Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
N
ngraph
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
ngraph
Commits
7f93817b
Unverified
Commit
7f93817b
authored
Mar 02, 2018
by
Jai Menon
Committed by
GitHub
Mar 02, 2018
Browse files
Options
Browse Files
Download
Plain Diff
Merge pull request #572 from NervanaSystems/jmenon/port
Jmenon/port
parents
3da0e440
21757793
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
297 additions
and
299 deletions
+297
-299
cpu_emitter.cpp
src/ngraph/runtime/cpu/cpu_emitter.cpp
+120
-297
mkldnn_emitter.cpp
src/ngraph/runtime/cpu/mkldnn_emitter.cpp
+145
-2
mkldnn_emitter.hpp
src/ngraph/runtime/cpu/mkldnn_emitter.hpp
+32
-0
No files found.
src/ngraph/runtime/cpu/cpu_emitter.cpp
View file @
7f93817b
...
...
@@ -2122,9 +2122,6 @@ namespace ngraph
if
(
runtime
::
cpu
::
mkldnn_utils
::
use_mkldnn_kernel
(
node
))
{
const
string
&
elem_type
=
runtime
::
cpu
::
mkldnn_utils
::
get_mkldnn_data_type_string
(
args
[
0
].
get_element_type
());
Strides
window_dilation_strides_adjusted
;
for
(
size_t
s
:
convolution
->
get_window_dilation_strides_forward
())
...
...
@@ -2132,82 +2129,34 @@ namespace ngraph
window_dilation_strides_adjusted
.
push_back
(
s
-
1
);
}
auto
data_format
=
runtime
::
cpu
::
mkldnn_utils
::
get_input_mkldnn_format
(
node
,
0
);
auto
delta_format
=
runtime
::
cpu
::
mkldnn_utils
::
get_input_mkldnn_format
(
node
,
1
);
auto
result_format
=
runtime
::
cpu
::
mkldnn_utils
::
get_output_mkldnn_format
(
node
,
0
);
auto
&
mkldnn_emitter
=
external_function
->
get_mkldnn_emitter
();
auto
input_desc
=
mkldnn_emitter
->
build_memory_descriptor
(
args
[
0
],
runtime
::
cpu
::
mkldnn_utils
::
get_input_mkldnn_format
(
node
,
0
));
auto
delta_desc
=
mkldnn_emitter
->
build_memory_descriptor
(
args
[
1
],
runtime
::
cpu
::
mkldnn_utils
::
get_input_mkldnn_format
(
node
,
1
));
auto
result_desc
=
mkldnn_emitter
->
build_memory_descriptor
(
out
[
0
],
runtime
::
cpu
::
mkldnn_utils
::
get_output_mkldnn_format
(
node
,
0
));
size_t
conv_bwd_weights_index
=
mkldnn_emitter
->
build_convolution_backward_weights
(
input_desc
,
delta_desc
,
result_desc
,
convolution
->
get_window_movement_strides_forward
(),
window_dilation_strides_adjusted
,
convolution
->
get_padding_below_forward
(),
convolution
->
get_padding_above_forward
());
auto
emit_memory_desc
=
[
&
writer
](
const
std
::
string
&
var
,
const
std
::
string
&
shape
,
const
std
::
string
&
type
,
const
std
::
string
&
layout
)
{
writer
<<
"memory::desc "
<<
var
<<
" = memory::desc({"
<<
shape
<<
"}, "
<<
type
<<
", "
<<
layout
<<
");
\n
"
;
};
auto
emit_memory
=
[
&
writer
](
const
std
::
string
&
var
,
const
std
::
string
&
desc
,
const
std
::
string
&
data
)
{
writer
<<
"memory "
<<
var
<<
" = memory({"
<<
desc
<<
", cpu_engine}, "
<<
data
<<
");
\n
"
;
};
auto
emit_memory_dims
=
[
&
writer
](
const
std
::
string
&
var
,
const
std
::
string
&
dims
)
{
writer
<<
"memory::dims "
<<
var
<<
"{"
<<
dims
<<
"};
\n
"
;
};
writer
.
block_begin
();
writer
<<
"try
\n
"
;
writer
.
block_begin
();
writer
<<
"engine cpu_engine = engine(engine::cpu, 0);
\n
"
;
emit_memory_desc
(
"data_desc"
,
join
(
arg0_shape
),
elem_type
,
runtime
::
cpu
::
mkldnn_utils
::
get_mkldnn_format_string
(
data_format
));
emit_memory_desc
(
"delta_desc"
,
join
(
arg1_shape
),
elem_type
,
runtime
::
cpu
::
mkldnn_utils
::
get_mkldnn_format_string
(
delta_format
));
emit_memory_desc
(
"result_desc"
,
join
(
result_shape
),
elem_type
,
runtime
::
cpu
::
mkldnn_utils
::
get_mkldnn_format_string
(
result_format
));
emit_memory
(
"data"
,
"data_desc"
,
args
[
0
].
get_name
());
emit_memory
(
"delta"
,
"delta_desc"
,
args
[
1
].
get_name
());
emit_memory
(
"result"
,
"result_desc"
,
out
[
0
].
get_name
());
emit_memory_dims
(
"dilates"
,
join
(
window_dilation_strides_adjusted
));
emit_memory_dims
(
"strides"
,
join
(
convolution
->
get_window_movement_strides_forward
()));
emit_memory_dims
(
"padding_l"
,
join
(
convolution
->
get_padding_below_forward
()));
emit_memory_dims
(
"padding_r"
,
join
(
convolution
->
get_padding_above_forward
()));
auto
&
deps
=
mkldnn_emitter
->
get_primitive_deps
(
conv_bwd_weights_index
);
writer
<<
"cpu::mkldnn_utils::set_memory_ptr(ctx, "
<<
to_string
(
deps
[
0
])
<<
", "
<<
args
[
0
].
get_name
()
<<
");
\n
"
;
writer
<<
"cpu::mkldnn_utils::set_memory_ptr(ctx, "
<<
to_string
(
deps
[
1
])
<<
", "
<<
args
[
1
].
get_name
()
<<
");
\n
"
;
writer
<<
"cpu::mkldnn_utils::set_memory_ptr(ctx, "
<<
to_string
(
deps
[
2
])
<<
", "
<<
out
[
0
].
get_name
()
<<
");
\n
"
;
writer
<<
"convolution_backward_weights::desc bwd_weights_desc("
"algorithm::convolution_direct, "
"data_desc, result_desc, delta_desc, strides, dilates,"
"padding_l, padding_r, padding_kind::zero);
\n
"
"convolution_forward::primitive_desc fwd_pd({prop_kind::forward, "
"algorithm::convolution_direct, data_desc, "
"result_desc, delta_desc, strides, dilates, padding_l, padding_r, "
"padding_kind::zero}, cpu_engine);
\n
"
"convolution_backward_weights::primitive_desc "
"bwd_weights_pd(bwd_weights_desc, "
"cpu_engine, fwd_pd);
\n
"
"convolution_backward_weights bwd_weights(bwd_weights_pd, data, delta, "
"result);
\n
"
"stream s = stream(stream::kind::eager);
\n
"
"s.submit({bwd_weights}).wait();
\n
"
;
writer
.
block_end
();
writer
<<
"catch (const mkldnn::error& e)
\n
"
;
writer
.
block_begin
();
writer
<<
"throw ngraph::ngraph_error(
\"
MKLDNN ERROR (
\"
+ std::to_string("
"e.status) +
\"
):
\"
+ e.message);
\n
"
;
writer
.
block_end
();
writer
.
block_end
();
writer
<<
"cpu::mkldnn_utils::mkldnn_invoke_primitive(ctx, "
<<
to_string
(
conv_bwd_weights_index
)
<<
");
\n
"
;
}
else
{
...
...
@@ -2243,9 +2192,6 @@ namespace ngraph
if
(
runtime
::
cpu
::
mkldnn_utils
::
use_mkldnn_kernel
(
node
))
{
const
string
&
elem_type
=
runtime
::
cpu
::
mkldnn_utils
::
get_mkldnn_data_type_string
(
args
[
0
].
get_element_type
());
Strides
window_dilation_strides_adjusted
;
for
(
size_t
s
:
convolution
->
get_window_dilation_strides_forward
())
...
...
@@ -2253,82 +2199,33 @@ namespace ngraph
window_dilation_strides_adjusted
.
push_back
(
s
-
1
);
}
auto
weight_format
=
runtime
::
cpu
::
mkldnn_utils
::
get_input_mkldnn_format
(
node
,
0
);
auto
delta_format
=
runtime
::
cpu
::
mkldnn_utils
::
get_input_mkldnn_format
(
node
,
1
);
auto
result_format
=
runtime
::
cpu
::
mkldnn_utils
::
get_output_mkldnn_format
(
node
,
0
);
auto
&
mkldnn_emitter
=
external_function
->
get_mkldnn_emitter
();
auto
weights_desc
=
mkldnn_emitter
->
build_memory_descriptor
(
args
[
0
],
runtime
::
cpu
::
mkldnn_utils
::
get_input_mkldnn_format
(
node
,
0
));
auto
delta_desc
=
mkldnn_emitter
->
build_memory_descriptor
(
args
[
1
],
runtime
::
cpu
::
mkldnn_utils
::
get_input_mkldnn_format
(
node
,
1
));
auto
result_desc
=
mkldnn_emitter
->
build_memory_descriptor
(
out
[
0
],
runtime
::
cpu
::
mkldnn_utils
::
get_output_mkldnn_format
(
node
,
0
));
size_t
conv_bwd_data_index
=
mkldnn_emitter
->
build_convolution_backward_data
(
weights_desc
,
delta_desc
,
result_desc
,
convolution
->
get_window_movement_strides_forward
(),
window_dilation_strides_adjusted
,
convolution
->
get_padding_below_forward
(),
convolution
->
get_padding_above_forward
());
auto
emit_memory_desc
=
[
&
writer
](
const
std
::
string
&
var
,
const
std
::
string
&
shape
,
const
std
::
string
&
type
,
const
std
::
string
&
layout
)
{
writer
<<
"memory::desc "
<<
var
<<
" = memory::desc({"
<<
shape
<<
"}, "
<<
type
<<
", "
<<
layout
<<
");
\n
"
;
};
auto
emit_memory
=
[
&
writer
](
const
std
::
string
&
var
,
const
std
::
string
&
desc
,
const
std
::
string
&
data
)
{
writer
<<
"memory "
<<
var
<<
" = memory({"
<<
desc
<<
", cpu_engine}, "
<<
data
<<
");
\n
"
;
};
auto
emit_memory_dims
=
[
&
writer
](
const
std
::
string
&
var
,
const
std
::
string
&
dims
)
{
writer
<<
"memory::dims "
<<
var
<<
"{"
<<
dims
<<
"};
\n
"
;
};
writer
.
block_begin
();
writer
<<
"try
\n
"
;
writer
.
block_begin
();
writer
<<
"engine cpu_engine = engine(engine::cpu, 0);
\n
"
;
emit_memory_desc
(
"weight_desc"
,
join
(
arg0_shape
),
elem_type
,
runtime
::
cpu
::
mkldnn_utils
::
get_mkldnn_format_string
(
weight_format
));
emit_memory_desc
(
"delta_desc"
,
join
(
arg1_shape
),
elem_type
,
runtime
::
cpu
::
mkldnn_utils
::
get_mkldnn_format_string
(
delta_format
));
emit_memory_desc
(
"result_desc"
,
join
(
result_shape
),
elem_type
,
runtime
::
cpu
::
mkldnn_utils
::
get_mkldnn_format_string
(
result_format
));
emit_memory
(
"weight"
,
"weight_desc"
,
args
[
0
].
get_name
());
emit_memory
(
"delta"
,
"delta_desc"
,
args
[
1
].
get_name
());
emit_memory
(
"result"
,
"result_desc"
,
out
[
0
].
get_name
());
emit_memory_dims
(
"dilates"
,
join
(
window_dilation_strides_adjusted
));
emit_memory_dims
(
"strides"
,
join
(
convolution
->
get_window_movement_strides_forward
()));
emit_memory_dims
(
"padding_l"
,
join
(
convolution
->
get_padding_below_forward
()));
emit_memory_dims
(
"padding_r"
,
join
(
convolution
->
get_padding_above_forward
()));
auto
&
deps
=
mkldnn_emitter
->
get_primitive_deps
(
conv_bwd_data_index
);
writer
<<
"cpu::mkldnn_utils::set_memory_ptr(ctx, "
<<
to_string
(
deps
[
0
])
<<
", "
<<
args
[
0
].
get_name
()
<<
");
\n
"
;
writer
<<
"cpu::mkldnn_utils::set_memory_ptr(ctx, "
<<
to_string
(
deps
[
1
])
<<
", "
<<
args
[
1
].
get_name
()
<<
");
\n
"
;
writer
<<
"cpu::mkldnn_utils::set_memory_ptr(ctx, "
<<
to_string
(
deps
[
2
])
<<
", "
<<
out
[
0
].
get_name
()
<<
");
\n
"
;
writer
<<
"convolution_backward_data::desc "
"bwd_data_desc(algorithm::convolution_direct, "
"result_desc, weight_desc, delta_desc, strides, dilates, "
"padding_l, padding_r, padding_kind::zero);
\n
"
"convolution_forward::primitive_desc fwd_pd({prop_kind::forward, "
"algorithm::convolution_direct, result_desc, weight_desc, delta_desc, "
"strides, dilates, padding_l, padding_r, padding_kind::zero}, "
"cpu_engine);
\n
"
"convolution_backward_data::primitive_desc bwd_data_pd(bwd_data_desc, "
"cpu_engine, fwd_pd);
\n
"
"convolution_backward_data bwd_data(bwd_data_pd, delta, weight, "
"result);
\n
"
"stream s = stream(stream::kind::eager);
\n
"
"s.submit({bwd_data}).wait();
\n
"
;
writer
.
block_end
();
writer
<<
"catch (const mkldnn::error& e)
\n
"
;
writer
.
block_begin
();
writer
<<
"throw ngraph::ngraph_error(
\"
MKLDNN ERROR (
\"
+ std::to_string("
"e.status) +
\"
):
\"
+ e.message);
\n
"
;
writer
.
block_end
();
writer
.
block_end
();
writer
<<
"cpu::mkldnn_utils::mkldnn_invoke_primitive(ctx, "
<<
to_string
(
conv_bwd_data_index
)
<<
");
\n
"
;
}
else
{
...
...
@@ -2378,38 +2275,29 @@ namespace ngraph
if
(
arg_rank
==
4
&&
max_pool
->
get_window_shape
().
size
()
==
2
&&
args
[
0
].
get_element_type
()
==
element
::
f32
)
{
const
string
&
et
=
runtime
::
cpu
::
mkldnn_utils
::
get_mkldnn_data_type_string
(
args
[
0
].
get_element_type
());
writer
<<
"{
\n
"
;
writer
.
indent
++
;
writer
<<
"engine cpu_engine = engine(engine::cpu, 0);
\n
"
;
writer
<<
"memory::desc input_data_desc = memory::desc({"
<<
join
(
arg_shape
)
<<
"}, "
<<
et
<<
", memory::format::nchw);
\n
"
;
writer
<<
"memory::desc result_desc = memory::desc({"
<<
join
(
result_shape
)
<<
"}, "
<<
et
<<
", memory::format::nchw);
\n
"
;
writer
<<
"memory input_data = memory({input_data_desc, cpu_engine}, "
<<
args
[
0
].
get_name
()
<<
");
\n
"
;
writer
<<
"memory result = memory({result_desc, cpu_engine}, "
<<
out
[
0
].
get_name
()
<<
");
\n
"
;
auto
&
mkldnn_emitter
=
external_function
->
get_mkldnn_emitter
();
auto
input_desc
=
mkldnn_emitter
->
build_memory_descriptor
(
args
[
0
],
runtime
::
cpu
::
mkldnn_utils
::
get_input_mkldnn_format
(
node
,
0
));
auto
result_desc
=
mkldnn_emitter
->
build_memory_descriptor
(
out
[
0
],
runtime
::
cpu
::
mkldnn_utils
::
get_output_mkldnn_format
(
node
,
0
));
size_t
max_pool_index
=
mkldnn_emitter
->
build_pooling_forward
(
mkldnn
::
algorithm
::
pooling_max
,
input_desc
,
result_desc
,
max_pool
->
get_window_movement_strides
(),
max_pool
->
get_window_shape
(),
max_pool
->
get_padding_below
(),
max_pool
->
get_padding_above
());
// TODO(jmenon): Use a workspace
writer
<<
"pooling_forward max_pooling = pooling_forward({"
<<
"{prop_kind::forward_inference, algorithm::pooling_max, "
<<
"input_data_desc, result_desc, {"
<<
join
(
max_pool
->
get_window_movement_strides
())
<<
"}, {"
<<
join
(
max_pool
->
get_window_shape
())
<<
"}, {"
<<
join
(
max_pool
->
get_padding_below
())
<<
"}, "
<<
"{"
<<
join
(
max_pool
->
get_padding_above
())
<<
"}, padding_kind::zero}, cpu_engine}, "
<<
"input_data, result);
\n
"
;
auto
&
deps
=
mkldnn_emitter
->
get_primitive_deps
(
max_pool_index
);
writer
<<
"cpu::mkldnn_utils::set_memory_ptr(ctx, "
<<
to_string
(
deps
[
0
])
<<
", "
<<
args
[
0
].
get_name
()
<<
");
\n
"
;
writer
<<
"cpu::mkldnn_utils::set_memory_ptr(ctx, "
<<
to_string
(
deps
[
1
])
<<
", "
<<
out
[
0
].
get_name
()
<<
");
\n
"
;
writer
<<
"stream s = stream(stream::kind::eager);
\n
"
<<
"s.submit({max_pooling}).wait();
\n
"
;
writer
.
indent
--
;
writer
<<
"}
\n
"
;
writer
<<
"cpu::mkldnn_utils::mkldnn_invoke_primitive(ctx, "
<<
to_string
(
max_pool_index
)
<<
");
\n
"
;
}
else
{
...
...
@@ -2550,59 +2438,36 @@ namespace ngraph
auto
arg_shape
=
args
[
0
].
get_shape
();
auto
result_shape
=
out
[
0
].
get_shape
();
// TODO(jmenon): Refactor into an MKLDNN Pooling emitter that handles
// all pooling variants
// TODO(jmenon): Optimize for 1D
// TODO(jmenon): Remove element type restriction
if
(
runtime
::
cpu
::
mkldnn_utils
::
use_mkldnn_kernel
(
node
))
{
const
string
&
et
=
runtime
::
cpu
::
mkldnn_utils
::
get_mkldnn_data_type_string
(
args
[
0
].
get_element_type
());
const
char
*
algorithm_enumerator
=
avg_pool
->
get_include_padding_in_avg_computation
()
?
"algorithm::pooling_avg_include_padding"
:
"algorithm::pooling_avg_exclude_padding"
;
auto
input_format
=
runtime
::
cpu
::
mkldnn_utils
::
get_input_mkldnn_format
(
node
,
0
);
auto
result_format
=
runtime
::
cpu
::
mkldnn_utils
::
get_output_mkldnn_format
(
node
,
0
);
writer
<<
"{
\n
"
;
writer
.
indent
++
;
writer
<<
"engine cpu_engine = engine(engine::cpu, 0);
\n
"
;
writer
<<
"memory::desc input_data_desc = memory::desc({"
<<
join
(
arg_shape
)
<<
"}, "
<<
et
<<
", "
<<
runtime
::
cpu
::
mkldnn_utils
::
get_mkldnn_format_string
(
input_format
)
<<
");
\n
"
;
writer
<<
"memory::desc result_desc = memory::desc({"
<<
join
(
result_shape
)
<<
"}, "
<<
et
<<
", "
<<
runtime
::
cpu
::
mkldnn_utils
::
get_mkldnn_format_string
(
result_format
)
<<
");
\n
"
;
writer
<<
"memory input_data = memory({input_data_desc, cpu_engine}, "
<<
args
[
0
].
get_name
()
<<
");
\n
"
;
writer
<<
"memory result = memory({result_desc, cpu_engine}, "
<<
out
[
0
].
get_name
()
<<
");
\n
"
;
auto
&
mkldnn_emitter
=
external_function
->
get_mkldnn_emitter
();
auto
input_desc
=
mkldnn_emitter
->
build_memory_descriptor
(
args
[
0
],
runtime
::
cpu
::
mkldnn_utils
::
get_input_mkldnn_format
(
node
,
0
));
auto
result_desc
=
mkldnn_emitter
->
build_memory_descriptor
(
out
[
0
],
runtime
::
cpu
::
mkldnn_utils
::
get_output_mkldnn_format
(
node
,
0
));
size_t
avg_pool_index
=
mkldnn_emitter
->
build_pooling_forward
(
(
avg_pool
->
get_include_padding_in_avg_computation
()
?
mkldnn
::
algorithm
::
pooling_avg_include_padding
:
mkldnn
::
algorithm
::
pooling_avg_exclude_padding
),
input_desc
,
result_desc
,
avg_pool
->
get_window_movement_strides
(),
avg_pool
->
get_window_shape
(),
avg_pool
->
get_padding_below
(),
avg_pool
->
get_padding_above
());
// TODO(jmenon): Use a workspace
writer
<<
"pooling_forward avg_pooling = pooling_forward({"
<<
"{prop_kind::forward_inference, "
<<
algorithm_enumerator
<<
", "
<<
"input_data_desc, result_desc, {"
<<
join
(
avg_pool
->
get_window_movement_strides
())
<<
"}, {"
<<
join
(
avg_pool
->
get_window_shape
())
<<
"}, "
<<
"{"
<<
join
(
avg_pool
->
get_padding_below
())
<<
"}, "
<<
"{"
<<
join
(
avg_pool
->
get_padding_above
())
<<
"}, "
<<
"padding_kind::zero}, cpu_engine}, "
<<
"input_data, result);
\n
"
;
auto
&
deps
=
mkldnn_emitter
->
get_primitive_deps
(
avg_pool_index
);
writer
<<
"cpu::mkldnn_utils::set_memory_ptr(ctx, "
<<
to_string
(
deps
[
0
])
<<
", "
<<
args
[
0
].
get_name
()
<<
");
\n
"
;
writer
<<
"cpu::mkldnn_utils::set_memory_ptr(ctx, "
<<
to_string
(
deps
[
1
])
<<
", "
<<
out
[
0
].
get_name
()
<<
");
\n
"
;
writer
<<
"stream s = stream(stream::kind::eager);
\n
"
<<
"s.submit({avg_pooling}).wait();
\n
"
;
writer
.
indent
--
;
writer
<<
"}
\n
"
;
writer
<<
"cpu::mkldnn_utils::mkldnn_invoke_primitive(ctx, "
<<
to_string
(
avg_pool_index
)
<<
");
\n
"
;
}
else
{
...
...
@@ -3068,31 +2933,21 @@ namespace ngraph
dynamic_cast
<
runtime
::
cpu
::
LayoutDescriptor
&>
(
*
input_tvl
).
get_mkldnn_format
();
auto
output_format
=
dynamic_cast
<
runtime
::
cpu
::
LayoutDescriptor
&>
(
*
output_tvl
).
get_mkldnn_format
();
const
string
&
et
=
runtime
::
cpu
::
mkldnn_utils
::
get_mkldnn_data_type_string
(
args
[
0
].
get_element_type
());
writer
<<
"{
\n
"
;
writer
.
indent
++
;
auto
&
mkldnn_emitter
=
external_function
->
get_mkldnn_emitter
();
auto
input_desc
=
mkldnn_emitter
->
build_memory_descriptor
(
args
[
0
],
input_format
);
auto
result_desc
=
mkldnn_emitter
->
build_memory_descriptor
(
out
[
0
],
output_format
);
writer
<<
"engine cpu_engine = engine(engine::cpu, 0);
\n
"
;
writer
<<
"memory::desc input_desc = memory::desc({"
<<
join
(
args
[
0
].
get_shape
())
<<
"}, "
<<
et
<<
", "
<<
runtime
::
cpu
::
mkldnn_utils
::
get_mkldnn_format_string
(
input_format
)
<<
");
\n
"
;
writer
<<
"memory::desc output_desc = memory::desc({"
<<
join
(
out
[
0
].
get_shape
())
<<
"}, "
<<
et
<<
", "
<<
runtime
::
cpu
::
mkldnn_utils
::
get_mkldnn_format_string
(
output_format
)
<<
");
\n
"
;
writer
<<
"memory input = memory({input_desc, cpu_engine}, "
<<
args
[
0
].
get_name
()
<<
");
\n
"
;
writer
<<
"memory output = memory({output_desc, cpu_engine}, "
<<
out
[
0
].
get_name
()
<<
");
\n
"
;
writer
<<
"reorder prim = reorder(input, output);
\n
"
;
size_t
reorder_index
=
mkldnn_emitter
->
build_reorder
(
input_desc
,
result_desc
);
writer
<<
"stream s = stream(stream::kind::eager);
\n
"
<<
"s.submit({prim}).wait();
\n
"
;
writer
.
indent
--
;
writer
<<
"}
\n
"
;
auto
&
deps
=
mkldnn_emitter
->
get_primitive_deps
(
reorder_index
);
writer
<<
"cpu::mkldnn_utils::set_memory_ptr(ctx, "
<<
to_string
(
deps
[
0
])
<<
", "
<<
args
[
0
].
get_name
()
<<
");
\n
"
;
writer
<<
"cpu::mkldnn_utils::set_memory_ptr(ctx, "
<<
to_string
(
deps
[
1
])
<<
", "
<<
out
[
0
].
get_name
()
<<
");
\n
"
;
writer
<<
"cpu::mkldnn_utils::mkldnn_invoke_primitive(ctx, "
<<
to_string
(
reorder_index
)
<<
");
\n
"
;
}
template
<>
...
...
@@ -3184,56 +3039,24 @@ namespace ngraph
template
<>
void
CPU_Emitter
::
EMITTER_DECL
(
ngraph
::
op
::
Relu
)
{
const
auto
&
arg_shape
=
args
[
0
].
get_shape
();
const
auto
&
result_shape
=
out
[
0
].
get_shape
();
if
(
runtime
::
cpu
::
mkldnn_utils
::
use_mkldnn_kernel
(
node
))
{
const
string
&
et
=
runtime
::
cpu
::
mkldnn_utils
::
get_mkldnn_data_type_string
(
args
[
0
].
get_element_type
());
auto
input_format
=
runtime
::
cpu
::
mkldnn_utils
::
get_input_mkldnn_format
(
node
,
0
);
auto
result_format
=
runtime
::
cpu
::
mkldnn_utils
::
get_output_mkldnn_format
(
node
,
0
);
auto
&
mkldnn_emitter
=
external_function
->
get_mkldnn_emitter
();
auto
input_desc
=
mkldnn_emitter
->
build_memory_descriptor
(
args
[
0
],
runtime
::
cpu
::
mkldnn_utils
::
get_input_mkldnn_format
(
node
,
0
));
auto
result_desc
=
mkldnn_emitter
->
build_memory_descriptor
(
out
[
0
],
runtime
::
cpu
::
mkldnn_utils
::
get_output_mkldnn_format
(
node
,
0
));
writer
<<
"{
\n
"
;
writer
.
indent
++
;
size_t
relu_index
=
mkldnn_emitter
->
build_relu_forward
(
input_desc
,
result_desc
);
writer
<<
"try {
\n
"
;
writer
.
indent
++
;
writer
<<
"engine cpu_engine = engine(engine::cpu, 0);
\n
"
;
writer
<<
"memory::desc input_data_desc = memory::desc({"
<<
join
(
arg_shape
)
<<
"}, "
<<
et
<<
", "
<<
runtime
::
cpu
::
mkldnn_utils
::
get_mkldnn_format_string
(
input_format
)
<<
");
\n
"
;
writer
<<
"memory::desc result_desc = memory::desc({"
<<
join
(
result_shape
)
<<
"}, "
<<
et
<<
", "
<<
runtime
::
cpu
::
mkldnn_utils
::
get_mkldnn_format_string
(
result_format
)
<<
");
\n
"
;
auto
&
deps
=
mkldnn_emitter
->
get_primitive_deps
(
relu_index
);
writer
<<
"cpu::mkldnn_utils::set_memory_ptr(ctx, "
<<
to_string
(
deps
[
0
])
<<
", "
<<
args
[
0
].
get_name
()
<<
");
\n
"
;
writer
<<
"cpu::mkldnn_utils::set_memory_ptr(ctx, "
<<
to_string
(
deps
[
1
])
<<
", "
<<
out
[
0
].
get_name
()
<<
");
\n
"
;
writer
<<
"memory input_data = memory({input_data_desc, cpu_engine}, "
<<
args
[
0
].
get_name
()
<<
");
\n
"
;
writer
<<
"memory result = memory({result_desc, cpu_engine}, "
<<
out
[
0
].
get_name
()
<<
");
\n
"
;
writer
<<
"relu_forward::desc relu_fwd_desc = "
"relu_forward::desc(prop_kind::forward_training, "
"algorithm::eltwise_relu, input_data_desc, 0, 0);
\n
"
;
writer
<<
"relu_forward::primitive_desc relu_prim_desc = "
"relu_forward::primitive_desc(relu_fwd_desc, cpu_engine);
\n
"
;
writer
<<
"relu_forward relu_fwd= relu_forward(relu_prim_desc, input_data, "
"result);
\n
"
;
writer
<<
"stream s = stream(stream::kind::eager);
\n
"
"s.submit({relu_fwd}).wait();
\n
"
;
writer
.
indent
--
;
writer
<<
"} catch (const mkldnn::error& e) {
\n
"
;
writer
.
indent
++
;
writer
<<
"throw ngraph::ngraph_error(
\"
MKLDNN ERROR (
\"
+ std::to_string("
"e.status) +
\"
):
\"
+ e.message);
\n
"
;
writer
.
indent
--
;
writer
<<
"}
\n
"
;
writer
.
indent
--
;
writer
<<
"}
\n
"
;
writer
<<
"cpu::mkldnn_utils::mkldnn_invoke_primitive(ctx, "
<<
to_string
(
relu_index
)
<<
");
\n
"
;
}
else
{
...
...
src/ngraph/runtime/cpu/mkldnn_emitter.cpp
View file @
7f93817b
...
...
@@ -79,7 +79,6 @@ size_t MKLDNNEmitter::build_convolution_forward(const mkldnn::memory::desc& inpu
const
ngraph
::
Strides
&
strides
,
const
ngraph
::
CoordinateDiff
&
padding_below
,
const
ngraph
::
CoordinateDiff
&
padding_above
)
{
size_t
input_data_index
=
build_memory_primitive
(
input_data_desc
);
size_t
weights_index
=
build_memory_primitive
(
weights_desc
);
...
...
@@ -111,7 +110,6 @@ size_t MKLDNNEmitter::build_convolution_forward(const mkldnn::memory::desc& inpu
const
ngraph
::
Strides
&
dilation_strides
,
const
ngraph
::
CoordinateDiff
&
padding_below
,
const
ngraph
::
CoordinateDiff
&
padding_above
)
{
size_t
input_data_index
=
build_memory_primitive
(
input_data_desc
);
size_t
weights_index
=
build_memory_primitive
(
weights_desc
);
...
...
@@ -137,6 +135,151 @@ size_t MKLDNNEmitter::build_convolution_forward(const mkldnn::memory::desc& inpu
return
conv_index
;
}
size_t
MKLDNNEmitter
::
build_convolution_backward_weights
(
const
mkldnn
::
memory
::
desc
&
input_desc
,
const
mkldnn
::
memory
::
desc
&
delta_desc
,
const
mkldnn
::
memory
::
desc
&
result_desc
,
const
ngraph
::
Strides
&
strides
,
const
ngraph
::
Strides
&
dilation_strides
,
const
ngraph
::
CoordinateDiff
&
padding_below
,
const
ngraph
::
CoordinateDiff
&
padding_above
)
{
size_t
input_index
=
build_memory_primitive
(
input_desc
);
size_t
delta_index
=
build_memory_primitive
(
delta_desc
);
size_t
result_index
=
build_memory_primitive
(
result_desc
);
size_t
primitive_index
=
insert_primitive
(
new
mkldnn
::
convolution_backward_weights
(
{{
mkldnn
::
algorithm
::
convolution_direct
,
input_desc
,
result_desc
,
delta_desc
,
mkldnn
::
memory
::
dims
(
strides
.
begin
(),
strides
.
end
()),
mkldnn
::
memory
::
dims
(
dilation_strides
.
begin
(),
dilation_strides
.
end
()),
mkldnn
::
memory
::
dims
(
padding_below
.
begin
(),
padding_below
.
end
()),
mkldnn
::
memory
::
dims
(
padding_above
.
begin
(),
padding_above
.
end
()),
mkldnn
::
padding_kind
::
zero
},
mkldnn_utils
::
global_cpu_engine
,
// Forward primitive descriptor corresponding to this backward weights descriptor
{{
mkldnn
::
prop_kind
::
forward
,
mkldnn
::
algorithm
::
convolution_direct
,
input_desc
,
result_desc
,
delta_desc
,
mkldnn
::
memory
::
dims
(
strides
.
begin
(),
strides
.
end
()),
mkldnn
::
memory
::
dims
(
dilation_strides
.
begin
(),
dilation_strides
.
end
()),
mkldnn
::
memory
::
dims
(
padding_below
.
begin
(),
padding_below
.
end
()),
mkldnn
::
memory
::
dims
(
padding_above
.
begin
(),
padding_above
.
end
()),
mkldnn
::
padding_kind
::
zero
},
mkldnn_utils
::
global_cpu_engine
}},
*
m_mkldnn_primitives
[
input_index
],
*
m_mkldnn_primitives
[
delta_index
],
*
m_mkldnn_primitives
[
result_index
]));
m_primitive_deps
[
primitive_index
]
=
{
input_index
,
delta_index
,
result_index
};
return
primitive_index
;
}
size_t
MKLDNNEmitter
::
build_convolution_backward_data
(
const
mkldnn
::
memory
::
desc
&
weights_desc
,
const
mkldnn
::
memory
::
desc
&
delta_desc
,
const
mkldnn
::
memory
::
desc
&
result_desc
,
const
ngraph
::
Strides
&
strides
,
const
ngraph
::
Strides
&
dilation_strides
,
const
ngraph
::
CoordinateDiff
&
padding_below
,
const
ngraph
::
CoordinateDiff
&
padding_above
)
{
size_t
weights_index
=
build_memory_primitive
(
weights_desc
);
size_t
delta_index
=
build_memory_primitive
(
delta_desc
);
size_t
result_index
=
build_memory_primitive
(
result_desc
);
size_t
primitive_index
=
insert_primitive
(
new
mkldnn
::
convolution_backward_data
(
{{
mkldnn
::
algorithm
::
convolution_direct
,
result_desc
,
weights_desc
,
delta_desc
,
mkldnn
::
memory
::
dims
(
strides
.
begin
(),
strides
.
end
()),
mkldnn
::
memory
::
dims
(
dilation_strides
.
begin
(),
dilation_strides
.
end
()),
mkldnn
::
memory
::
dims
(
padding_below
.
begin
(),
padding_below
.
end
()),
mkldnn
::
memory
::
dims
(
padding_above
.
begin
(),
padding_above
.
end
()),
mkldnn
::
padding_kind
::
zero
},
mkldnn_utils
::
global_cpu_engine
,
// Forward primitive descriptor corresponding to this backward data descriptor
{{
mkldnn
::
prop_kind
::
forward
,
mkldnn
::
algorithm
::
convolution_direct
,
result_desc
,
weights_desc
,
delta_desc
,
mkldnn
::
memory
::
dims
(
strides
.
begin
(),
strides
.
end
()),
mkldnn
::
memory
::
dims
(
dilation_strides
.
begin
(),
dilation_strides
.
end
()),
mkldnn
::
memory
::
dims
(
padding_below
.
begin
(),
padding_below
.
end
()),
mkldnn
::
memory
::
dims
(
padding_above
.
begin
(),
padding_above
.
end
()),
mkldnn
::
padding_kind
::
zero
},
mkldnn_utils
::
global_cpu_engine
}},
*
m_mkldnn_primitives
[
delta_index
],
*
m_mkldnn_primitives
[
weights_index
],
*
m_mkldnn_primitives
[
result_index
]));
m_primitive_deps
[
primitive_index
]
=
{
weights_index
,
delta_index
,
result_index
};
return
primitive_index
;
}
size_t
MKLDNNEmitter
::
build_pooling_forward
(
mkldnn
::
algorithm
pooling_algorithm
,
const
mkldnn
::
memory
::
desc
&
input_desc
,
const
mkldnn
::
memory
::
desc
&
result_desc
,
const
ngraph
::
Strides
&
window_strides
,
const
ngraph
::
Shape
&
window_shape
,
const
ngraph
::
Shape
&
padding_below
,
const
ngraph
::
Shape
&
padding_above
)
{
size_t
input_index
=
build_memory_primitive
(
input_desc
);
size_t
result_index
=
build_memory_primitive
(
result_desc
);
size_t
primitive_index
=
insert_primitive
(
new
mkldnn
::
pooling_forward
(
{{
mkldnn
::
prop_kind
::
forward_inference
,
pooling_algorithm
,
input_desc
,
result_desc
,
mkldnn
::
memory
::
dims
(
window_strides
.
begin
(),
window_strides
.
end
()),
mkldnn
::
memory
::
dims
(
window_shape
.
begin
(),
window_shape
.
end
()),
mkldnn
::
memory
::
dims
(
padding_below
.
begin
(),
padding_below
.
end
()),
mkldnn
::
memory
::
dims
(
padding_above
.
begin
(),
padding_above
.
end
()),
mkldnn
::
padding_kind
::
zero
},
mkldnn_utils
::
global_cpu_engine
},
*
m_mkldnn_primitives
[
input_index
],
*
m_mkldnn_primitives
[
result_index
]));
m_primitive_deps
[
primitive_index
]
=
{
input_index
,
result_index
};
return
primitive_index
;
}
size_t
MKLDNNEmitter
::
build_reorder
(
const
mkldnn
::
memory
::
desc
&
input_desc
,
const
mkldnn
::
memory
::
desc
&
result_desc
)
{
size_t
input_index
=
build_memory_primitive
(
input_desc
);
size_t
result_index
=
build_memory_primitive
(
result_desc
);
size_t
primitive_index
=
insert_primitive
(
new
mkldnn
::
reorder
(
*
m_mkldnn_primitives
[
input_index
],
*
m_mkldnn_primitives
[
result_index
]));
m_primitive_deps
[
primitive_index
]
=
{
input_index
,
result_index
};
return
primitive_index
;
}
size_t
MKLDNNEmitter
::
build_relu_forward
(
const
mkldnn
::
memory
::
desc
&
input_desc
,
const
mkldnn
::
memory
::
desc
&
result_desc
)
{
size_t
input_index
=
build_memory_primitive
(
input_desc
);
size_t
result_index
=
build_memory_primitive
(
result_desc
);
size_t
primitive_index
=
insert_primitive
(
new
mkldnn
::
relu_forward
(
{{
mkldnn
::
prop_kind
::
forward_training
,
mkldnn
::
algorithm
::
eltwise_relu
,
input_desc
,
0
,
0
},
mkldnn_utils
::
global_cpu_engine
},
*
m_mkldnn_primitives
[
input_index
],
*
m_mkldnn_primitives
[
result_index
]));
m_primitive_deps
[
primitive_index
]
=
{
input_index
,
result_index
};
return
primitive_index
;
}
size_t
MKLDNNEmitter
::
build_elementwise_add
(
const
mkldnn
::
memory
::
desc
&
input0_data_desc
,
const
mkldnn
::
memory
::
desc
&
input1_data_desc
,
...
...
src/ngraph/runtime/cpu/mkldnn_emitter.hpp
View file @
7f93817b
...
...
@@ -23,6 +23,7 @@
#include <mkldnn.hpp>
#include "ngraph/coordinate_diff.hpp"
#include "ngraph/shape.hpp"
#include "ngraph/strides.hpp"
namespace
ngraph
...
...
@@ -65,6 +66,37 @@ namespace ngraph
const
ngraph
::
CoordinateDiff
&
padding_below
,
const
ngraph
::
CoordinateDiff
&
padding_above
);
size_t
build_convolution_backward_weights
(
const
mkldnn
::
memory
::
desc
&
input_desc
,
const
mkldnn
::
memory
::
desc
&
delta_desc
,
const
mkldnn
::
memory
::
desc
&
result_desc
,
const
ngraph
::
Strides
&
strides
,
const
ngraph
::
Strides
&
dilation_strides
,
const
ngraph
::
CoordinateDiff
&
padding_below
,
const
ngraph
::
CoordinateDiff
&
padding_above
);
size_t
build_convolution_backward_data
(
const
mkldnn
::
memory
::
desc
&
weights_desc
,
const
mkldnn
::
memory
::
desc
&
delta_desc
,
const
mkldnn
::
memory
::
desc
&
result_desc
,
const
ngraph
::
Strides
&
strides
,
const
ngraph
::
Strides
&
dilation_strides
,
const
ngraph
::
CoordinateDiff
&
padding_below
,
const
ngraph
::
CoordinateDiff
&
padding_above
);
size_t
build_pooling_forward
(
mkldnn
::
algorithm
pooling_algorithm
,
const
mkldnn
::
memory
::
desc
&
input_desc
,
const
mkldnn
::
memory
::
desc
&
result_desc
,
const
ngraph
::
Strides
&
window_strides
,
const
ngraph
::
Shape
&
window_shape
,
const
ngraph
::
Shape
&
padding_below
,
const
ngraph
::
Shape
&
padding_above
);
size_t
build_reorder
(
const
mkldnn
::
memory
::
desc
&
input_desc
,
const
mkldnn
::
memory
::
desc
&
result_desc
);
size_t
build_relu_forward
(
const
mkldnn
::
memory
::
desc
&
input_desc
,
const
mkldnn
::
memory
::
desc
&
result_desc
);
size_t
build_elementwise_add
(
const
mkldnn
::
memory
::
desc
&
input0_data_desc
,
const
mkldnn
::
memory
::
desc
&
input1_data_desc
,
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment