Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
N
ngraph
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
ngraph
Commits
809dda4f
Commit
809dda4f
authored
Mar 08, 2018
by
Fenglei Tian
Browse files
Options
Browse Files
Download
Plain Diff
resolve coflict when merge master
parents
004cef1b
a02aab01
Expand all
Hide whitespace changes
Inline
Side-by-side
Showing
18 changed files
with
238 additions
and
107 deletions
+238
-107
installation.rst
doc/sphinx/source/installation.rst
+5
-4
CMakeLists.txt
src/ngraph/CMakeLists.txt
+1
-0
adjoints.hpp
src/ngraph/autodiff/adjoints.hpp
+0
-5
batch_norm.cpp
src/ngraph/ops/batch_norm.cpp
+16
-41
batch_norm.hpp
src/ngraph/ops/batch_norm.hpp
+1
-3
cpu_emitter.cpp
src/ngraph/runtime/cpu/cpu_emitter.cpp
+27
-11
cpu_external_function.cpp
src/ngraph/runtime/cpu/cpu_external_function.cpp
+2
-0
cpu_fusion.cpp
src/ngraph/runtime/cpu/pass/cpu_fusion.cpp
+7
-8
cpu_layout.cpp
src/ngraph/runtime/cpu/pass/cpu_layout.cpp
+1
-0
cpu_nop_elimination.cpp
src/ngraph/runtime/cpu/pass/cpu_nop_elimination.cpp
+64
-0
cpu_nop_elimination.hpp
src/ngraph/runtime/cpu/pass/cpu_nop_elimination.hpp
+37
-0
gpu_emitter.cpp
src/ngraph/runtime/gpu/gpu_emitter.cpp
+0
-0
gpu_external_function.cpp
src/ngraph/runtime/gpu/gpu_external_function.cpp
+24
-2
serializer.cpp
src/ngraph/serializer.cpp
+1
-1
autodiff.in.cpp
test/autodiff.in.cpp
+4
-0
backend_test.in.cpp
test/backend_test.in.cpp
+4
-0
cpu_fusion.cpp
test/cpu_fusion.cpp
+44
-25
backprop_function.hpp
test/util/autodiff/backprop_function.hpp
+0
-7
No files found.
doc/sphinx/source/installation.rst
View file @
809dda4f
...
...
@@ -79,10 +79,11 @@ information about how to change or customize this location.
$ cd build && cmake ../ [-DNGRAPH_USE_PREBUILT_LLVM=TRUE]
#. (Optional) Run ``$ make [-jN]`` where ``-jN`` specifies the number of
cores. The example here uses a configuration of ``j8``, which is
good for a system install using an Intel® Xeon® (CPU processor). This step
is **not recommended** with Docker / VM installs.
#. (Optional) Run ``$ make [-jN]`` where ``-jN`` specifies the number of physical
cores to use to build. The example here uses a configuration of ``j8``,
which is good for a system install using an 8-core Intel® Xeon® CPU processor.
This step is **not recommended** for machines with too little RAM available,
such as those whose RAM is superceded by Docker or VM tasks.
.. code-block:: console
...
...
src/ngraph/CMakeLists.txt
View file @
809dda4f
...
...
@@ -190,6 +190,7 @@ if (NGRAPH_CPU_ENABLE AND LLVM_INCLUDE_DIR AND
runtime/cpu/pass/cpu_assignment.cpp
runtime/cpu/pass/cpu_fusion.cpp
runtime/cpu/pass/cpu_layout.cpp
runtime/cpu/pass/cpu_nop_elimination.cpp
)
# LLVM binary builds are typically built without RTTI
# The built-in headers are in a version-specific directory
...
...
src/ngraph/autodiff/adjoints.hpp
View file @
809dda4f
...
...
@@ -75,10 +75,5 @@ namespace ngraph
protected
:
std
::
unordered_map
<
Node
*
,
std
::
shared_ptr
<
Node
>>
m_adjoint_map
;
};
/// @brief Returns a FunctionSpec for the backprop derivative of its argument.
/// @param f is f(X_i...)
/// @returns f'(X_i..., c) where f'(x_i, ..., c)_j is backprop for X_j
std
::
shared_ptr
<
Function
>
backprop_function
(
const
std
::
shared_ptr
<
Function
>&
f
);
}
}
src/ngraph/ops/batch_norm.cpp
View file @
809dda4f
...
...
@@ -21,21 +21,20 @@
ngraph
::
op
::
BatchNorm
::
BatchNorm
(
double
eps
,
std
::
shared_ptr
<
ngraph
::
Node
>
gamma
,
std
::
shared_ptr
<
ngraph
::
Node
>
beta
,
std
::
shared_ptr
<
ngraph
::
Node
>
input
,
std
::
shared_ptr
<
ngraph
::
Node
>
mean
,
std
::
shared_ptr
<
ngraph
::
Node
>
variance
)
:
RequiresTensorViewArgs
(
"BatchNorm"
,
{
gamma
,
beta
,
input
,
mean
,
variance
})
std
::
shared_ptr
<
ngraph
::
Node
>
input
)
:
RequiresTensorViewArgs
(
"BatchNorm"
,
{
gamma
,
beta
,
input
})
,
m_bn_input_shape
(
input
->
get_shape
())
,
m_bn_variance_shape
(
variance
->
get_shape
())
,
m_bn_mean_shape
(
mean
->
get_shape
())
,
m_epsilon
(
eps
)
{
add_output
(
input
->
get_element_type
(),
m_bn_input_shape
);
if
(
m_bn_input_shape
.
size
()
<
2
)
{
throw
ngraph_error
(
"input tensor to batchnorm much have tensor of atleast rank 2"
);
}
else
{
this
->
m_bn_variance_shape
.
push_back
(
input
->
get_shape
()[
1
]);
this
->
m_bn_mean_shape
.
push_back
(
input
->
get_shape
()[
1
]);
}
if
(
m_bn_input_shape
[
1
]
==
0
)
{
...
...
@@ -49,51 +48,27 @@ ngraph::op::BatchNorm::BatchNorm(double eps,
throw
ngraph_error
(
"gamma, beta, mean, variance shoud have all rank 1"
);
}
// assuming input shape (N, C, H, W), check if the size of mean and
// variance are equal to channel axis
if
(
mean
->
get_shape
()[
0
]
!=
m_bn_input_shape
[
1
])
{
throw
ngraph_error
(
"mean size is not equal to input channel size"
);
}
if
(
variance
->
get_shape
()[
0
]
!=
m_bn_input_shape
[
1
])
{
throw
ngraph_error
(
"variance size is not equal to input channel size"
);
}
if
(
variance
->
get_shape
().
size
()
!=
mean
->
get_shape
().
size
())
{
throw
ngraph_error
(
"mean and variance rank does not match"
);
}
if
(
gamma
->
get_shape
().
size
()
!=
beta
->
get_shape
().
size
())
{
throw
ngraph_error
(
"gamma and beta rank does not match"
);
}
if
(
input
->
get_element_type
()
!=
mean
->
get_element_type
())
{
throw
ngraph_error
(
"input tensor and mean element type does not match"
);
}
if
(
input
->
get_element_type
()
!=
variance
->
get_element_type
())
{
throw
ngraph_error
(
"input tensor and variance element type does not match"
);
}
if
(
gamma
->
get_element_type
()
!=
beta
->
get_element_type
())
{
throw
ngraph_error
(
"gamma and beta element type does not match"
);
}
add_output
(
input
->
get_element_type
(),
m_bn_input_shape
);
add_output
(
input
->
get_element_type
(),
m_bn_mean_shape
);
add_output
(
input
->
get_element_type
(),
m_bn_variance_shape
);
}
std
::
shared_ptr
<
ngraph
::
Node
>
ngraph
::
op
::
BatchNorm
::
copy_with_new_args
(
const
NodeVector
&
new_args
)
const
{
if
(
new_args
.
size
()
!=
5
)
if
(
new_args
.
size
()
!=
3
)
throw
ngraph_error
(
"Incorrect number of new arguments"
);
return
std
::
make_shared
<
BatchNorm
>
(
m_epsilon
,
new_args
.
at
(
0
),
new_args
.
at
(
1
),
new_args
.
at
(
2
),
new_args
.
at
(
3
),
new_args
.
at
(
4
));
return
std
::
make_shared
<
BatchNorm
>
(
m_epsilon
,
new_args
.
at
(
0
),
new_args
.
at
(
1
),
new_args
.
at
(
2
));
}
ngraph
::
op
::
BatchNormBackprop
::
BatchNormBackprop
(
double
eps
,
...
...
@@ -174,10 +149,10 @@ void ngraph::op::BatchNorm::generate_adjoints(autodiff::Adjoints& adjoints,
auto
gamma
=
get_input_op
(
0
);
auto
beta
=
get_input_op
(
1
);
auto
input
=
get_input_op
(
2
);
auto
mean
=
get_input_op
(
3
);
auto
var
iance
=
get_input_op
(
4
);
auto
mean
=
std
::
make_shared
<
op
::
GetOutputElement
>
(
shared_from_this
(),
1
);
auto
var
=
std
::
make_shared
<
op
::
GetOutputElement
>
(
shared_from_this
(),
2
);
auto
bbn
=
std
::
make_shared
<
op
::
BatchNormBackprop
>
(
get_eps_value
(),
gamma
,
beta
,
input
,
mean
,
var
iance
,
delta
);
get_eps_value
(),
gamma
,
beta
,
input
,
mean
,
var
,
delta
);
auto
dinput
=
std
::
make_shared
<
op
::
GetOutputElement
>
(
bbn
,
0
);
auto
dgamma
=
std
::
make_shared
<
op
::
GetOutputElement
>
(
bbn
,
1
);
auto
dbeta
=
std
::
make_shared
<
op
::
GetOutputElement
>
(
bbn
,
2
);
...
...
src/ngraph/ops/batch_norm.hpp
View file @
809dda4f
...
...
@@ -33,9 +33,7 @@ namespace ngraph
BatchNorm
(
double
eps
,
std
::
shared_ptr
<
Node
>
gamma
,
std
::
shared_ptr
<
Node
>
beta
,
std
::
shared_ptr
<
Node
>
input
,
std
::
shared_ptr
<
Node
>
mean
,
std
::
shared_ptr
<
Node
>
variance
);
std
::
shared_ptr
<
Node
>
input
);
const
Shape
&
get_inputs_shape
()
const
{
return
m_bn_input_shape
;
}
const
Shape
&
get_variance_shape
()
const
{
return
m_bn_variance_shape
;
}
...
...
src/ngraph/runtime/cpu/cpu_emitter.cpp
View file @
809dda4f
...
...
@@ -301,14 +301,26 @@ namespace ngraph
auto
gamma_shape
=
args
[
0
].
get_shape
();
auto
beta_shape
=
args
[
1
].
get_shape
();
auto
input_shape
=
args
[
2
].
get_shape
();
auto
mean_shape
=
args
[
3
].
get_shape
();
auto
variance_shape
=
args
[
4
].
get_shape
();
auto
result_shape
=
out
[
0
].
get_shape
();
auto
mean_shape
=
out
[
1
].
get_shape
();
auto
variance_shape
=
out
[
2
].
get_shape
();
// get input element type
const
string
&
et
=
runtime
::
cpu
::
mkldnn_utils
::
get_mkldnn_data_type_string
(
args
[
2
].
get_element_type
());
const
string
&
gamma_format
=
runtime
::
cpu
::
mkldnn_utils
::
get_mkldnn_format_string
(
runtime
::
cpu
::
mkldnn_utils
::
get_input_mkldnn_format
(
node
,
0
));
const
string
&
beta_format
=
runtime
::
cpu
::
mkldnn_utils
::
get_mkldnn_format_string
(
runtime
::
cpu
::
mkldnn_utils
::
get_input_mkldnn_format
(
node
,
1
));
if
(
gamma_format
.
compare
(
"memory::format::x"
)
!=
0
&&
beta_format
.
compare
(
"memory::format::x"
)
!=
0
)
{
throw
std
::
runtime_error
(
"gamma layout->"
+
gamma_format
+
", beta layout->"
+
beta_format
+
" should match and both should have memory::format::x format"
);
}
writer
<<
"{
\n
"
;
writer
.
indent
++
;
...
...
@@ -329,16 +341,20 @@ namespace ngraph
// get the eps value from the bn node
writer
<<
"auto epsilon = "
<<
batchnorm
->
get_eps_value
()
<<
";
\n
"
;
const
string
&
input_format
=
runtime
::
cpu
::
mkldnn_utils
::
get_mkldnn_format_string
(
runtime
::
cpu
::
mkldnn_utils
::
get_input_mkldnn_format
(
node
,
2
));
const
string
&
result_format
=
runtime
::
cpu
::
mkldnn_utils
::
get_mkldnn_format_string
(
runtime
::
cpu
::
mkldnn_utils
::
get_output_mkldnn_format
(
node
,
0
));
// Bind to CPU engine
writer
<<
"engine cpu_engine = engine(engine::cpu, 0);
\n
"
;
// create memory descriptors
writer
<<
"memory::desc input_data_desc = memory::desc({"
<<
join
(
input_shape
)
<<
"}, "
<<
et
<<
",
memory::format::nchw
);
\n
"
;
<<
"}, "
<<
et
<<
",
"
<<
input_format
<<
"
);
\n
"
;
// TODO define weights by stacking gamma and beta values
writer
<<
"memory::desc weights_desc = memory::desc({"
<<
join
(
weights_shape
)
<<
"}, "
<<
et
<<
", memory::format::nc);
\n
"
;
writer
<<
"memory::desc result_desc = memory::desc({"
<<
join
(
result_shape
)
<<
"}, "
<<
et
<<
",
memory::format::nchw
);
\n
"
;
<<
et
<<
",
"
<<
result_format
<<
"
);
\n
"
;
writer
<<
"memory::desc mean_desc = memory::desc({"
<<
join
(
mean_shape
)
<<
"}, "
<<
et
<<
", memory::format::x);
\n
"
;
writer
<<
"memory::desc variance_desc = memory::desc({"
<<
join
(
variance_shape
)
...
...
@@ -349,17 +365,17 @@ namespace ngraph
<<
args
[
2
].
get_name
()
<<
");
\n
"
;
writer
<<
"memory weights = memory({weights_desc, cpu_engine}, bn_weights.data()"
<<
");
\n
"
;
writer
<<
"memory mean = memory({mean_desc, cpu_engine}, "
<<
args
[
3
].
get_name
()
<<
");
\n
"
;
writer
<<
"memory variance = memory({variance_desc, cpu_engine}, "
<<
args
[
4
].
get_name
()
<<
");
\n
"
;
writer
<<
"memory result = memory({result_desc, cpu_engine}, "
<<
out
[
0
].
get_name
()
<<
");
\n
"
;
writer
<<
"memory mean = memory({mean_desc, cpu_engine}, "
<<
out
[
1
].
get_name
()
<<
");
\n
"
;
writer
<<
"memory variance = memory({variance_desc, cpu_engine}, "
<<
out
[
2
].
get_name
()
<<
");
\n
"
;
// create batchnorm descriptor
writer
<<
"batch_normalization_forward::desc bn_fprop_desc = "
"batch_normalization_forward::desc(forward_training,"
<<
"input_data_desc, epsilon, use_
global_stats|use_
scale_shift);
\n
"
;
<<
"input_data_desc, epsilon, use_scale_shift);
\n
"
;
// bn fprop primitive descriptor
writer
<<
"batch_normalization_forward::primitive_desc bn_fprop_prim_desc = "
...
...
@@ -368,8 +384,8 @@ namespace ngraph
// create a batchnorm fprop primitive
writer
<<
"batch_normalization_forward bn_fprop = "
"batch_normalization_forward(bn_fprop_prim_desc, "
"primitive::at(input_data),
primitive::at(mean), primitive::at(variance),
"
<<
"primitive::at(weights), result);
\n
"
;
"primitive::at(input_data),"
<<
"primitive::at(weights), result
, mean, variance
);
\n
"
;
// create stream and execute
writer
<<
"stream s = stream(stream::kind::eager);
\n
"
...
...
src/ngraph/runtime/cpu/cpu_external_function.cpp
View file @
809dda4f
...
...
@@ -113,6 +113,7 @@
#include "ngraph/runtime/cpu/pass/cpu_assignment.hpp"
#include "ngraph/runtime/cpu/pass/cpu_fusion.hpp"
#include "ngraph/runtime/cpu/pass/cpu_layout.hpp"
#include "ngraph/runtime/cpu/pass/cpu_nop_elimination.hpp"
#ifdef NGRAPH_DISTRIBUTED
#include "ngraph/ops/allreduce.hpp"
...
...
@@ -270,6 +271,7 @@ void runtime::cpu::CPU_ExternalFunction::compile()
ngraph
::
pass
::
Manager
pass_manager
;
pass_manager
.
register_pass
<
runtime
::
cpu
::
pass
::
CPUNopElimination
>
();
pass_manager
.
register_pass
<
ngraph
::
pass
::
CoreFusion
>
();
pass_manager
.
register_pass
<
runtime
::
cpu
::
pass
::
CPUFusion
>
();
pass_manager
.
register_pass
<
runtime
::
cpu
::
pass
::
CPUAssignment
>
(
this
);
...
...
src/ngraph/runtime/cpu/pass/cpu_fusion.cpp
View file @
809dda4f
...
...
@@ -30,6 +30,7 @@
#include "ngraph/ops/convolution.hpp"
#include "ngraph/ops/divide.hpp"
#include "ngraph/ops/dot.hpp"
#include "ngraph/ops/get_output_element.hpp"
#include "ngraph/ops/multiply.hpp"
#include "ngraph/ops/pad.hpp"
#include "ngraph/ops/parameter.hpp"
...
...
@@ -301,14 +302,12 @@ void ngraph::runtime::cpu::pass::CPUFusion::construct_fprop_bn()
// get epsilon value
auto
eps_ptr
=
std
::
dynamic_pointer_cast
<
op
::
Constant
>
(
pattern_map
[
eps_label
]);
double
epsilon
=
*
(
reinterpret_cast
<
const
double
*>
(
eps_ptr
->
get_data_ptr
()));
auto
bn_node
=
std
::
shared_ptr
<
Node
>
(
new
op
::
BatchNorm
(
epsilon
,
pattern_map
[
gamma_label
],
pattern_map
[
beta_label
],
pattern_map
[
input
],
pattern_map
[
mean_label
],
pattern_map
[
variance_label
]));
return
bn_node
;
auto
bn_node
=
std
::
make_shared
<
op
::
BatchNorm
>
(
epsilon
,
pattern_map
[
gamma_label
],
pattern_map
[
beta_label
],
pattern_map
[
input
]);
auto
normalized_output
=
std
::
shared_ptr
<
Node
>
(
new
op
::
GetOutputElement
(
bn_node
,
0
));
return
normalized_output
;
};
auto
m
=
std
::
make_shared
<
ngraph
::
pattern
::
Matcher
>
(
add_beta
,
callback
);
...
...
src/ngraph/runtime/cpu/pass/cpu_layout.cpp
View file @
809dda4f
...
...
@@ -710,6 +710,7 @@ namespace ngraph
#define TI(x) type_index(typeid(x))
static
const
runtime
::
cpu
::
pass
::
LayoutOpMap
s_dispatcher
{
{
TI
(
ngraph
::
op
::
Add
),
&
runtime
::
cpu
::
pass
::
CPULayout
::
layout
<
ngraph
::
op
::
Add
>
},
{
TI
(
ngraph
::
op
::
Convolution
),
&
runtime
::
cpu
::
pass
::
CPULayout
::
layout
<
ngraph
::
op
::
Convolution
>
},
{
TI
(
ngraph
::
op
::
ConvolutionBackpropData
),
&
runtime
::
cpu
::
pass
::
CPULayout
::
layout
<
ngraph
::
op
::
ConvolutionBackpropData
>
},
...
...
src/ngraph/runtime/cpu/pass/cpu_nop_elimination.cpp
0 → 100644
View file @
809dda4f
/*******************************************************************************
* Copyright 2018 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
#include <memory>
#include <typeindex>
#include <typeinfo>
#include <unordered_map>
#include "cpu_nop_elimination.hpp"
#include "ngraph/ops/pad.hpp"
#define TI(x) std::type_index(typeid(x))
#define HANDLER_DECL(x) \
static bool x(const std::shared_ptr<ngraph::Function>& function, \
const std::shared_ptr<ngraph::Node>& node)
HANDLER_DECL
(
eliminate_pad
)
{
auto
pad
=
std
::
dynamic_pointer_cast
<
ngraph
::
op
::
Pad
>
(
node
);
if
(
pad
->
get_input_shape
(
0
)
==
pad
->
get_output_shape
(
0
))
{
function
->
replace_node
(
node
,
node
->
get_input_op
(
0
));
return
true
;
}
return
false
;
}
static
const
std
::
unordered_map
<
std
::
type_index
,
std
::
function
<
bool
(
const
std
::
shared_ptr
<
ngraph
::
Function
>&
,
const
std
::
shared_ptr
<
ngraph
::
Node
>&
)
>>
dispatcher
{{
TI
(
ngraph
::
op
::
Pad
),
&
eliminate_pad
}};
bool
ngraph
::
runtime
::
cpu
::
pass
::
CPUNopElimination
::
run_on_function
(
std
::
shared_ptr
<
ngraph
::
Function
>
function
)
{
bool
clobbered
=
false
;
for
(
const
auto
&
n
:
function
->
get_ops
())
{
// Work around a warning [-Wpotentially-evaluated-expression]
const
Node
&
node
=
*
n
;
auto
handler
=
dispatcher
.
find
(
TI
(
node
));
if
(
handler
!=
dispatcher
.
end
())
{
clobbered
=
handler
->
second
(
function
,
n
)
||
clobbered
;
}
}
return
clobbered
;
}
src/ngraph/runtime/cpu/pass/cpu_nop_elimination.hpp
0 → 100644
View file @
809dda4f
/*******************************************************************************
* Copyright 2018 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
#pragma once
#include "ngraph/pass/pass.hpp"
namespace
ngraph
{
namespace
runtime
{
namespace
cpu
{
namespace
pass
{
class
CPUNopElimination
:
public
ngraph
::
pass
::
FunctionPass
{
public
:
bool
run_on_function
(
std
::
shared_ptr
<
ngraph
::
Function
>
function
)
override
;
};
}
}
}
}
src/ngraph/runtime/gpu/gpu_emitter.cpp
View file @
809dda4f
This diff is collapsed.
Click to expand it.
src/ngraph/runtime/gpu/gpu_external_function.cpp
View file @
809dda4f
...
...
@@ -384,12 +384,15 @@ using namespace std;
shared_ptr
<
descriptor
::
TensorView
>
tv
=
node
->
get_outputs
()[
0
].
get_tensor_view
();
auto
c_value_strings
=
c
->
get_value_strings
();
writer
<<
"static "
<<
tv
->
get_tensor
().
get_element_type
().
c_type_string
()
<<
" "
<<
tv
->
get_tensor
().
get_name
()
<<
"["
<<
c_value_strings
.
size
()
<<
"] =
\n
"
;
<<
tv
->
get_tensor
().
get_name
()
<<
"_cpu["
<<
c_value_strings
.
size
()
<<
"] =
\n
"
;
writer
<<
"{
\n
"
;
writer
.
indent
++
;
writer
<<
emit_string_array
(
c_value_strings
,
100
-
writer
.
indent
*
4
);
writer
.
indent
--
;
writer
<<
"
\n
};
\n\n
"
;
writer
<<
"static "
<<
tv
->
get_tensor
().
get_element_type
().
c_type_string
()
<<
" *"
<<
tv
->
get_tensor
().
get_name
()
<<
";
\n
"
;
m_variable_name_map
[
tv
->
get_tensor
().
get_name
()]
=
tv
->
get_tensor
().
get_name
();
}
}
...
...
@@ -523,6 +526,26 @@ using namespace std;
writer
<<
"{
\n
"
;
writer
.
indent
++
;
for
(
shared_ptr
<
Function
>
current_function
:
pass_manager
.
get_state
().
get_functions
())
{
for
(
shared_ptr
<
Node
>
node
:
current_function
->
get_ordered_ops
())
{
const
op
::
Constant
*
c
=
dynamic_cast
<
op
::
Constant
*>
(
node
.
get
());
if
(
c
)
{
shared_ptr
<
descriptor
::
TensorView
>
tv
=
node
->
get_outputs
()[
0
].
get_tensor_view
();
writer
<<
"if("
<<
tv
->
get_tensor
().
get_name
()
<<
" == NULL)
\n
"
;
writer
<<
"{
\n
"
;
writer
.
indent
++
;
writer
<<
"runtime::gpu::cuda_memcpyHtD("
<<
tv
->
get_tensor
().
get_name
()
<<
", "
<<
tv
->
get_tensor
().
get_name
()
<<
"_cpu, "
<<
tv
->
get_tensor
().
size
()
<<
");
\n
"
;
writer
.
indent
--
;
writer
<<
"}
\n
"
;
}
}
}
bool
temporaries_used
=
false
;
size_t
worst_case_tmp_size
=
0
;
for
(
shared_ptr
<
Node
>
node
:
current_function
->
get_ordered_ops
())
...
...
@@ -695,7 +718,6 @@ using namespace std;
// Emit operation epilogue
if
(
!
node
->
is_parameter
()
&&
!
node
->
is_constant
())
{
handle_output_alias
(
writer
,
*
node
,
output_alias_map
);
if
(
m_emit_timing
)
{
emit_debug_function_exit
(
writer
,
node
.
get
(),
in
,
out
);
...
...
src/ngraph/serializer.cpp
View file @
809dda4f
...
...
@@ -328,7 +328,7 @@ static shared_ptr<ngraph::Function>
else
if
(
node_op
==
"BatchNorm"
)
{
auto
epsilon
=
node_js
.
at
(
"eps"
).
get
<
double
>
();
node
=
make_shared
<
op
::
BatchNorm
>
(
epsilon
,
args
[
0
],
args
[
1
],
args
[
2
]
,
args
[
3
],
args
[
4
]
);
node
=
make_shared
<
op
::
BatchNorm
>
(
epsilon
,
args
[
0
],
args
[
1
],
args
[
2
]);
}
else
if
(
node_op
==
"BatchNormBackprop"
)
{
...
...
test/autodiff.in.cpp
View file @
809dda4f
...
...
@@ -1305,6 +1305,7 @@ TEST(${BACKEND_NAME}, backwards_slice)
TEST
(
$
{
BACKEND_NAME
},
backwards_softmax_all
)
{
SKIP_TEST_FOR
(
"GPU"
,
"${BACKEND_NAME}"
);
auto
manager
=
runtime
::
Manager
::
get
(
"${BACKEND_NAME}"
);
auto
backend
=
manager
->
allocate_backend
();
...
...
@@ -1322,6 +1323,7 @@ TEST(${BACKEND_NAME}, backwards_softmax_all)
TEST
(
$
{
BACKEND_NAME
},
backwards_softmax_axis
)
{
SKIP_TEST_FOR
(
"GPU"
,
"${BACKEND_NAME}"
);
auto
manager
=
runtime
::
Manager
::
get
(
"${BACKEND_NAME}"
);
auto
backend
=
manager
->
allocate_backend
();
...
...
@@ -1339,6 +1341,7 @@ TEST(${BACKEND_NAME}, backwards_softmax_axis)
TEST
(
$
{
BACKEND_NAME
},
backwards_softmax_underflow
)
{
SKIP_TEST_FOR
(
"GPU"
,
"${BACKEND_NAME}"
);
auto
manager
=
runtime
::
Manager
::
get
(
"${BACKEND_NAME}"
);
auto
backend
=
manager
->
allocate_backend
();
...
...
@@ -1358,6 +1361,7 @@ TEST(${BACKEND_NAME}, backwards_softmax_underflow)
TEST
(
$
{
BACKEND_NAME
},
backwards_softmax_3d
)
{
SKIP_TEST_FOR
(
"GPU"
,
"${BACKEND_NAME}"
);
auto
manager
=
runtime
::
Manager
::
get
(
"${BACKEND_NAME}"
);
auto
backend
=
manager
->
allocate_backend
();
...
...
test/backend_test.in.cpp
View file @
809dda4f
...
...
@@ -120,6 +120,7 @@ TEST(${BACKEND_NAME}, component_cleanup)
TEST
(
$
{
BACKEND_NAME
},
aliased_output
)
{
SKIP_TEST_FOR
(
"GPU"
,
"${BACKEND_NAME}"
);
Shape
shape
{
2
,
2
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape
);
auto
B
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape
);
...
...
@@ -8441,6 +8442,7 @@ TEST(${BACKEND_NAME}, relu_4Dbackprop)
TEST
(
$
{
BACKEND_NAME
},
softmax_all
)
{
SKIP_TEST_FOR
(
"GPU"
,
"${BACKEND_NAME}"
);
Shape
shape
{
2
,
3
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape
);
auto
f
=
...
...
@@ -8473,6 +8475,7 @@ TEST(${BACKEND_NAME}, softmax_all)
TEST
(
$
{
BACKEND_NAME
},
softmax_axis
)
{
SKIP_TEST_FOR
(
"GPU"
,
"${BACKEND_NAME}"
);
Shape
shape
{
2
,
3
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape
);
auto
f
=
make_shared
<
Function
>
(
make_shared
<
op
::
Softmax
>
(
A
,
AxisSet
{
1
}),
op
::
ParameterVector
{
A
});
...
...
@@ -8501,6 +8504,7 @@ TEST(${BACKEND_NAME}, softmax_axis)
TEST
(
$
{
BACKEND_NAME
},
softmax_underflow
)
{
SKIP_TEST_FOR
(
"GPU"
,
"${BACKEND_NAME}"
);
Shape
shape
{
2
,
3
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape
);
auto
f
=
make_shared
<
Function
>
(
make_shared
<
op
::
Softmax
>
(
A
,
AxisSet
{
0
}),
op
::
ParameterVector
{
A
});
...
...
test/cpu_fusion.cpp
View file @
809dda4f
...
...
@@ -25,6 +25,7 @@
#include "ngraph/log.hpp"
#include "ngraph/ngraph.hpp"
#include "ngraph/ops/batch_norm.hpp"
#include "ngraph/ops/get_output_element.hpp"
#include "ngraph/ops/sum.hpp"
#include "ngraph/pass/graph_rewrite.hpp"
#include "ngraph/pass/manager.hpp"
...
...
@@ -254,18 +255,21 @@ TEST(cpu_fusion, batchnorm_fprop_b1c2h2w2)
auto
input_shape
=
Shape
{
1
,
2
,
2
,
2
};
auto
input
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
input_shape
);
auto
mean_shape
=
Shape
{
2
};
auto
mean
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
mean_shape
);
auto
var_shape
=
Shape
{
2
};
auto
var
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
var_shape
);
auto
gamma_shape
=
Shape
{
2
};
auto
gamma
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
gamma_shape
);
auto
beta_shape
=
Shape
{
2
};
auto
beta
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
beta_shape
);
double
eps
=
0.001
;
auto
shape_r
=
Shape
{
1
,
2
,
2
,
2
};
auto
bn
=
make_shared
<
op
::
BatchNorm
>
(
eps
,
gamma
,
beta
,
input
,
mean
,
var
);
auto
bn
=
make_shared
<
op
::
BatchNorm
>
(
eps
,
gamma
,
beta
,
input
);
auto
f
=
make_shared
<
Function
>
(
bn
,
op
::
ParameterVector
{
mean
,
var
,
input
,
gamma
,
beta
});
auto
output_rt
=
std
::
make_shared
<
op
::
GetOutputElement
>
(
bn
,
0
);
auto
mean_rt
=
std
::
make_shared
<
op
::
GetOutputElement
>
(
bn
,
1
);
auto
variance_rt
=
std
::
make_shared
<
op
::
GetOutputElement
>
(
bn
,
2
);
auto
f
=
make_shared
<
Function
>
(
NodeVector
{
output_rt
,
mean_rt
,
variance_rt
},
op
::
ParameterVector
{
input
,
gamma
,
beta
});
auto
manager
=
runtime
::
Manager
::
get
(
"CPU"
);
auto
external
=
manager
->
compile
(
f
);
auto
backend
=
manager
->
allocate_backend
();
...
...
@@ -283,15 +287,13 @@ TEST(cpu_fusion, batchnorm_fprop_b1c2h2w2)
0.64589411
f
,
0.4375872
f
,
0.89177299
f
});
auto
_mean
=
backend
->
make_primary_tensor_view
(
element
::
f32
,
mean_shape
);
copy_data
(
_mean
,
vector
<
float
>
{
0.60291237
f
,
0.59972727
f
});
auto
_var
=
backend
->
make_primary_tensor_view
(
element
::
f32
,
var_shape
);
copy_data
(
_var
,
vector
<
float
>
{
0.00472505
f
,
0.03617825
f
});
auto
_gamma
=
backend
->
make_primary_tensor_view
(
element
::
f32
,
gamma_shape
);
copy_data
(
_gamma
,
vector
<
float
>
{
1.0
f
,
1.0
f
});
auto
_beta
=
backend
->
make_primary_tensor_view
(
element
::
f32
,
beta_shape
);
copy_data
(
_beta
,
vector
<
float
>
{
0.0
f
,
0.0
f
});
auto
result
=
backend
->
make_primary_tensor_view
(
element
::
f32
,
shape_r
);
auto
bn_output
=
backend
->
make_primary_tensor_view
(
element
::
f32
,
shape_r
);
auto
result_mean
=
backend
->
make_primary_tensor_view
(
element
::
f32
,
mean_shape
);
auto
result_variance
=
backend
->
make_primary_tensor_view
(
element
::
f32
,
var_shape
);
vector
<
float
>
expected_result
{
-
0.71498716
f
,
1.48388731
f
,
...
...
@@ -301,8 +303,14 @@ TEST(cpu_fusion, batchnorm_fprop_b1c2h2w2)
0.23943391
f
,
-
0.84090298
f
,
1.51462936
f
};
cf
->
call
({
_mean
,
_var
,
_input
,
_gamma
,
_beta
},
{
result
});
EXPECT_TRUE
(
test
::
all_close
(
expected_result
,
read_vector
<
float
>
(
result
)));
vector
<
float
>
expected_mean
{
0.602912
f
,
0.599727
f
};
vector
<
float
>
expected_variance
{
0.00472505
f
,
0.0361782
f
};
cf
->
call
({
_input
,
_gamma
,
_beta
},
{
bn_output
,
result_mean
,
result_variance
});
EXPECT_TRUE
(
test
::
all_close
(
expected_result
,
read_vector
<
float
>
(
bn_output
)));
EXPECT_TRUE
(
test
::
all_close
(
expected_mean
,
read_vector
<
float
>
(
result_mean
)));
EXPECT_TRUE
(
test
::
all_close
(
expected_variance
,
read_vector
<
float
>
(
result_variance
)));
}
TEST
(
cpu_fusion
,
batchnorm_fprop_b2c2h2w1
)
...
...
@@ -310,18 +318,21 @@ TEST(cpu_fusion, batchnorm_fprop_b2c2h2w1)
auto
input_shape
=
Shape
{
2
,
2
,
2
,
1
};
auto
input
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
input_shape
);
auto
mean_shape
=
Shape
{
2
};
auto
mean
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
mean_shape
);
auto
var_shape
=
Shape
{
2
};
auto
var
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
var_shape
);
auto
gamma_shape
=
Shape
{
2
};
auto
gamma
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
gamma_shape
);
auto
beta_shape
=
Shape
{
2
};
auto
beta
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
beta_shape
);
double
eps
=
0.001
;
auto
shape_r
=
Shape
{
2
,
2
,
2
,
1
};
auto
bn
=
make_shared
<
op
::
BatchNorm
>
(
eps
,
gamma
,
beta
,
input
,
mean
,
var
);
auto
bn
=
make_shared
<
op
::
BatchNorm
>
(
eps
,
gamma
,
beta
,
input
);
auto
f
=
make_shared
<
Function
>
(
bn
,
op
::
ParameterVector
{
mean
,
var
,
input
,
gamma
,
beta
});
auto
output_rt
=
std
::
make_shared
<
op
::
GetOutputElement
>
(
bn
,
0
);
auto
mean_rt
=
std
::
make_shared
<
op
::
GetOutputElement
>
(
bn
,
1
);
auto
variance_rt
=
std
::
make_shared
<
op
::
GetOutputElement
>
(
bn
,
2
);
auto
f
=
make_shared
<
Function
>
(
NodeVector
{
output_rt
,
mean_rt
,
variance_rt
},
op
::
ParameterVector
{
input
,
gamma
,
beta
});
auto
manager
=
runtime
::
Manager
::
get
(
"CPU"
);
auto
external
=
manager
->
compile
(
f
);
auto
backend
=
manager
->
allocate_backend
();
...
...
@@ -337,20 +348,24 @@ TEST(cpu_fusion, batchnorm_fprop_b2c2h2w1)
0.64589411
f
,
0.4375872
f
,
0.89177299
f
});
auto
_mean
=
backend
->
make_primary_tensor_view
(
element
::
f32
,
mean_shape
);
copy_data
(
_mean
,
vector
<
float
>
{
0.60291237
f
,
0.59972727
f
});
auto
_var
=
backend
->
make_primary_tensor_view
(
element
::
f32
,
var_shape
);
copy_data
(
_var
,
vector
<
float
>
{
0.00472505
f
,
0.03617825
f
});
auto
_gamma
=
backend
->
make_primary_tensor_view
(
element
::
f32
,
gamma_shape
);
copy_data
(
_gamma
,
vector
<
float
>
{
1.0
f
,
1.0
f
});
auto
_beta
=
backend
->
make_primary_tensor_view
(
element
::
f32
,
beta_shape
);
copy_data
(
_beta
,
vector
<
float
>
{
0.0
f
,
0.0
f
});
auto
result
=
backend
->
make_primary_tensor_view
(
element
::
f32
,
shape_r
);
auto
bn_output
=
backend
->
make_primary_tensor_view
(
element
::
f32
,
shape_r
);
auto
result_mean
=
backend
->
make_primary_tensor_view
(
element
::
f32
,
mean_shape
);
auto
result_variance
=
backend
->
make_primary_tensor_view
(
element
::
f32
,
var_shape
);
vector
<
float
>
expected_result
{
-
0.714987
f
,
1.48389
f
,
0.015746
f
,
-
0.284436
f
,
-
2.36912
f
,
0.56806
f
,
-
0.840903
f
,
1.51463
f
};
cf
->
call
({
_mean
,
_var
,
_input
,
_gamma
,
_beta
},
{
result
});
EXPECT_TRUE
(
test
::
all_close
(
expected_result
,
read_vector
<
float
>
(
result
)));
-
0.30327
f
,
1.1561
f
,
-
0.0963782
f
,
-
0.434702
f
,
-
1.4011
f
,
0.548275
f
,
-
1.06187
f
,
1.59295
f
};
vector
<
float
>
expected_mean
{
0.583388
f
,
0.619252
f
};
vector
<
float
>
expected_variance
{
0.0119972
f
,
0.0282681
f
};
cf
->
call
({
_input
,
_gamma
,
_beta
},
{
bn_output
,
result_mean
,
result_variance
});
EXPECT_TRUE
(
test
::
all_close
(
expected_result
,
read_vector
<
float
>
(
bn_output
)));
EXPECT_TRUE
(
test
::
all_close
(
expected_mean
,
read_vector
<
float
>
(
result_mean
)));
EXPECT_TRUE
(
test
::
all_close
(
expected_variance
,
read_vector
<
float
>
(
result_variance
)));
}
TEST
(
cpu_fusion
,
fuse_fprop_bn
)
...
...
@@ -404,7 +419,10 @@ TEST(cpu_fusion, bn_bprop_n4c3h2w2)
auto
beta
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
beta_shape
);
double
eps
=
0.001
;
auto
shape_r
=
Shape
{
4
,
3
,
2
,
2
};
auto
bn
=
make_shared
<
op
::
BatchNorm
>
(
eps
,
gamma
,
beta
,
input
,
mean
,
var
);
auto
bn
=
make_shared
<
op
::
BatchNorm
>
(
eps
,
gamma
,
beta
,
input
);
auto
bn_dx
=
make_shared
<
op
::
GetOutputElement
>
(
bn
,
0
);
auto
bn_dgamma
=
make_shared
<
op
::
GetOutputElement
>
(
bn
,
1
);
auto
bn_dbeta
=
make_shared
<
op
::
GetOutputElement
>
(
bn
,
2
);
auto
manager
=
runtime
::
Manager
::
get
(
"CPU"
);
auto
backend
=
manager
->
allocate_backend
();
...
...
@@ -436,7 +454,8 @@ TEST(cpu_fusion, bn_bprop_n4c3h2w2)
vector
<
float
>
deltaData
(
shape_size
(
shape_r
),
20.0
f
);
copy_data
(
_delta
,
deltaData
);
auto
f
=
make_shared
<
Function
>
(
bn
,
op
::
ParameterVector
{
mean
,
var
,
input
,
gamma
,
beta
});
auto
f
=
make_shared
<
Function
>
(
NodeVector
{
bn_dx
,
bn_dgamma
,
bn_dbeta
},
op
::
ParameterVector
{
mean
,
var
,
input
,
gamma
,
beta
});
auto
C
=
std
::
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_r
);
auto
dinput
=
bn
->
backprop_node
(
input
,
C
);
...
...
test/util/autodiff/backprop_function.hpp
View file @
809dda4f
...
...
@@ -21,15 +21,8 @@
namespace
ngraph
{
class
Node
;
class
Function
;
namespace
runtime
{
class
Backend
;
class
Manager
;
}
namespace
autodiff
{
/// @brief Returns a FunctionSpec for the backprop derivative of its argument.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment