/// | \f$N[d_1,\dots,d_n]\f$ | The tensor \f$T\f$, where \f$T[i_1,\dots,i_n] = \mathit{op}(\texttt{arg0}[i_1,\dots,i_n],\texttt{arg1}[i_1,\dots,i_n])\f$. This will always have the same shape and element type as the input tensors (after auto broadcasting). |
classBinaryElementwiseArithmetic:publicOp
{
public:
protected:
/// \brief Constructs a binary elementwise arithmetic operation.
/// | \f$\texttt{bool}[d_1,\dots,d_n]\f$ | The tensor \f$T\f$, where \f$T[i_1,\dots,i_n] = \mathit{op}(\texttt{arg0}[i_1,\dots,i_n],\texttt{arg1}[i_1,\dots,i_n])\f$. This will always have the same shape as the input tensors, and the element type `bool`. |
classBinaryElementwiseComparison:publicOp
{
public:
protected:
/// \brief Constructs a binary elementwise comparison operation.
BinaryElementwiseComparison();
/// \brief Constructs a binary elementwise comparison operation.
///
/// \param arg0 Node that produces the first input tensor.
/// \param arg1 Node that produces the second input tensor.
/// | \f$\texttt{bool}[d_1,\dots,d_n]\f$ | The tensor \f$T\f$, where \f$T[i_1,\dots,i_n] = \mathit{op}(\texttt{arg0}[i_1,\dots,i_n],\texttt{arg1}[i_1,\dots,i_n])\f$. This will always have the same shape as the input tensors, and the element type `bool`. |
classBinaryElementwiseLogical:publicOp
{
public:
protected:
BinaryElementwiseLogical();
/// \brief Constructs a binary elementwise logical operation.
///
/// \param arg0 Node that produces the first input tensor.
/// \param arg1 Node that produces the second input tensor.