Commit 85fb5761 authored by Robert Kimball's avatar Robert Kimball

fix generation of ParameterizedConstants that are copied directly to output

parent 886eb1ec
...@@ -20,9 +20,10 @@ using namespace descriptor; ...@@ -20,9 +20,10 @@ using namespace descriptor;
PrimaryTensorView::PrimaryTensorView(const std::shared_ptr<const TensorViewType>& tensor_view_type, PrimaryTensorView::PrimaryTensorView(const std::shared_ptr<const TensorViewType>& tensor_view_type,
const std::string& name, const std::string& name,
bool is_output, bool is_output,
bool is_input) bool is_input,
bool is_constant)
: TensorView(tensor_view_type) : TensorView(tensor_view_type)
, m_tensor(tensor_view_type->get_element_type(), this, name, is_output, is_input) , m_tensor(tensor_view_type->get_element_type(), this, name, is_output, is_input, is_constant)
{ {
// Set the name in the parent TensorView. // Set the name in the parent TensorView.
// This can't be done until after the m_tensor is constructed. // This can't be done until after the m_tensor is constructed.
......
...@@ -43,7 +43,8 @@ namespace ngraph ...@@ -43,7 +43,8 @@ namespace ngraph
PrimaryTensorView(const std::shared_ptr<const TensorViewType>& tensor_view_type, PrimaryTensorView(const std::shared_ptr<const TensorViewType>& tensor_view_type,
const std::string& name, const std::string& name,
bool is_output, bool is_output,
bool is_input); bool is_input,
bool is_constant);
virtual const Tensor& get_tensor() const override; virtual const Tensor& get_tensor() const override;
virtual Tensor& get_tensor() override; virtual Tensor& get_tensor() override;
......
...@@ -23,12 +23,14 @@ Tensor::Tensor(const element::Type& element_type, ...@@ -23,12 +23,14 @@ Tensor::Tensor(const element::Type& element_type,
PrimaryTensorView* primary_tensor_view, PrimaryTensorView* primary_tensor_view,
const std::string& name, const std::string& name,
bool is_output, bool is_output,
bool is_input) bool is_input,
bool is_constant)
: m_element_type(element_type) : m_element_type(element_type)
, m_primary_tensor_view(primary_tensor_view) , m_primary_tensor_view(primary_tensor_view)
, m_is_output{is_output} , m_is_output{is_output}
, m_is_input{is_input} , m_is_input{is_input}
, m_is_persistent{false} , m_is_persistent{false}
, m_is_constant{is_constant}
, m_name{name} , m_name{name}
, m_next_view_id{0} , m_next_view_id{0}
{ {
......
...@@ -47,7 +47,8 @@ private: ...@@ -47,7 +47,8 @@ private:
PrimaryTensorView* tensor_view, PrimaryTensorView* tensor_view,
const std::string& name, const std::string& name,
bool is_output, bool is_output,
bool is_input); bool is_input,
bool is_constant);
std::string get_next_view_name(); std::string get_next_view_name();
...@@ -55,6 +56,7 @@ public: ...@@ -55,6 +56,7 @@ public:
bool is_output() const { return m_is_output; } bool is_output() const { return m_is_output; }
bool is_input() const { return m_is_input; } bool is_input() const { return m_is_input; }
bool is_persistent() const { return m_is_persistent; } bool is_persistent() const { return m_is_persistent; }
bool is_constant() const { return m_is_constant; }
const std::string& get_name() const { return m_name; } const std::string& get_name() const { return m_name; }
size_t size() const; size_t size() const;
void set_pool_offset(size_t); void set_pool_offset(size_t);
...@@ -68,6 +70,7 @@ protected: ...@@ -68,6 +70,7 @@ protected:
bool m_is_output; bool m_is_output;
bool m_is_input; bool m_is_input;
bool m_is_persistent; bool m_is_persistent;
bool m_is_constant;
std::string m_name; std::string m_name;
size_t m_next_view_id; size_t m_next_view_id;
size_t m_size; size_t m_size;
......
...@@ -70,7 +70,8 @@ void Node::set_value_type_checked(const shared_ptr<const ValueType>& value_type) ...@@ -70,7 +70,8 @@ void Node::set_value_type_checked(const shared_ptr<const ValueType>& value_type)
tvt, tvt,
ngraph::descriptor::Tensor::make_tensor_name(this, i), ngraph::descriptor::Tensor::make_tensor_name(this, i),
is_output(), is_output(),
is_parameter()); is_parameter(),
is_constant());
m_outputs.emplace_back(this, i, tensor_view_descriptor); m_outputs.emplace_back(this, i, tensor_view_descriptor);
i++; i++;
} }
...@@ -124,6 +125,11 @@ void Node::set_is_output() ...@@ -124,6 +125,11 @@ void Node::set_is_output()
} }
} }
bool Node::is_constant() const
{
return false;
}
std::string Node::get_node_id() const std::string Node::get_node_id() const
{ {
stringstream ss; stringstream ss;
......
...@@ -89,6 +89,7 @@ namespace ngraph ...@@ -89,6 +89,7 @@ namespace ngraph
bool is_parameter() const; bool is_parameter() const;
bool is_output() const; bool is_output() const;
void set_is_output(); void set_is_output();
virtual bool is_constant() const;
size_t get_instance_id() const { return m_instance_id; } size_t get_instance_id() const { return m_instance_id; }
friend std::ostream& operator<<(std::ostream&, const Node&); friend std::ostream& operator<<(std::ostream&, const Node&);
......
...@@ -40,6 +40,8 @@ namespace ngraph ...@@ -40,6 +40,8 @@ namespace ngraph
{ {
set_value_type_checked(type); set_value_type_checked(type);
} }
virtual bool is_constant() const override { return true; }
}; };
/// \brief Class for constants whose element types are known at C++ compile-time. /// \brief Class for constants whose element types are known at C++ compile-time.
......
...@@ -125,8 +125,7 @@ bool pass::Liveness::run_on_call_graph(list<shared_ptr<Node>>& ops) ...@@ -125,8 +125,7 @@ bool pass::Liveness::run_on_call_graph(list<shared_ptr<Node>>& ops)
bool pass::Liveness::is_temporary(const Tensor& tensor) bool pass::Liveness::is_temporary(const Tensor& tensor)
{ {
return tensor.is_persistent() == false && tensor.is_input() == false && return tensor.is_persistent() == false && tensor.is_input() == false &&
tensor.is_output() == false; tensor.is_output() == false && tensor.is_constant() == false;
// && tensor.is_constant() == false
// && tensor.is_compile_only() == false; // && tensor.is_compile_only() == false;
} }
......
...@@ -493,17 +493,32 @@ void Emitter::EmitParameterizedConstantBool(const ngraph::Node* n, ...@@ -493,17 +493,32 @@ void Emitter::EmitParameterizedConstantBool(const ngraph::Node* n,
auto value = dynamic_cast<const op::ParameterizedConstant<ngraph::element::Bool>*>(n) auto value = dynamic_cast<const op::ParameterizedConstant<ngraph::element::Bool>*>(n)
->get_value() ->get_value()
->get_vector(); ->get_vector();
string type = element::Bool::element_type().c_type_string();
TU << "{ // " << n->get_name() << "\n"; TU << "// " << n->get_name() << " EmitParameterizedConstantBool\n";
TU.indent++; if (outputs[0].get_tensor().is_output())
{
// Special case where constant is stored directly in the output
for (size_t i = 0; i < value.size(); i++) for (size_t i = 0; i < value.size(); i++)
{ {
TU << outputs[0].get_tensor().get_name() << "[" << i << "] = static_cast<" << type << ">(" TU << outputs[0].get_tensor().get_name() << "[" << i << "] = static_cast<bool>("
<< (value[i] ? "true" : "false") << ");\n"; << (value[i] ? "true" : "false") << ");\n";
} }
TU.indent--; }
TU << "}\n"; else
{
TU << "// this should be const but eigen hates const :(\n";
TU << "bool " << outputs[0].get_tensor().get_name() << "[] = {\n";
for (size_t i = 0; i < value.size(); i++)
{
if (i != 0)
{
TU << ",\n";
}
TU << " " << (value[i] ? "true" : "false");
}
TU << "\n};";
}
TU << "\n";
} }
void Emitter::EmitParameterizedConstantFloat32(const ngraph::Node* n, void Emitter::EmitParameterizedConstantFloat32(const ngraph::Node* n,
...@@ -514,17 +529,33 @@ void Emitter::EmitParameterizedConstantFloat32(const ngraph::Node* n, ...@@ -514,17 +529,33 @@ void Emitter::EmitParameterizedConstantFloat32(const ngraph::Node* n,
auto value = dynamic_cast<const op::ParameterizedConstant<ngraph::element::Float32>*>(n) auto value = dynamic_cast<const op::ParameterizedConstant<ngraph::element::Float32>*>(n)
->get_value() ->get_value()
->get_vector(); ->get_vector();
string type = element::Float32::element_type().c_type_string(); const char* type = "float";
TU << "{ // " << n->get_name() << "\n"; TU << "// " << n->get_name() << " EmitParameterizedConstant_" << type << "\n";
TU.indent++; if (outputs[0].get_tensor().is_output())
{
// Special case where constant is stored directly in the output
for (size_t i = 0; i < value.size(); i++) for (size_t i = 0; i < value.size(); i++)
{ {
TU << outputs[0].get_tensor().get_name() << "[" << i << "] = static_cast<" << type << ">(" TU << outputs[0].get_tensor().get_name() << "[" << i << "] = static_cast<" << type
<< value[i] << ");\n"; << ">(" << value[i] << ");\n";
} }
TU.indent--; }
TU << "}\n"; else
{
TU << "// this should be const but eigen hates const :(\n";
TU << type << " " << outputs[0].get_tensor().get_name() << "[] = {\n";
for (size_t i = 0; i < value.size(); i++)
{
if (i != 0)
{
TU << ",\n";
}
TU << " " << value[i];
}
TU << "\n};";
}
TU << "\n";
} }
void Emitter::EmitParameterizedConstantInt8(const ngraph::Node* n, void Emitter::EmitParameterizedConstantInt8(const ngraph::Node* n,
...@@ -535,17 +566,33 @@ void Emitter::EmitParameterizedConstantInt8(const ngraph::Node* n, ...@@ -535,17 +566,33 @@ void Emitter::EmitParameterizedConstantInt8(const ngraph::Node* n,
auto value = dynamic_cast<const op::ParameterizedConstant<ngraph::element::Int8>*>(n) auto value = dynamic_cast<const op::ParameterizedConstant<ngraph::element::Int8>*>(n)
->get_value() ->get_value()
->get_vector(); ->get_vector();
string type = element::Int8::element_type().c_type_string(); const char* type = "int8_t";
TU << "{ // " << n->get_name() << "\n"; TU << "// " << n->get_name() << " EmitParameterizedConstant_" << type << "\n";
TU.indent++; if (outputs[0].get_tensor().is_output())
{
// Special case where constant is stored directly in the output
for (size_t i = 0; i < value.size(); i++) for (size_t i = 0; i < value.size(); i++)
{ {
TU << outputs[0].get_tensor().get_name() << "[" << i << "] = static_cast<" << type << ">(" TU << outputs[0].get_tensor().get_name() << "[" << i << "] = static_cast<" << type
<< value[i] << ");\n"; << ">(" << static_cast<int>(value[i]) << ");\n";
} }
TU.indent--; }
TU << "}\n"; else
{
TU << "// this should be const but eigen hates const :(\n";
TU << type << " " << outputs[0].get_tensor().get_name() << "[] = {\n";
for (size_t i = 0; i < value.size(); i++)
{
if (i != 0)
{
TU << ",\n";
}
TU << " " << value[i];
}
TU << "\n};";
}
TU << "\n";
} }
void Emitter::EmitParameterizedConstantInt32(const ngraph::Node* n, void Emitter::EmitParameterizedConstantInt32(const ngraph::Node* n,
...@@ -556,17 +603,33 @@ void Emitter::EmitParameterizedConstantInt32(const ngraph::Node* n, ...@@ -556,17 +603,33 @@ void Emitter::EmitParameterizedConstantInt32(const ngraph::Node* n,
auto value = dynamic_cast<const op::ParameterizedConstant<ngraph::element::Int32>*>(n) auto value = dynamic_cast<const op::ParameterizedConstant<ngraph::element::Int32>*>(n)
->get_value() ->get_value()
->get_vector(); ->get_vector();
string type = element::Int32::element_type().c_type_string(); const char* type = "int32_t";
TU << "{ // " << n->get_name() << "\n"; TU << "// " << n->get_name() << " EmitParameterizedConstant_" << type << "\n";
TU.indent++; if (outputs[0].get_tensor().is_output())
{
// Special case where constant is stored directly in the output
for (size_t i = 0; i < value.size(); i++) for (size_t i = 0; i < value.size(); i++)
{ {
TU << outputs[0].get_tensor().get_name() << "[" << i << "] = static_cast<" << type << ">(" TU << outputs[0].get_tensor().get_name() << "[" << i << "] = static_cast<" << type
<< value[i] << ");\n"; << ">(" << value[i] << ");\n";
} }
TU.indent--; }
TU << "}\n"; else
{
TU << "// this should be const but eigen hates const :(\n";
TU << type << " " << outputs[0].get_tensor().get_name() << "[] = {\n";
for (size_t i = 0; i < value.size(); i++)
{
if (i != 0)
{
TU << ",\n";
}
TU << " " << value[i];
}
TU << "\n};";
}
TU << "\n";
} }
void Emitter::EmitParameterizedConstantInt64(const ngraph::Node* n, void Emitter::EmitParameterizedConstantInt64(const ngraph::Node* n,
...@@ -577,17 +640,33 @@ void Emitter::EmitParameterizedConstantInt64(const ngraph::Node* n, ...@@ -577,17 +640,33 @@ void Emitter::EmitParameterizedConstantInt64(const ngraph::Node* n,
auto value = dynamic_cast<const op::ParameterizedConstant<ngraph::element::Int64>*>(n) auto value = dynamic_cast<const op::ParameterizedConstant<ngraph::element::Int64>*>(n)
->get_value() ->get_value()
->get_vector(); ->get_vector();
string type = element::Int64::element_type().c_type_string(); const char* type = "int64_t";
TU << "{ // " << n->get_name() << "\n"; TU << "// " << n->get_name() << " EmitParameterizedConstant_" << type << "\n";
TU.indent++; if (outputs[0].get_tensor().is_output())
{
// Special case where constant is stored directly in the output
for (size_t i = 0; i < value.size(); i++) for (size_t i = 0; i < value.size(); i++)
{ {
TU << outputs[0].get_tensor().get_name() << "[" << i << "] = static_cast<" << type << ">(" TU << outputs[0].get_tensor().get_name() << "[" << i << "] = static_cast<" << type
<< value[i] << ");\n"; << ">(" << value[i] << ");\n";
} }
TU.indent--; }
TU << "}\n"; else
{
TU << "// this should be const but eigen hates const :(\n";
TU << type << " " << outputs[0].get_tensor().get_name() << "[] = {\n";
for (size_t i = 0; i < value.size(); i++)
{
if (i != 0)
{
TU << ",\n";
}
TU << " " << value[i];
}
TU << "\n};";
}
TU << "\n";
} }
void Emitter::EmitParameterizedConstantUInt8(const ngraph::Node* n, void Emitter::EmitParameterizedConstantUInt8(const ngraph::Node* n,
...@@ -598,17 +677,33 @@ void Emitter::EmitParameterizedConstantUInt8(const ngraph::Node* n, ...@@ -598,17 +677,33 @@ void Emitter::EmitParameterizedConstantUInt8(const ngraph::Node* n,
auto value = dynamic_cast<const op::ParameterizedConstant<ngraph::element::UInt8>*>(n) auto value = dynamic_cast<const op::ParameterizedConstant<ngraph::element::UInt8>*>(n)
->get_value() ->get_value()
->get_vector(); ->get_vector();
string type = element::UInt8::element_type().c_type_string(); const char* type = "uint8_t";
TU << "{ // " << n->get_name() << "\n"; TU << "// " << n->get_name() << " EmitParameterizedConstant_" << type << "\n";
TU.indent++; if (outputs[0].get_tensor().is_output())
{
// Special case where constant is stored directly in the output
for (size_t i = 0; i < value.size(); i++) for (size_t i = 0; i < value.size(); i++)
{ {
TU << outputs[0].get_tensor().get_name() << "[" << i << "] = static_cast<" << type << ">(" TU << outputs[0].get_tensor().get_name() << "[" << i << "] = static_cast<" << type
<< value[i] << ");\n"; << ">(" << static_cast<uint>(value[i]) << ");\n";
} }
TU.indent--; }
TU << "}\n"; else
{
TU << "// this should be const but eigen hates const :(\n";
TU << type << " " << outputs[0].get_tensor().get_name() << "[] = {\n";
for (size_t i = 0; i < value.size(); i++)
{
if (i != 0)
{
TU << ",\n";
}
TU << " " << value[i];
}
TU << "\n};";
}
TU << "\n";
} }
void Emitter::EmitParameterizedConstantUInt32(const ngraph::Node* n, void Emitter::EmitParameterizedConstantUInt32(const ngraph::Node* n,
...@@ -619,17 +714,33 @@ void Emitter::EmitParameterizedConstantUInt32(const ngraph::Node* n, ...@@ -619,17 +714,33 @@ void Emitter::EmitParameterizedConstantUInt32(const ngraph::Node* n,
auto value = dynamic_cast<const op::ParameterizedConstant<ngraph::element::UInt32>*>(n) auto value = dynamic_cast<const op::ParameterizedConstant<ngraph::element::UInt32>*>(n)
->get_value() ->get_value()
->get_vector(); ->get_vector();
string type = element::UInt32::element_type().c_type_string(); const char* type = "uint32_t";
TU << "{ // " << n->get_name() << "\n"; TU << "// " << n->get_name() << " EmitParameterizedConstant_" << type << "\n";
TU.indent++; if (outputs[0].get_tensor().is_output())
{
// Special case where constant is stored directly in the output
for (size_t i = 0; i < value.size(); i++) for (size_t i = 0; i < value.size(); i++)
{ {
TU << outputs[0].get_tensor().get_name() << "[" << i << "] = static_cast<" << type << ">(" TU << outputs[0].get_tensor().get_name() << "[" << i << "] = static_cast<" << type
<< value[i] << ");\n"; << ">(" << value[i] << ");\n";
} }
TU.indent--; }
TU << "}\n"; else
{
TU << "// this should be const but eigen hates const :(\n";
TU << type << " " << outputs[0].get_tensor().get_name() << "[] = {\n";
for (size_t i = 0; i < value.size(); i++)
{
if (i != 0)
{
TU << ",\n";
}
TU << " " << value[i];
}
TU << "\n};";
}
TU << "\n";
} }
void Emitter::EmitParameterizedConstantUInt64(const ngraph::Node* n, void Emitter::EmitParameterizedConstantUInt64(const ngraph::Node* n,
...@@ -640,17 +751,33 @@ void Emitter::EmitParameterizedConstantUInt64(const ngraph::Node* n, ...@@ -640,17 +751,33 @@ void Emitter::EmitParameterizedConstantUInt64(const ngraph::Node* n,
auto value = dynamic_cast<const op::ParameterizedConstant<ngraph::element::UInt64>*>(n) auto value = dynamic_cast<const op::ParameterizedConstant<ngraph::element::UInt64>*>(n)
->get_value() ->get_value()
->get_vector(); ->get_vector();
string type = element::UInt64::element_type().c_type_string(); const char* type = "uint64_t";
TU << "{ // " << n->get_name() << "\n"; TU << "// " << n->get_name() << " EmitParameterizedConstant_" << type << "\n";
TU.indent++; if (outputs[0].get_tensor().is_output())
{
// Special case where constant is stored directly in the output
for (size_t i = 0; i < value.size(); i++) for (size_t i = 0; i < value.size(); i++)
{ {
TU << outputs[0].get_tensor().get_name() << "[" << i << "] = static_cast<" << type << ">(" TU << outputs[0].get_tensor().get_name() << "[" << i << "] = static_cast<" << type
<< value[i] << ");\n"; << ">(" << value[i] << ");\n";
} }
TU.indent--; }
TU << "}\n"; else
{
TU << "// this should be const but eigen hates const :(\n";
TU << type << " " << outputs[0].get_tensor().get_name() << "[] = {\n";
for (size_t i = 0; i < value.size(); i++)
{
if (i != 0)
{
TU << ",\n";
}
TU << " " << value[i];
}
TU << "\n};";
}
TU << "\n";
} }
void Emitter::EmitBroadcast(const ngraph::Node* n, void Emitter::EmitBroadcast(const ngraph::Node* n,
...@@ -763,7 +890,7 @@ void Emitter::EmitConstant(const ngraph::Node* n, ...@@ -763,7 +890,7 @@ void Emitter::EmitConstant(const ngraph::Node* n,
auto& c_element_type = c_tensor_type->get_element_type(); auto& c_element_type = c_tensor_type->get_element_type();
auto c_value_strings = c->get_value_strings(); auto c_value_strings = c->get_value_strings();
TU << "{ // " << n->get_name() << "\n"; TU << "{ // " << n->get_name() << " EmitConstant\n";
TU.indent++; TU.indent++;
for (size_t i = 0; i < c_value_strings.size(); i++) for (size_t i = 0; i < c_value_strings.size(); i++)
{ {
......
...@@ -103,6 +103,39 @@ namespace ngraph ...@@ -103,6 +103,39 @@ namespace ngraph
std::string emit_vector(const TensorViewInfo&, const std::string& name = ""); std::string emit_vector(const TensorViewInfo&, const std::string& name = "");
std::string emit_array1d(const TensorViewInfo&, const std::string& name = ""); std::string emit_array1d(const TensorViewInfo&, const std::string& name = "");
std::string emit_matrix(const TensorViewInfo&, const std::string& name = ""); std::string emit_matrix(const TensorViewInfo&, const std::string& name = "");
template <typename T>
void EmitParameterizedConstant(const std::string& type,
const ngraph::Node* n,
const std::vector<T>& value,
const TensorViewInfo& tv)
{
TU << "// " << n->get_name() << " EmitParameterizedConstant_" << type << "\n";
if (tv.get_tensor().is_output())
{
// Special case where constant is stored directly in the output
for (size_t i = 0; i < value.size(); i++)
{
TU << tv.get_tensor().get_name() << "[" << i << "] = static_cast<"
<< type << ">(" << value[i] << ");\n";
}
}
else
{
TU << "// this should be const but eigen hates const :(\n";
TU << type << " " << tv.get_tensor().get_name() << "[] = {\n";
for (size_t i = 0; i < value.size(); i++)
{
if (i != 0)
{
TU << ",\n";
}
TU << " " << value[i];
}
TU << "\n};";
}
TU << "\n";
}
}; };
} }
} }
......
...@@ -25,7 +25,11 @@ using namespace std; ...@@ -25,7 +25,11 @@ using namespace std;
runtime::cpu::CPUTensorView::CPUTensorView(const ngraph::element::Type& element_type, runtime::cpu::CPUTensorView::CPUTensorView(const ngraph::element::Type& element_type,
const Shape& shape) const Shape& shape)
: runtime::TensorView(std::make_shared<ngraph::descriptor::PrimaryTensorView>( : runtime::TensorView(std::make_shared<ngraph::descriptor::PrimaryTensorView>(
std::make_shared<ngraph::TensorViewType>(element_type, shape), "external", true, true)) std::make_shared<ngraph::TensorViewType>(element_type, shape),
"external",
true,
true,
false))
, m_allocated_buffer_pool(nullptr) , m_allocated_buffer_pool(nullptr)
, m_aligned_buffer_pool(nullptr) , m_aligned_buffer_pool(nullptr)
......
...@@ -41,7 +41,8 @@ namespace ngraph ...@@ -41,7 +41,8 @@ namespace ngraph
std::make_shared<ngraph::TensorViewType>(ET::element_type(), shape), std::make_shared<ngraph::TensorViewType>(ET::element_type(), shape),
"external", "external",
true, true,
true)) true,
false))
{ {
m_descriptor->set_tensor_view_layout( m_descriptor->set_tensor_view_layout(
std::make_shared<ngraph::descriptor::layout::DenseTensorViewLayout>( std::make_shared<ngraph::descriptor::layout::DenseTensorViewLayout>(
......
...@@ -1065,7 +1065,27 @@ TEST(${BACKEND_NAME}, subtract) ...@@ -1065,7 +1065,27 @@ TEST(${BACKEND_NAME}, subtract)
ASSERT_EQ((vector<float>{1, 2, 4, 8}), result->get_vector<float>()); ASSERT_EQ((vector<float>{1, 2, 4, 8}), result->get_vector<float>());
} }
TEST(${BACKEND_NAME}, scalar_constant) TEST(${BACKEND_NAME}, scalar_parameterized_constant_bool)
{
auto shape = Shape{};
auto t = runtime::make_tensor<element::Bool>(shape, {true});
auto A = make_shared<op::ParameterizedConstant<element::Bool>>(shape, t);
auto rt = make_shared<TensorViewType>(element::Bool::element_type(), shape);
auto f = make_shared<Function>(A, rt, op::Parameters{});
auto manager = runtime::Manager::get("${BACKEND_NAME}");
auto external = manager->compile(f);
auto backend = manager->allocate_backend();
auto cf = backend->make_call_frame(external);
// Create some tensors for input/output
auto result = backend->make_primary_tensor_view(element::Bool::element_type(), shape);
(*cf)({}, {result});
ASSERT_EQ((vector<char>{true}), result->get_vector<char>());
}
TEST(${BACKEND_NAME}, scalar_parameterized_constant_float)
{ {
auto shape = Shape{}; auto shape = Shape{};
auto t = runtime::make_tensor<element::Float32>(shape, {-3.0f}); auto t = runtime::make_tensor<element::Float32>(shape, {-3.0f});
...@@ -1085,6 +1105,126 @@ TEST(${BACKEND_NAME}, scalar_constant) ...@@ -1085,6 +1105,126 @@ TEST(${BACKEND_NAME}, scalar_constant)
ASSERT_EQ((vector<float>{-3.0f}), result->get_vector<float>()); ASSERT_EQ((vector<float>{-3.0f}), result->get_vector<float>());
} }
TEST(${BACKEND_NAME}, scalar_parameterized_constant_int8)
{
auto shape = Shape{};
auto t = runtime::make_tensor<element::Int8>(shape, {-3});
auto A = make_shared<op::ParameterizedConstant<element::Int8>>(shape, t);
auto rt = make_shared<TensorViewType>(element::Int8::element_type(), shape);
auto f = make_shared<Function>(A, rt, op::Parameters{});
auto manager = runtime::Manager::get("${BACKEND_NAME}");
auto external = manager->compile(f);
auto backend = manager->allocate_backend();
auto cf = backend->make_call_frame(external);
// Create some tensors for input/output
auto result = backend->make_primary_tensor_view(element::Int8::element_type(), shape);
(*cf)({}, {result});
ASSERT_EQ((vector<int8_t>{-3}), result->get_vector<int8_t>());
}
TEST(${BACKEND_NAME}, scalar_parameterized_constant_int32)
{
auto shape = Shape{};
auto t = runtime::make_tensor<element::Int32>(shape, {-3});
auto A = make_shared<op::ParameterizedConstant<element::Int32>>(shape, t);
auto rt = make_shared<TensorViewType>(element::Int32::element_type(), shape);
auto f = make_shared<Function>(A, rt, op::Parameters{});
auto manager = runtime::Manager::get("${BACKEND_NAME}");
auto external = manager->compile(f);
auto backend = manager->allocate_backend();
auto cf = backend->make_call_frame(external);
// Create some tensors for input/output
auto result = backend->make_primary_tensor_view(element::Int32::element_type(), shape);
(*cf)({}, {result});
ASSERT_EQ((vector<int32_t>{-3}), result->get_vector<int32_t>());
}
TEST(${BACKEND_NAME}, scalar_parameterized_constant_int64)
{
auto shape = Shape{};
auto t = runtime::make_tensor<element::Int64>(shape, {-3});
auto A = make_shared<op::ParameterizedConstant<element::Int64>>(shape, t);
auto rt = make_shared<TensorViewType>(element::Int64::element_type(), shape);
auto f = make_shared<Function>(A, rt, op::Parameters{});
auto manager = runtime::Manager::get("${BACKEND_NAME}");
auto external = manager->compile(f);
auto backend = manager->allocate_backend();
auto cf = backend->make_call_frame(external);
// Create some tensors for input/output
auto result = backend->make_primary_tensor_view(element::Int64::element_type(), shape);
(*cf)({}, {result});
ASSERT_EQ((vector<int64_t>{-3}), result->get_vector<int64_t>());
}
TEST(${BACKEND_NAME}, scalar_parameterized_constant_uint8)
{
auto shape = Shape{};
auto t = runtime::make_tensor<element::UInt8>(shape, {3});
auto A = make_shared<op::ParameterizedConstant<element::UInt8>>(shape, t);
auto rt = make_shared<TensorViewType>(element::UInt8::element_type(), shape);
auto f = make_shared<Function>(A, rt, op::Parameters{});
auto manager = runtime::Manager::get("${BACKEND_NAME}");
auto external = manager->compile(f);
auto backend = manager->allocate_backend();
auto cf = backend->make_call_frame(external);
// Create some tensors for input/output
auto result = backend->make_primary_tensor_view(element::UInt8::element_type(), shape);
(*cf)({}, {result});
ASSERT_EQ((vector<uint8_t>{3}), result->get_vector<uint8_t>());
}
TEST(${BACKEND_NAME}, scalar_parameterized_constant_uint32)
{
auto shape = Shape{};
auto t = runtime::make_tensor<element::UInt32>(shape, {3});
auto A = make_shared<op::ParameterizedConstant<element::UInt32>>(shape, t);
auto rt = make_shared<TensorViewType>(element::UInt32::element_type(), shape);
auto f = make_shared<Function>(A, rt, op::Parameters{});
auto manager = runtime::Manager::get("${BACKEND_NAME}");
auto external = manager->compile(f);
auto backend = manager->allocate_backend();
auto cf = backend->make_call_frame(external);
// Create some tensors for input/output
auto result = backend->make_primary_tensor_view(element::UInt32::element_type(), shape);
(*cf)({}, {result});
ASSERT_EQ((vector<uint32_t>{3}), result->get_vector<uint32_t>());
}
TEST(${BACKEND_NAME}, scalar_parameterized_constant_uint64)
{
auto shape = Shape{};
auto t = runtime::make_tensor<element::UInt64>(shape, {3});
auto A = make_shared<op::ParameterizedConstant<element::UInt64>>(shape, t);
auto rt = make_shared<TensorViewType>(element::UInt64::element_type(), shape);
auto f = make_shared<Function>(A, rt, op::Parameters{});
auto manager = runtime::Manager::get("${BACKEND_NAME}");
auto external = manager->compile(f);
auto backend = manager->allocate_backend();
auto cf = backend->make_call_frame(external);
// Create some tensors for input/output
auto result = backend->make_primary_tensor_view(element::UInt64::element_type(), shape);
(*cf)({}, {result});
ASSERT_EQ((vector<uint64_t>{3}), result->get_vector<uint64_t>());
}
TEST(${BACKEND_NAME}, tensor_constant) TEST(${BACKEND_NAME}, tensor_constant)
{ {
auto shape = Shape{2, 2, 2}; auto shape = Shape{2, 2, 2};
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment