbeddingLookup"));
}
break;
}
case OP_TYPEID::Equal:
{
size_t element_count = shape_size(node.get_output_shape(0));
reference::equal<T>(args[0]->get_data_ptr<const T>(),
args[1]->get_data_ptr<const T>(),
out[0]->get_data_ptr<char>(),
element_count);
break;
}
case OP_TYPEID::Erf:
{
size_t element_count = shape_size(node.get_output_shape(0));
reference::erf<T>(
args[0]->get_data_ptr<const T>(), out[0]->get_data_ptr<T>(), element_count);
break;
}
case OP_TYPEID::Exp:
{
size_t element_count = shape_size(node.get_output_shape(0));
reference::exp<T>(
args[0]->get_data_ptr<const T>(), out[0]->get_data_ptr<T>(), element_count);
break;
}
#ifdef INTERPRETER_USE_HYBRID
case OP_TYPEID::FunctionCall:
{
auto f = static_cast<const runtime::hybrid::op::FunctionCall*>(&node);
auto backend = f->get_backend();
auto executable = f->get_executable();
std::vector<std::shared_ptr<Tensor>> outputs;
std::vector<std::shared_ptr<Tensor>> inputs;
for (const std::shared_ptr<HostTensor>& t : out)
{
auto backend_tensor = backend->create_tensor(
t->get_element_type(), t->get_shape(), t->get_data_ptr());
outputs.push_back(backend_tensor);
}
for (const std::shared_ptr<HostTensor>& t : args)
{
auto backend_tensor = backend->create_tensor(
t->get_element_type(), t->get_shape(), t->get_data_ptr());
inputs.push_back(backend_tensor);
}
executable->call(outputs, inputs);
break;
}
#endif
case OP_TYPEID::Floor:
{
size_t element_count = shape_size(node.get_output_shape(0));
reference::floor<T>(
args[0]->get_data_ptr<const T>(), out[0]->get_data_ptr<T>(), element_count);
break;
}
case OP_TYPEID::Gather:
{
const op::Gather* gather = static_cast<const op::Gather*>(&node);
if (node.get_input_element_type(1) == element::i64)
{
reference::gather<T, int64_t>(args[0]->get_data_ptr<T>(),
args[1]->get_data_ptr<int64_t>(),
out[0]->get_data_ptr<T>(),
node.get_input_shape(0),
node.get_input_shape(1),
node.get_output_shape(0),
gather->get_axis());
}
else if (node.get_input_element_type(1) == element::i32)
{
reference::gather<T, int32_t>(args[0]->get_data_ptr<T>(),
args[1]->get_data_ptr<int32_t>(),
out[0]->get_data_ptr<T>(),
node.get_input_shape(0),
node.get_input_shape(1),
node.get_output_shape(0),
gather->get_axis());
}
else
{
throw ngraph_error("Unexpected type");
}
break;
}
case OP_TYPEID::GatherND:
{
if (node.get_input_element_type(1) == element::i64)
{
reference::gather_nd<T, int64_t>(args[0]->get_data_ptr<T>(),
args[1]->get_data_ptr<int64_t>(),
out[0]->get_data_ptr<T>(),
node.get_input_shape(0),
node.get_input_shape(1),
node.get_output_shape(0));
}
else if (node.get_input_element_type(1) == element::i32)
{
reference::gather_nd<T, int32_t>(args[0]->get_data_ptr<T>(),
args[1]->get_data_ptr<int32_t>(),
out[0]->get_data_ptr<T>(),
node.get_input_shape(0),
node.get_input_shape(1),
node.get_output_shape(0));
}
else
{
throw ngraph_error("Unexpected type");
}
break;
}
case OP_TYPEID::Greater:
{
size_t element_count = shape_size(node.get_output_shape(0));
reference::greater<T>(args[0]->get_data_ptr<const T>(),
args[1]->get_data_ptr<const T>(),
out[0]->get_data_ptr<char>(),
element_count);
break;
}
case OP_TYPEID::GreaterEq:
{
size_t element_count = shape_size(node.get_output_shape(0));
reference::greater_eq<T>(args[0]->get_data_ptr<const T>(),
args[1]->get_data_ptr<const T>(),
out[0]->get_data_ptr<char>(),
element_count);
break;
}
case OP_TYPEID::Less:
{
size_t element_count = shape_size(node.get_output_shape(0));
reference::less<T>(args[0]->get_data_ptr<const T>(),
args[1]->get_data_ptr<const T>(),
out[0]->get_data_ptr<char>(),
element_count);
break;
}
case OP_TYPEID::LessEq:
{
size_t element_count = shape_size(node.get_output_shape(0));
reference::less_eq<T>(args[0]->get_data_ptr<const T>(),
args[1]->get_data_ptr<const T>(),
out[0]->get_data_ptr<char>(),
element_count);
break;
}
case OP_TYPEID::Log:
{
size_t element_count = shape_size(node.get_output_shape(0));
reference::log<T>(
args[0]->get_data_ptr<const T>(), out[0]->get_data_ptr<T>(), element_count);
break;
}
case OP_TYPEID::LRN:
{
const op::LRN* lrn = static_cast<const op::LRN*>(&node);
reference::lrn<T>(args[0]->get_data_ptr<const T>(),
lrn->get_reduction_axes(),
out[0]->get_data_ptr<T>(),
node.get_input_shape(0),
lrn->get_alpha(),
lrn->get_beta(),
lrn->get_bias(),
lrn->get_nsize());
break;
}
case OP_TYPEID::Max:
{
const op::Max* max = static_cast<const op::Max*>(&node);
reference::max<T>(args[0]->get_data_ptr<const T>(),
out[0]->get_data_ptr<T>(),
node.get_input_shape(0),
node.get_output_shape(0),
max->get_reduction_axes());
break;
}
case OP_TYPEID::Maximum:
{
size_t element_count = shape_size(node.get_output_shape(0));
reference::maximum<T>(args[0]->get_data_ptr<const T>(),
args[1]->get_data_ptr<const T>(),
out[0]->get_data_ptr<T>(),
element_count);
break;
}
case OP_TYPEID::MaxPool:
{
const op::MaxPool* max_pool = static_cast<const op::MaxPool*>(&node);
reference::max_pool<T>(args[0]->get_data_ptr<const T>(),
out[0]->get_data_ptr<T>(),
node.get_input_shape(0),
node.get_output_shape(0),
max_pool->get_window_shape(),
max_pool->get_window_movement_strides(),
max_pool->get_padding_below(),
max_pool->get_padding_above());
break;
}
case OP_TYPEID::MaxPoolBackprop:
{
const op::MaxPoolBackprop* max_pool_backprop =
static_cast<const op::MaxPoolBackprop*>(&node);
reference::max_pool_backprop<T>(args[0]->get_data_ptr<const T>(),
args[1]->get_data_ptr<const T>(),
out[0]->get_data_ptr<T>(),
node.get_input_shape(1),
node.get_output_shape(0),
max_pool_backprop->get_window_shape(),
max_pool_backprop->get_window_movement_strides(),
max_pool_backprop->get_padding_below(),
max_pool_backprop->get_padding_above());
break;
}
case OP_TYPEID::Min:
{
const op::Min* min = static_cast<const op::Min*>(&node);
reference::min<T>(args[0]->get_data_ptr<const T>(),
out[0]->get_data_ptr<T>(),
node.get_input_shape(0),
node.get_output_shape(0),
min->get_reduction_axes());
break;
}
case OP_TYPEID::Minimum:
{
size_t element_count = shape_size(node.get_output_shape(0));
reference::minimum<T>(args[0]->get_data_ptr<const T>(),
args[1]->get_data_ptr<const T>(),
out[0]->get_data_ptr<T>(),
element_count);
break;
}
case OP_TYPEID::Multiply:
{
size_t element_count = shape_size(node.get_output_shape(0));
reference::multiply<T>(args[0]->get_data_ptr<const T>(),
args[1]->get_data_ptr<const T>(),
out[0]->get_data_ptr<T>(),
element_count);
break;
}
case OP_TYPEID::Negative:
{
size_t element_count = shape_size(node.get_output_shape(0));
reference::negate<T>(
args[0]->get_data_ptr<const T>(), out[0]->get_data_ptr<T>(), element_count);
break;
}
case OP_TYPEID::Not:
{
size_t element_count = shape_size(node.get_output_shape(0));
reference::logical_not(
args[0]->get_data_ptr<const T>(), out[0]->get_data_ptr<T>(), element_count);
break;
}
case OP_TYPEID::NotEqual:
{
size_t element_count = shape_size(node.get_output_shape(0));
reference::not_equal<T>(args[0]->get_data_ptr<const T>(),
args[1]->get_data_ptr<const T>(),
out[0]->get_data_ptr<char>(),
element_count);
break;
}
case OP_TYPEID::OneHot:
{
const op::OneHot* oh = static_cast<const op::OneHot*>(&node);
reference::one_hot<T>(args[0]->get_data_ptr<const T>(),
out[0]->get_data_ptr<T>(),
node.get_input_shape(0),
node.get_output_shape(0),
oh->get_one_hot_axis());
break;
}
case OP_TYPEID::Or:
{
size_t element_count = shape_size(node.get_output_shape(0));
reference::logical_or(args[0]->get_data_ptr<const T>(),
args[1]->get_data_ptr<const T>(),
out[0]->get_data_ptr<T>(),
element_count);
break;
}
case OP_TYPEID::Parameter: break;
case OP_TYPEID::Passthrough:
{
const op::Passthrough* passthrough = static_cast<const op::Passthrough*>(&node);
throw unsupported_op{"Unsupported operation language: " + passthrough->language()};
}
case OP_TYPEID::Pad:
{
const op::Pad* pad = static_cast<const op::Pad*>(&node);
reference::pad(args[0]->get_data_ptr<const T>(),
args[1]->get_data_ptr<const T>(),
out[0]->get_data_ptr<T>(),
node.input(0).get_shape(),
node.output(0).get_shape(),
pad->get_padding_below(),
pad->get_padding_above(),
pad->get_pad_mode());
break;
}
case OP_TYPEID::Power:
{
size_t element_count = shape_size(node.get_output_shape(0));
reference::power<T>(args[0]->get_data_ptr<const T>(),
args[1]->get_data_ptr<const T>(),
out[0]->get_data_ptr<T>(),
element_count);
break;
}
case OP_TYPEID::Product:
{
const op::Product* product = static_cast<const op::Product*>(&node);
reference::product<T>(args[0]->get_data_ptr<const T>(),
out[0]->get_data_ptr<T>(),
node.get_input_shape(0),
node.get_output_shape(0),
product->get_reduction_axes());
break;
}
case OP_TYPEID::Quantize:
{
const op::Quantize* quantize = static_cast<const op::Quantize*>(&node);
auto type = quantize->get_element_type();
if (type == element::u8)
{
reference::quantize<T>(args[0]->get_data_ptr<const T>(),
args[1]->get_data_ptr<const T>(),
args[2]->get_data_ptr<const uint8_t>(),
out[0]->get_data_ptr<uint8_t>(),
node.get_input_shape(0),
node.get_input_shape(1),
quantize->get_axes(),
quantize->get_round_mode());
}
else if (type == element::i8)
{
reference::quantize<T>(args[0]->get_data_ptr<const T>(),
args[1]->get_data_ptr<const T>(),
args[2]->get_data_ptr<const int8_t>(),
out[0]->get_data_ptr<int8_t>(),
node.get_input_shape(0),
node.get_input_shape(1),
quantize->get_axes(),
quantize->get_round_mode());
}
else if (type == element::i32)
{
reference::quantize<T>(args[0]->get_data_ptr<const T>(),
args[1]->get_data_ptr<const T>(),
args[2]->get_data_ptr<const int32_t>(),
out[0]->get_data_ptr<int32_t>(),
node.get_input_shape(0),
node.get_input_shape(1),
quantize->get_axes(),
quantize->get_round_mode());
}
else
{
std::stringstream ss;
ss << "unsupported element type " << type << " op Quantize";
throw std::runtime_error(ss.str());
}
break;
}
case OP_TYPEID::QuantizedConvolution:
{
const op::QuantizedConvolution* qc =
static_cast<const op::QuantizedConvolution*>(&node);
auto input_element_type = qc->get_input_element_type(0);
auto filter_element_type = qc->get_input_element_type(1);
auto output_element_type = qc->get_output_element_type(0);
if (input_element_type == element::u8 && filter_element_type == element::i8 &&
output_element_type == element::i8)
{
reference::convolution<uint8_t, int8_t, int8_t, int32_t>(
args[0]->get_data_ptr<const uint8_t>(),
args[1]->get_data_ptr<const int8_t>(),
out[0]->get_data_ptr<int8_t>(),
node.get_input_shape(0),
node.get_input_shape(1),
node.get_output_shape(0),
qc->get_window_movement_strides(),
qc->get_window_dilation_strides(),
qc->get_padding_below(),
qc->get_padding_above(),
qc->get_data_dilation_strides(),
args[2]->get_data_ptr<const float>(),
args[3]->get_data_ptr<const uint8_t>(),
args[4]->get_data_ptr<const float>(),
args[5]->get_data_ptr<const int8_t>(),
args[6]->get_data_ptr<const float>(),
args[7]->get_data_ptr<const int8_t>());
}
else if (input_element_type == element::u8 && filter_element_type == element::u8 &&
output_element_type == element::u8)
{
reference::convolution<uint8_t, uint8_t, uint8_t, int32_t>(
args[0]->get_data_ptr<const uint8_t>(),
args[1]->get_data_ptr<const uint8_t>(),
out[0]->get_data_ptr<uint8_t>(),
node.get_input_shape(0),
node.get_input_shape(1),
node.get_output_shape(0),
qc->get_window_movement_strides(),
qc->get_window_dilation_strides(),
qc->get_padding_below(),
qc->get_padding_above(),
qc->get_data_dilation_strides(),
args[2]->get_data_ptr<const float>(),
args[3]->get_data_ptr<const uint8_t>(),
args[4]->get_data_ptr<const float>(),
args[5]->get_data_ptr<const uint8_t>(),
args[6]->get_data_ptr<const float>(),
args[7]->get_data_ptr<const uint8_t>());
}
else if (input_element_type == element::u8 && filter_element_type == element::i8 &&
output_element_type == element::i32)
{
reference::convolution<uint8_t, int8_t, int32_t, int32_t>(
args[0]->get_data_ptr<const uint8_t>(),
args[1]->get_data_ptr<const int8_t>(),
out[0]->get_data_ptr<int32_t>(),
node.get_input_shape(0),
node.get_input_shape(1),
node.get_output_shape(0),
qc->get_window_movement_strides(),
qc->get_window_dilation_strides(),
qc->get_padding_below(),
qc->get_padding_above(),
qc->get_data_dilation_strides(),
args[2]->get_data_ptr<const float>(),
args[3]->get_data_ptr<const uint8_t>(),
args[4]->get_data_ptr<const float>(),
args[5]->get_data_ptr<const int8_t>(),
args[6]->get_data_ptr<const float>(),
args[7]->get_data_ptr<const int32_t>());
}
else if (input_element_type == element::u8 && filter_element_type == element::u8 &&
output_element_type == element::i32)
{
reference::convolution<uint8_t, uint8_t, int32_t, int32_t>(
args[0]->get_data_ptr<const uint8_t>(),
args[1]->get_data_ptr<const uint8_t>(),
out[0]->get_data_ptr<int32_t>(),
node.get_input_shape(0),
node.get_input_shape(1),
node.get_output_shape(0),
qc->get_window_movement_strides(),
qc->get_window_dilation_strides(),
qc->get_padding_below(),
qc->get_padding_above(),
qc->get_data_dilation_strides(),
args[2]->get_data_ptr<const float>(),
args[3]->get_data_ptr<const uint8_t>(),
args[4]->get_data_ptr<const float>(),
args[5]->get_data_ptr<const uint8_t>(),
args[6]->get_data_ptr<const float>(),
args[7]->get_data_ptr<const int32_t>());
}
else
{
std::stringstream ss;
ss << "unsupported element type";
throw std::runtime_error(ss.str());
}
break;
}
case OP_TYPEID::QuantizedConvolutionBias:
case OP_TYPEID::QuantizedConvolutionBiasAdd:
case OP_TYPEID::QuantizedConvolutionBiasSignedAdd:
case OP_TYPEID::QuantizedConvolutionRelu:
case OP_TYPEID::QuantizedDotBias:
case OP_TYPEID::QuantizedDot:
{
throw unsupported_op("Unsupported op '" + node.description() +
"' in Interpreter back end.");
}
case OP_TYPEID::Recv:
{
size_t element_count = shape_size(node.get_output_shape(0));
size_t memSize = element_count * sizeof(T);
const auto* op = static_cast<const ngraph::op::Recv*>(&node);
int src_id = op->get_src_id();
reference::recv<T>(
args[0]->get_data_ptr<T>(), node.get_input_element_type(0), element_count, src_id);
memcpy(out[0]->get_data_ptr<T>(), args[0]->get_data_ptr<T>(), memSize);
break;
}
case OP_TYPEID::Range:
{
throw unsupported_op("Unsupported op '" + node.description() + "'");
break;
}
case OP_TYPEID::Relu:
{
size_t element_count = shape_size(node.get_output_shape(0));
reference::relu<T>(
args[0]->get_data_ptr<const T>(), out[0]->get_data_ptr<T>(), element_count);
break;
}
case OP_TYPEID::ReluBackprop:
{
size_t element_count = shape_size(node.get_output_shape(0));
reference::relu_backprop<T>(args[0]->get_data_ptr<const T>(),
args[1]->get_data_ptr<const T>(),
out[0]->get_data_ptr<T>(),
element_count);
break;
}
case OP_TYPEID::ReplaceSlice:
{
const op::ReplaceSlice* slice = static_cast<const op::ReplaceSlice*>(&node);
reference::replace_slice<T>(args[0]->get_data_ptr<const T>(),
args[1]->get_data_ptr<const T>(),
out[0]->get_data_ptr<T>(),
node.get_input_shape(1),
slice->get_lower_bounds(),
slice->get_upper_bounds(),
slice->get_strides(),
node.get_output_shape(0));
break; break;
} }
case OP_TYPEID::Reshape: case ngraph::runtime::interpreter::OP_TYPEID::Reshape:
{ {
const op::Reshape* reshape = static_cast<const op::Reshape*>(&node); const op::Reshape* reshape = static_cast<const op::Reshape*>(&node);
kernel::reshape(args[0]->get_data_ptr<const T>(), reference::reshape(args[0]->get_data_ptr<const T>(),
out[0]->get_data_ptr<T>(),
node.get_input_shape(0),
reshape->get_input_order(),
node.get_output_shape(0));
break;
}
case OP_TYPEID::Result:
{
const op::Result* res = static_cast<const op::Result*>(&node);
reference::result(args[0]->get_data_ptr<const T>(),
out[0]->get_data_ptr<T>(),
shape_size(res->get_shape()));
break;
}
case OP_TYPEID::Reverse:
{
const op::Reverse* reverse = static_cast<const op::Reverse*>(&node);
reference::reverse(args[0]->get_data_ptr<const T>(),
out[0]->get_data_ptr<T>(), out[0]->get_data_ptr<T>(),
node.get_input_shape(0), node.get_input_shape(0),
node.get_output_shape(0), reshape->get_input_order(),
reverse->get_reversed_axes()); node.get_output_shape(0));
break;
}
case OP_TYPEID::ReverseSequence:
{
const op::ReverseSequence* reverse = static_cast<const op::ReverseSequence*>(&node);
if (node.get_input_element_type(1) == element::i32)
{
reference::reverse_sequence<T, int32_t>(args[0]->get_data_ptr<const T>(),
out[0]->get_data_ptr<T>(),
node.get_input_shape(0),
reverse->get_batch_axis(),
reverse->get_sequence_axis(),
args[1]->get_data_ptr<const int32_t>());
}
else
{
throw ngraph_error("only int32 indices are supported");
}
break;
}
case OP_TYPEID::ScatterAdd:
{
if (node.get_input_element_type(1) == element::i64)
{
reference::scatter_add<T, int64_t>(args[0]->get_data_ptr<T>(),
args[1]->get_data_ptr<int64_t>(),
args[2]->get_data_ptr<T>(),
out[0]->get_data_ptr<T>(),
node.get_input_shape(0),
node.get_input_shape(1),
node.get_input_shape(2),
node.get_output_shape(0));
}
else if (node.get_input_element_type(1) == element::i32)
{
reference::scatter_add<T, int32_t>(args[0]->get_data_ptr<T>(),
args[1]->get_data_ptr<int32_t>(),
args[2]->get_data_ptr<T>(),
out[0]->get_data_ptr<T>(),
node.get_input_shape(0),
node.get_input_shape(1),
node.get_input_shape(2),
node.get_output_shape(0));
}
else
{
throw ngraph_error("Unexpected type");
}
break;
}
case OP_TYPEID::ScatterNDAdd:
{
if (node.get_input_element_type(1) == element::i64)
{
reference::scatter_nd_add<T, int64_t>(args[0]->get_data_ptr<T>(),
args[1]->get_data_ptr<int64_t>(),
args[2]->get_data_ptr<T>(),
out[0]->get_data_ptr<T>(),
node.get_input_shape(0),
node.get_input_shape(1),
node.get_input_shape(2),
node.get_output_shape(0));
}
else if (node.get_input_element_type(1) == element::i32)
{
reference::scatter_nd_add<T, int32_t>(args[0]->get_data_ptr<T>(),
args[1]->get_data_ptr<int32_t>(),
args[2]->get_data_ptr<T>(),
out[0]->get_data_ptr<T>(),
node.get_input_shape(0),
node.get_input_shape(1),
node.get_input_shape(2),
node.get_output_shape(0));
}
else
{
throw ngraph_error("Unexpected type");
}
break;
}
case OP_TYPEID::Select:
{
size_t element_count = shape_size(node.get_output_shape(0));
reference::select<T>(args[0]->get_data_ptr<const char>(),
args[1]->get_data_ptr<const T>(),
args[2]->get_data_ptr<const T>(),
out[0]->get_data_ptr<T>(),
element_count);
break;
}
case OP_TYPEID::Send:
{
size_t element_count = shape_size(node.get_output_shape(0));
size_t memSize = element_count * sizeof(T);
const auto* op = static_cast<const ngraph::op::Send*>(&node);
int dest_id = op->get_dest_id();
reference::send<T>(args[0]->get_data_ptr<const T>(),
node.get_input_element_type(0),
element_count,
dest_id);
memcpy(out[0]->get_data_ptr<T>(), args[0]->get_data_ptr<T>(), memSize);
break;
}
case OP_TYPEID::ShapeOf:
{
reference::shape_of(node.get_input_shape(0), out[0]->get_data_ptr<uint64_t>());
break;
}
case OP_TYPEID::Sigmoid:
{
size_t element_count = shape_size(node.get_output_shape(0));
reference::sigmoid<T>(
args[0]->get_data_ptr<const T>(), out[0]->get_data_ptr<T>(), element_count);
break;
}
case OP_TYPEID::SigmoidBackprop:
{
size_t element_count = shape_size(node.get_output_shape(0));
reference::sigmoid_backprop<T>(args[0]->get_data_ptr<const T>(),
args[1]->get_data_ptr<const T>(),
out[0]->get_data_ptr<T>(),
element_count);
break;
}
case OP_TYPEID::Sign:
{
size_t element_count = shape_size(node.get_output_shape(0));
reference::sign<T>(
args[0]->get_data_ptr<const T>(), out[0]->get_data_ptr<T>(), element_count);
break;
}
case OP_TYPEID::Sin:
{
size_t element_count = shape_size(node.get_output_shape(0));
reference::sin<T>(
args[0]->get_data_ptr<const T>(), out[0]->get_data_ptr<T>(), element_count);
break;
}
case OP_TYPEID::Sinh:
{
size_t element_count = shape_size(node.get_output_shape(0));
reference::sinh<T>(
args[0]->get_data_ptr<const T>(), out[0]->get_data_ptr<T>(), element_count);
break;
}
case OP_TYPEID::Slice:
{
const op::Slice* slice = static_cast<const op::Slice*>(&node);
reference::slice<T>(args[0]->get_data_ptr<const T>(),
out[0]->get_data_ptr<T>(),
node.get_input_shape(0),
slice->get_lower_bounds(),
slice->get_upper_bounds(),
slice->get_strides(),
node.get_output_shape(0));
break;
}
case OP_TYPEID::Softmax:
{
const op::Softmax* softmax = static_cast<const op::Softmax*>(&node);
reference::softmax<T>(args[0]->get_data_ptr<const T>(),
out[0]->get_data_ptr<T>(),
node.get_output_shape(0),
softmax->get_axes());
break;
}
case OP_TYPEID::Sqrt:
{
size_t element_count = shape_size(node.get_output_shape(0));
reference::sqrt<T>(
args[0]->get_data_ptr<const T>(), out[0]->get_data_ptr<T>(), element_count);
break;
}
case OP_TYPEID::StopGradient: { throw unsupported_op("Unsupported op 'StopGradient'");
}
case OP_TYPEID::Subtract:
{
size_t element_count = shape_size(node.get_output_shape(0));
reference::subtract<T>(args[0]->get_data_ptr<const T>(),
args[1]->get_data_ptr<const T>(),
out[0]->get_data_ptr<T>(),
element_count);
break;
}
case OP_TYPEID::Sum:
{
const op::Sum* sum = static_cast<const op::Sum*>(&node);
reference::sum<T>(args[0]->get_data_ptr<const T>(),
out[0]->get_data_ptr<T>(),
node.get_input_shape(0),
node.get_output_shape(0),
sum->get_reduction_axes());
break;
}
case OP_TYPEID::Tan:
{
size_t element_count = shape_size(node.get_output_shape(0));
reference::tan<T>(
args[0]->get_data_ptr<const T>(), out[0]->get_data_ptr<T>(), element_count);
break;
}
case OP_TYPEID::Tanh:
{
size_t element_count = shape_size(node.get_output_shape(0));
reference::tanh<T>(
args[0]->get_data_ptr<const T>(), out[0]->get_data_ptr<T>(), element_count);
break;
}
case OP_TYPEID::TopK:
{
const op::TopK* topk = static_cast<const op::TopK*>(&node);
if (node.get_output_element_type(0) == element::i64)
{
reference::topk<T, int64_t>(args[0]->get_data_ptr<const T>(),
out[0]->get_data_ptr<int64_t>(),
out[1]->get_data_ptr<T>(),
node.get_input_shape(0),
node.get_output_shape(0),
topk->get_top_k_axis(),
topk->get_k(),
topk->get_compute_max(),
topk->get_sort());
}
else if (node.get_output_element_type(0) == element::i32)
{
reference::topk<T, int32_t>(args[0]->get_data_ptr<const T>(),
out[0]->get_data_ptr<int32_t>(),
out[1]->get_data_ptr<T>(),
node.get_input_shape(0),
node.get_output_shape(0),
topk->get_top_k_axis(),
topk->get_k(),
topk->get_compute_max(),
topk->get_sort());
}
else
{
throw ngraph_error("Unexpected type");
}
break;
}
case OP_TYPEID::Xor:
{
size_t element_count = shape_size(node.get_output_shape(0));
reference::logical_xor(args[0]->get_data_ptr<const T>(),
args[1]->get_data_ptr<const T>(),
out[0]->get_data_ptr<T>(),
element_count);
break; break;
} }
case OP_TYPEID::BatchMatMulTranspose: default: op_engine<T>(node, out, args); break;
case OP_TYPEID::Clamp:
case OP_TYPEID::ConvolutionBias:
case OP_TYPEID::ConvolutionBiasAdd:
case OP_TYPEID::ConvolutionBiasBackpropFiltersBias:
case OP_TYPEID::CropAndResize:
case OP_TYPEID::CrossEntropy:
case OP_TYPEID::CrossEntropyBackprop:
case OP_TYPEID::DepthToSpace:
case OP_TYPEID::DynBroadcast:
case OP_TYPEID::DynPad:
case OP_TYPEID::DynReplaceSlice:
case OP_TYPEID::Elu:
case OP_TYPEID::FakeQuantize:
case OP_TYPEID::GroupConvolution:
case OP_TYPEID::GRN:
case OP_TYPEID::GRUCell:
case OP_TYPEID::Gelu:
case OP_TYPEID::GeluBackpropFactor:
case OP_TYPEID::Gemm:
case OP_TYPEID::GroupConvolutionTranspose:
case OP_TYPEID::HardSigmoid:
case OP_TYPEID::Interpolate:
case OP_TYPEID::LayerNorm:
case OP_TYPEID::LayerNormBackprop:
case OP_TYPEID::LogSoftmax:
case OP_TYPEID::LSTMCell:
case OP_TYPEID::LSTMSequence:
case OP_TYPEID::MatMul:
case OP_TYPEID::MVN:
case OP_TYPEID::NormalizeL2:
case OP_TYPEID::PRelu:
case OP_TYPEID::PartialSlice:
case OP_TYPEID::PartialSliceBackprop:
case OP_TYPEID::RandomUniform:
case OP_TYPEID::Reciprocal:
case OP_TYPEID::RNNCell:
case OP_TYPEID::ScaleShift:
case OP_TYPEID::ScatterND:
case OP_TYPEID::Selu:
case OP_TYPEID::ShuffleChannels:
case OP_TYPEID::SoftmaxCrossEntropy:
case OP_TYPEID::SoftmaxCrossEntropyBackprop:
case OP_TYPEID::SpaceToDepth:
case OP_TYPEID::Split:
case OP_TYPEID::SquaredDifference:
case OP_TYPEID::Squeeze:
case OP_TYPEID::Stack:
// Tensor Iterator not yet supported
case OP_TYPEID::TensorIterator:
case OP_TYPEID::Tile:
case OP_TYPEID::Transpose:
case OP_TYPEID::Unsqueeze:
case OP_TYPEID::UnknownOp:
throw unsupported_op("Unsupported op '" + node.description() + "'");
#pragma GCC diagnostic pop
} }
} }
}; };
topk_resnet50 tile_3d_small_data_rank
topk_max_sort_none tile_3d_few_repeats
fake_quantize_pdpd
convert_float32_bf16
convert_bf16_float32
...@@ -36,9 +36,9 @@ using namespace ngraph; ...@@ -36,9 +36,9 @@ using namespace ngraph;
using descriptor::layout::DenseTensorLayout; using descriptor::layout::DenseTensorLayout;
runtime::interpreter::OP_TYPEID runtime::interpreter::OP_TYPEID runtime::interpreter::INTExecutable::get_typeid(const Node& node)
runtime::interpreter::INTExecutable::get_typeid(const NodeTypeInfo& type_info)
{ {
const NodeTypeInfo& type_info = node.get_type_info();
// This expands the op list in op_tbl.hpp into a list of enumerations that look like this: // This expands the op list in op_tbl.hpp into a list of enumerations that look like this:
// {Abs::type_info, OP_TYPEID::Abs}, // {Abs::type_info, OP_TYPEID::Abs},
// {Acos::type_info, OP_TYPEID::Acos}, // {Acos::type_info, OP_TYPEID::Acos},
......
...@@ -127,22 +127,18 @@ namespace ngraph ...@@ -127,22 +127,18 @@ namespace ngraph
class INTBackend; class INTBackend;
class INTExecutable; class INTExecutable;
namespace // This expands the op list in op_tbl.hpp into a list of enumerations that look like
// this:
// Abs,
// Acos,
// ...
enum class OP_TYPEID
{ {
// This expands the op list in op_tbl.hpp into a list of enumerations that look like
// this:
// Abs,
// Acos,
// ...
enum class OP_TYPEID
{
#define NGRAPH_OP(NAME, NAMESPACE) ID_SUFFIX(NAME), #define NGRAPH_OP(NAME, NAMESPACE) ID_SUFFIX(NAME),
#include "ngraph/runtime/interpreter/opset_int_tbl.hpp" #include "ngraph/runtime/interpreter/opset_int_tbl.hpp"
#undef NGRAPH_OP #undef NGRAPH_OP
UnknownOp UnknownOp
}; };
}
} // namespace interpreter } // namespace interpreter
} // namespace runtime } // namespace runtime
} // namespace ngraph } // namespace ngraph
...@@ -174,7 +170,7 @@ public: ...@@ -174,7 +170,7 @@ public:
std::vector<std::shared_ptr<runtime::Tensor>> std::vector<std::shared_ptr<runtime::Tensor>>
create_output_tensor(size_t output_index, size_t pipeline_depth) override; create_output_tensor(size_t output_index, size_t pipeline_depth) override;
private: protected:
INTExecutable(const std::string& model_string); INTExecutable(const std::string& model_string);
std::shared_ptr<ngraph::op::Parameter> get_parameter(size_t index) const; std::shared_ptr<ngraph::op::Parameter> get_parameter(size_t index) const;
...@@ -189,15 +185,15 @@ private: ...@@ -189,15 +185,15 @@ private:
std::unordered_map<const Node*, std::shared_ptr<State>> m_states; std::unordered_map<const Node*, std::shared_ptr<State>> m_states;
std::set<std::string> m_unsupported_op_name_list; std::set<std::string> m_unsupported_op_name_list;
static OP_TYPEID get_typeid(const NodeTypeInfo& type_info); static OP_TYPEID get_typeid(const Node& node);
static void perform_nan_check(const std::vector<std::shared_ptr<HostTensor>>&, static void perform_nan_check(const std::vector<std::shared_ptr<HostTensor>>&,
const Node* op = nullptr); const Node* op = nullptr);
void generate_calls(const element::Type& type, virtual void generate_calls(const element::Type& type,
const Node& op, const Node& op,
const std::vector<std::shared_ptr<HostTensor>>& outputs, const std::vector<std::shared_ptr<HostTensor>>& outputs,
const std::vector<std::shared_ptr<HostTensor>>& inputs); const std::vector<std::shared_ptr<HostTensor>>& inputs);
template <typename T> template <typename T>
void op_engine(const Node& node, void op_engine(const Node& node,
...@@ -210,7 +206,8 @@ private: ...@@ -210,7 +206,8 @@ private:
#pragma GCC diagnostic push #pragma GCC diagnostic push
#pragma GCC diagnostic error "-Wswitch" #pragma GCC diagnostic error "-Wswitch"
#pragma GCC diagnostic error "-Wswitch-enum" #pragma GCC diagnostic error "-Wswitch-enum"
switch (get_typeid(node.get_type_info())) // #pragma GCC diagnostic error "-Wcovered-switch-default"
switch (get_typeid(node))
{ {
case OP_TYPEID::Abs: case OP_TYPEID::Abs:
{ {
......
# Quantized convolution is not supported on interpreter tile_3d_small_data_rank
model_quant_conv_linear tile_3d_few_repeats
model_qlinear_matmul
model_qlinear_matmul_3d
model_conv_integer_no_zero_point
model_matmul_integer_no_zero_point
model_matmul_integer_4d_no_zero_point
fake_quantize
fake_quantize_pdpd fake_quantize_pdpd
fake_quantize_with_clip
fake_quantize_with_clip_across_channels
# casting not supported on interpreter
convert_float32_bf16 convert_float32_bf16
convert_bf16_float32 convert_bf16_float32
# ONNX TopK with dynamic K onnx_INTERPRETER.model_quant_conv_linear
top_k_opset_10 onnx_INTERPRETER.top_k_opset_10
top_k_opset_11_const_k_smallest
# Tile op case that the number of elements in "repeats" and shape of "data" are different
tile_3d_small_data_rank
tile_3d_few_repeats
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment