Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
N
ngraph
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
ngraph
Commits
78c57f10
Commit
78c57f10
authored
Mar 07, 2018
by
Louis Feng
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
format.
parent
2fa8a678
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
551 additions
and
551 deletions
+551
-551
cpu_fusion.cpp
src/ngraph/runtime/cpu/pass/cpu_fusion.cpp
+551
-551
No files found.
src/ngraph/runtime/cpu/pass/cpu_fusion.cpp
View file @
78c57f10
/*******************************************************************************
* Copyright 2017-2018 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
#include "cpu_fusion.hpp"
#include <algorithm>
#include <iostream>
#include <numeric>
#include <unordered_set>
#include "ngraph/graph_util.hpp"
#include "ngraph/log.hpp"
#include "ngraph/ops/add.hpp"
#include "ngraph/ops/add.hpp"
#include "ngraph/ops/batch_norm.hpp"
#include "ngraph/ops/broadcast.hpp"
#include "ngraph/ops/broadcast.hpp"
#include "ngraph/ops/constant.hpp"
#include "ngraph/ops/convolution.hpp"
#include "ngraph/ops/divide.hpp"
#include "ngraph/ops/dot.hpp"
#include "ngraph/ops/multiply.hpp"
#include "ngraph/ops/pad.hpp"
#include "ngraph/ops/parameter.hpp"
#include "ngraph/ops/reshape.hpp"
#include "ngraph/ops/sqrt.hpp"
#include "ngraph/ops/subtract.hpp"
#include "ngraph/ops/sum.hpp"
#include "ngraph/pattern/matcher.hpp"
#include "ngraph/pattern/op/any.hpp"
#include "ngraph/pattern/op/label.hpp"
#include "ngraph/runtime/cpu/ops/conv_bias.hpp"
#include "ngraph/runtime/cpu/ops/matmul_bias.hpp"
static
bool
init_cblas_arg
(
std
::
shared_ptr
<
ngraph
::
Node
>
reshape
,
std
::
shared_ptr
<
ngraph
::
Node
>
arg
,
bool
&
transpose_w
,
ngraph
::
Shape
&
shape_w
)
{
auto
r_w
=
std
::
dynamic_pointer_cast
<
ngraph
::
op
::
Reshape
>
(
reshape
);
if
(
!
r_w
)
{
if
(
arg
->
get_shape
().
size
()
!=
2
)
{
NGRAPH_DEBUG
<<
arg
->
get_name
()
<<
" 's rank != 2 "
<<
ngraph
::
vector_to_string
(
arg
->
get_shape
());
return
false
;
}
return
true
;
//nth to do; reshape isn't a reshape
}
if
(
r_w
->
get_shape
().
size
()
!=
2
)
{
NGRAPH_DEBUG
<<
"Reshape for "
<<
reshape
->
get_name
()
<<
" doesn't reshape into matrix"
<<
ngraph
::
vector_to_string
(
r_w
->
get_shape
());
return
false
;
}
auto
io
=
r_w
->
get_input_order
();
if
(
r_w
->
get_shape
().
size
()
!=
arg
->
get_shape
().
size
())
//reshape
{
ngraph
::
AxisVector
dio
(
io
.
size
());
std
::
iota
(
begin
(
dio
),
end
(
dio
),
0
);
if
(
io
!=
dio
)
//we can't reshape and transpose at the same time
{
NGRAPH_DEBUG
<<
"Reshape for "
<<
reshape
->
get_name
()
<<
" is not in default order "
<<
ngraph
::
vector_to_string
(
io
);
NGRAPH_DEBUG
<<
"r_w shape = "
<<
ngraph
::
vector_to_string
(
r_w
->
get_shape
());
NGRAPH_DEBUG
<<
"arg shape = "
<<
ngraph
::
vector_to_string
(
arg
->
get_shape
());
return
false
;
}
shape_w
=
r_w
->
get_shape
();
}
else
{
if
(
io
==
ngraph
::
AxisVector
{
1
,
0
})
{
transpose_w
=
true
;
}
//otherwise no-op reshape
}
return
true
;
}
template
<
typename
T
>
static
std
::
vector
<
T
>
apply_permutation
(
std
::
vector
<
T
>
input
,
ngraph
::
AxisVector
order
)
{
if
(
input
.
size
()
!=
order
.
size
())
{
throw
"input and order sizes don't match!"
;
}
std
::
vector
<
T
>
output
(
input
.
size
());
for
(
size_t
i
=
0
;
i
<
order
.
size
();
i
++
)
{
output
[
i
]
=
input
.
at
(
order
.
at
(
i
));
}
return
output
;
}
void
ngraph
::
runtime
::
cpu
::
pass
::
CPUFusion
::
construct_matmulbias_pattern
()
{
Shape
shape_w
{
2
,
4
};
Shape
shape_x
{
4
,
1
};
Shape
shape_b
{
1
};
auto
W
=
std
::
make_shared
<
pattern
::
op
::
Label
>
(
element
::
f32
,
shape_w
);
auto
x
=
std
::
make_shared
<
pattern
::
op
::
Label
>
(
element
::
f32
,
shape_x
);
auto
b
=
std
::
make_shared
<
pattern
::
op
::
Label
>
(
element
::
f32
,
shape_b
);
auto
pmmb
=
std
::
make_shared
<
op
::
MatmulBias
>
(
W
,
x
,
nullptr
,
W
->
get_shape
(),
x
->
get_shape
(),
false
,
false
);
auto
pbroadcast
=
std
::
make_shared
<
op
::
Broadcast
>
(
b
,
pmmb
->
get_shape
(),
AxisSet
{
0
});
auto
padd
=
pmmb
+
pbroadcast
;
ngraph
::
pattern
::
gr_callback_fn
callback
=
[
W
,
x
](
pattern
::
Matcher
&
m
)
{
NGRAPH_DEBUG
<<
"In callback for construct_matmulbias_pattern against node = "
<<
m
.
match_root
()
->
get_name
();
auto
mpattern
=
m
.
match_root
();
//add
auto
m_matmul
=
mpattern
->
get_input_op
(
0
);
auto
m_broadcast
=
mpattern
->
get_input_op
(
1
);
auto
pattern_map
=
m
.
get_pattern_map
();
return
m_matmul
->
copy_with_new_args
(
NodeVector
{
pattern_map
[
W
],
pattern_map
[
x
],
m_broadcast
});
};
auto
m
=
std
::
make_shared
<
ngraph
::
pattern
::
Matcher
>
(
padd
,
callback
);
this
->
add_matcher
(
m
);
}
void
ngraph
::
runtime
::
cpu
::
pass
::
CPUFusion
::
construct_matmul_pattern
()
{
Shape
shape_w
{
2
,
4
};
Shape
shape_x
{
4
,
1
};
Shape
shape_b
{
1
};
Shape
shape_dot
{
2
,
1
};
auto
W
=
std
::
make_shared
<
pattern
::
op
::
Label
>
(
element
::
f32
,
shape_w
);
auto
x
=
std
::
make_shared
<
pattern
::
op
::
Label
>
(
element
::
f32
,
shape_x
);
auto
reshape_pred
=
[](
std
::
shared_ptr
<
Node
>
n
)
{
return
static_cast
<
bool
>
(
std
::
dynamic_pointer_cast
<
op
::
Reshape
>
(
n
));
};
auto
skip_w
=
std
::
make_shared
<
pattern
::
op
::
Any
>
(
W
,
reshape_pred
);
auto
skip_x
=
std
::
make_shared
<
pattern
::
op
::
Any
>
(
x
,
reshape_pred
);
auto
pdot
=
std
::
make_shared
<
op
::
Dot
>
(
skip_w
,
skip_x
);
ngraph
::
pattern
::
gr_callback_fn
callback
=
[
W
,
x
](
pattern
::
Matcher
&
m
)
{
NGRAPH_DEBUG
<<
"In callback for construct_matmul_pattern against node = "
<<
m
.
match_root
()
->
get_name
();
auto
pattern_map
=
m
.
get_pattern_map
();
std
::
shared_ptr
<
Node
>
nn
;
auto
mpattern
=
m
.
match_root
();
auto
dot
=
m
.
match_root
();
if
(
mpattern
->
get_element_type
()
!=
element
::
f32
)
{
NGRAPH_DEBUG
<<
"mpattern = "
<<
mpattern
->
get_name
()
<<
" type is not float!"
;
return
nn
;
}
if
(
dot
->
get_shape
().
size
()
!=
2
)
{
NGRAPH_DEBUG
<<
"dot = "
<<
dot
->
get_name
()
<<
" shape is not equal to 2!"
;
return
nn
;
}
if
(
shape_size
(
dot
->
get_shape
())
==
0
)
{
NGRAPH_DEBUG
<<
"dot has a zero dimension"
;
return
nn
;
}
bool
transpose_w
=
false
;
Shape
shape_arg0
{
pattern_map
[
W
]
->
get_shape
()};
if
(
!
init_cblas_arg
(
dot
->
get_input_op
(
0
),
pattern_map
[
W
],
transpose_w
,
shape_arg0
))
{
return
nn
;
}
bool
transpose_x
=
false
;
Shape
shape_arg1
{
pattern_map
[
x
]
->
get_shape
()};
if
(
!
init_cblas_arg
(
dot
->
get_input_op
(
1
),
pattern_map
[
x
],
transpose_x
,
shape_arg1
))
{
return
nn
;
}
auto
cg
=
std
::
shared_ptr
<
Node
>
(
new
op
::
MatmulBias
(
pattern_map
[
W
],
pattern_map
[
x
],
nullptr
,
shape_arg0
,
shape_arg1
,
transpose_w
,
transpose_x
));
return
cg
;
};
auto
m
=
std
::
make_shared
<
ngraph
::
pattern
::
Matcher
>
(
pdot
,
callback
);
this
->
add_matcher
(
m
);
}
void
ngraph
::
runtime
::
cpu
::
pass
::
CPUFusion
::
construct_fprop_bn
()
{
// construct varaiance
auto
N
=
op
::
Constant
::
create
(
element
::
f32
,
Shape
{
3
},
{
2
,
2
,
2
});
auto
input
=
std
::
make_shared
<
pattern
::
op
::
Label
>
(
element
::
f32
,
Shape
{
2
,
3
});
auto
input_sq
=
std
::
make_shared
<
op
::
Multiply
>
(
input
,
input
);
auto
sum_input
=
std
::
make_shared
<
op
::
Sum
>
(
input
,
AxisSet
{
0
});
auto
square_sumed_input
=
std
::
make_shared
<
op
::
Multiply
>
(
sum_input
,
sum_input
);
auto
sum_squared_input
=
std
::
make_shared
<
op
::
Sum
>
(
input_sq
,
AxisSet
{
0
});
auto
avg_input_sum_sq
=
std
::
make_shared
<
op
::
Divide
>
(
square_sumed_input
,
N
);
auto
xmu
=
std
::
make_shared
<
op
::
Subtract
>
(
sum_squared_input
,
avg_input_sum_sq
);
auto
variance
=
std
::
make_shared
<
op
::
Divide
>
(
xmu
,
N
);
auto
variance_label
=
std
::
make_shared
<
pattern
::
op
::
Label
>
(
variance
,
nullptr
,
NodeVector
{
variance
});
auto
variance_with_broadcast
=
std
::
make_shared
<
op
::
Broadcast
>
(
variance_label
,
Shape
{
2
,
3
},
AxisSet
{
0
});
// construct mean
auto
sum_input1
=
std
::
make_shared
<
op
::
Sum
>
(
input
,
AxisSet
{
0
});
auto
mean
=
std
::
make_shared
<
op
::
Divide
>
(
sum_input1
,
N
);
auto
mean_label
=
std
::
make_shared
<
pattern
::
op
::
Label
>
(
mean
,
nullptr
,
NodeVector
{
mean
});
auto
mean_with_broadcast
=
std
::
make_shared
<
op
::
Broadcast
>
(
mean_label
,
Shape
{
2
,
3
},
AxisSet
{
0
});
auto
input_diff_mean
=
std
::
make_shared
<
op
::
Subtract
>
(
input
,
mean_with_broadcast
);
// Eps
auto
eps_label
=
std
::
make_shared
<
pattern
::
op
::
Label
>
(
element
::
f32
,
Shape
{
3
});
auto
eps_with_broadcast
=
std
::
make_shared
<
op
::
Broadcast
>
(
eps_label
,
Shape
{
2
,
3
},
AxisSet
{
0
});
auto
add1
=
std
::
make_shared
<
op
::
Add
>
(
eps_with_broadcast
,
variance_with_broadcast
);
auto
sqrt_variance_eps
=
std
::
make_shared
<
op
::
Sqrt
>
(
add1
);
auto
divide_mean_variance
=
std
::
make_shared
<
op
::
Divide
>
(
input_diff_mean
,
sqrt_variance_eps
);
//Gamma
auto
gamma_label
=
std
::
make_shared
<
pattern
::
op
::
Label
>
(
element
::
f32
,
Shape
{
3
});
auto
gamma_with_broadcast
=
std
::
make_shared
<
op
::
Broadcast
>
(
gamma_label
,
Shape
{
2
,
3
},
AxisSet
{
0
});
auto
multiply_gamma
=
std
::
make_shared
<
op
::
Multiply
>
(
gamma_with_broadcast
,
divide_mean_variance
);
//Beta
auto
beta_label
=
std
::
make_shared
<
pattern
::
op
::
Label
>
(
element
::
f32
,
Shape
{
3
});
auto
beta_with_broadcast
=
std
::
make_shared
<
op
::
Broadcast
>
(
beta_label
,
Shape
{
2
,
3
},
AxisSet
{
0
});
auto
add_beta
=
std
::
make_shared
<
op
::
Add
>
(
beta_with_broadcast
,
multiply_gamma
);
// This completes fprop bn pattern
//Define a call back that needs to called once the DFG matches the pattern
ngraph
::
pattern
::
gr_callback_fn
callback
=
[
variance_label
,
mean_label
,
input
,
eps_label
,
gamma_label
,
beta_label
](
pattern
::
Matcher
&
m
)
{
NGRAPH_DEBUG
<<
"In a callback for construct_fprop_bn pattern against "
<<
m
.
match_root
()
->
get_name
();
std
::
shared_ptr
<
Node
>
nn
=
nullptr
;
//TODO - add assert's based on the matched node
auto
pattern_map
=
m
.
get_pattern_map
();
NGRAPH_DEBUG
<<
"Input: "
<<
pattern_map
[
input
]
->
get_name
()
<<
" "
<<
pattern_map
[
input
]
->
get_shape
().
size
();
NGRAPH_DEBUG
<<
"Variance: "
<<
pattern_map
[
variance_label
]
->
get_name
()
<<
" "
<<
pattern_map
[
variance_label
]
->
get_shape
().
size
();
NGRAPH_DEBUG
<<
"Mean: "
<<
pattern_map
[
mean_label
]
->
get_name
()
<<
" "
<<
pattern_map
[
mean_label
]
->
get_shape
().
size
();
NGRAPH_DEBUG
<<
"eps: "
<<
pattern_map
[
eps_label
]
->
get_name
()
<<
" "
<<
pattern_map
[
eps_label
]
->
get_shape
().
size
();
NGRAPH_DEBUG
<<
"gamma: "
<<
pattern_map
[
gamma_label
]
->
get_name
()
<<
" "
<<
pattern_map
[
gamma_label
]
->
get_shape
().
size
();
NGRAPH_DEBUG
<<
"beta: "
<<
pattern_map
[
beta_label
]
->
get_name
()
<<
" "
<<
pattern_map
[
beta_label
]
->
get_shape
().
size
();
// dont fuse if the inout doesnt have 4dims
if
(
pattern_map
[
input
]
->
get_shape
().
size
()
!=
4
)
{
NGRAPH_DEBUG
<<
"Input to bn doesnt not have a rank=4, so not fusing"
;
return
nn
;
}
Shape
bn_output_shape
{
m
.
match_root
()
->
get_shape
()};
Shape
m_bn_mean_shape
{
pattern_map
[
mean_label
]
->
get_shape
()};
Shape
m_bn_variance_shape
{
pattern_map
[
variance_label
]
->
get_shape
()};
// get epsilon value
auto
eps_ptr
=
std
::
dynamic_pointer_cast
<
op
::
Constant
>
(
pattern_map
[
eps_label
]);
double
epsilon
=
*
(
reinterpret_cast
<
const
double
*>
(
eps_ptr
->
get_data_ptr
()));
auto
bn_node
=
std
::
shared_ptr
<
Node
>
(
new
op
::
BatchNorm
(
epsilon
,
pattern_map
[
gamma_label
],
pattern_map
[
beta_label
],
pattern_map
[
input
],
pattern_map
[
mean_label
],
pattern_map
[
variance_label
]));
return
bn_node
;
};
auto
m
=
std
::
make_shared
<
ngraph
::
pattern
::
Matcher
>
(
add_beta
,
callback
);
this
->
add_matcher
(
m
);
}
static
bool
zero_padded_conv_consistency_check
(
const
std
::
shared_ptr
<
ngraph
::
Node
>&
match_root
,
const
std
::
shared_ptr
<
ngraph
::
op
::
Constant
>&
pad_value_op
,
const
std
::
shared_ptr
<
ngraph
::
Node
>&
pad_input
,
const
std
::
shared_ptr
<
ngraph
::
op
::
Pad
>&
matched_pad
,
const
std
::
shared_ptr
<
ngraph
::
op
::
Convolution
>&
matched_conv
,
size_t
batch_index
,
size_t
channel_index
)
{
// Only match float32 convolutions
if
(
match_root
->
get_element_type
()
!=
ngraph
::
element
::
f32
)
{
return
false
;
}
// Only match zero padding
if
(
pad_value_op
->
get_vector
<
float
>
().
at
(
0
)
!=
0.0
f
)
{
return
false
;
}
// Only match 4D tensors
if
(
pad_input
->
get_shape
().
size
()
!=
4
)
{
return
false
;
}
// Only match no interior padding
if
(
matched_pad
->
get_padding_interior
()
!=
ngraph
::
Shape
(
pad_input
->
get_shape
().
size
()))
{
return
false
;
}
// Only match convolutions with no padding specification
if
(
matched_conv
->
get_padding_below
()
!=
ngraph
::
CoordinateDiff
(
2
)
||
matched_conv
->
get_padding_above
()
!=
ngraph
::
CoordinateDiff
(
2
))
{
return
false
;
}
// Only match no padding in the batch dimension
if
(
matched_pad
->
get_padding_above
().
at
(
batch_index
)
!=
0
||
matched_pad
->
get_padding_below
().
at
(
batch_index
)
!=
0
)
{
return
false
;
}
// Only match no padding in the channel dimension
if
(
matched_pad
->
get_padding_above
().
at
(
channel_index
)
!=
0
||
matched_pad
->
get_padding_below
().
at
(
channel_index
)
!=
0
)
{
return
false
;
}
return
true
;
}
void
ngraph
::
runtime
::
cpu
::
pass
::
CPUFusion
::
construct_zero_padded_reshaped_conv
()
{
auto
pad_input
=
std
::
make_shared
<
pattern
::
op
::
Label
>
(
element
::
f32
,
Shape
{});
auto
pad_value
=
std
::
make_shared
<
pattern
::
op
::
Label
>
(
element
::
f32
,
Shape
{});
auto
pad
=
std
::
make_shared
<
op
::
Pad
>
(
pad_input
,
pad_value
,
Shape
{},
Shape
{},
Shape
{});
auto
pad_label
=
std
::
make_shared
<
pattern
::
op
::
Label
>
(
pad
,
nullptr
,
NodeVector
{
pad
});
auto
reshape
=
std
::
make_shared
<
op
::
Reshape
>
(
pad_label
,
AxisVector
{},
Shape
{
1
,
1
,
1
,
1
});
auto
reshape_label
=
std
::
make_shared
<
pattern
::
op
::
Label
>
(
reshape
,
nullptr
,
NodeVector
{
reshape
});
auto
conv_filter
=
std
::
make_shared
<
pattern
::
op
::
Label
>
(
element
::
f32
,
Shape
{
1
,
1
,
1
,
1
});
auto
conv
=
std
::
make_shared
<
op
::
Convolution
>
(
reshape_label
,
conv_filter
,
Strides
{
1
,
1
},
Strides
{
1
,
1
},
CoordinateDiff
{
1
,
1
},
CoordinateDiff
{
1
,
1
},
Strides
{
1
,
1
});
auto
conv_label
=
std
::
make_shared
<
pattern
::
op
::
Label
>
(
conv
,
nullptr
,
NodeVector
{
conv
});
ngraph
::
pattern
::
gr_callback_fn
callback
=
[
pad_input
,
pad_value
,
pad_label
,
reshape_label
,
conv_filter
,
conv_label
](
pattern
::
Matcher
&
m
)
->
std
::
shared_ptr
<
Node
>
{
auto
pattern_map
=
m
.
get_pattern_map
();
auto
pad_value_op
=
std
::
dynamic_pointer_cast
<
op
::
Constant
>
(
pattern_map
[
pad_value
]);
const
auto
&
matched_conv
=
std
::
dynamic_pointer_cast
<
op
::
Convolution
>
(
pattern_map
[
conv_label
]);
const
auto
&
matched_pad
=
std
::
dynamic_pointer_cast
<
op
::
Pad
>
(
pattern_map
[
pad_label
]);
const
auto
&
matched_reshape
=
std
::
dynamic_pointer_cast
<
op
::
Reshape
>
(
pattern_map
[
reshape_label
]);
const
auto
&
input_order
=
matched_reshape
->
get_input_order
();
auto
hoisted_reshape_output_shape
=
apply_permutation
<
Shape
::
value_type
>
(
pattern_map
[
pad_input
]
->
get_shape
(),
input_order
);
auto
hoisted_reshape
=
std
::
make_shared
<
op
::
Reshape
>
(
pattern_map
[
pad_input
],
input_order
,
Shape
(
hoisted_reshape_output_shape
.
begin
(),
hoisted_reshape_output_shape
.
end
()));
if
(
!
zero_padded_conv_consistency_check
(
m
.
match_root
(),
pad_value_op
,
pattern_map
[
pad_input
],
matched_pad
,
matched_conv
,
input_order
[
0
],
input_order
[
1
]))
{
return
nullptr
;
}
CoordinateDiff
padding_below
{
static_cast
<
CoordinateDiff
::
value_type
>
(
matched_pad
->
get_padding_below
().
at
(
input_order
[
2
])),
static_cast
<
CoordinateDiff
::
value_type
>
(
matched_pad
->
get_padding_below
().
at
(
input_order
[
3
]))};
CoordinateDiff
padding_above
{
static_cast
<
CoordinateDiff
::
value_type
>
(
matched_pad
->
get_padding_above
().
at
(
input_order
[
2
])),
static_cast
<
CoordinateDiff
::
value_type
>
(
matched_pad
->
get_padding_above
().
at
(
input_order
[
3
]))};
auto
zero_padded_conv
=
std
::
make_shared
<
op
::
Convolution
>
(
hoisted_reshape
,
pattern_map
[
conv_filter
],
matched_conv
->
get_window_movement_strides
(),
matched_conv
->
get_window_dilation_strides
(),
padding_below
,
padding_above
,
matched_conv
->
get_data_dilation_strides
());
return
zero_padded_conv
;
};
this
->
add_matcher
(
std
::
make_shared
<
ngraph
::
pattern
::
Matcher
>
(
conv_label
,
callback
));
}
void
ngraph
::
runtime
::
cpu
::
pass
::
CPUFusion
::
construct_zero_padded_conv
()
{
auto
pad_input
=
std
::
make_shared
<
pattern
::
op
::
Label
>
(
element
::
f32
,
Shape
{
1
,
1
,
1
,
1
});
auto
pad_value
=
std
::
make_shared
<
pattern
::
op
::
Label
>
(
element
::
f32
,
Shape
{});
auto
pad
=
std
::
make_shared
<
op
::
Pad
>
(
pad_input
,
pad_value
,
Shape
{
0
,
0
,
0
,
0
},
Shape
{
0
,
0
,
0
,
0
},
Shape
{
0
,
0
,
0
,
0
});
auto
pad_label
=
std
::
make_shared
<
pattern
::
op
::
Label
>
(
pad
,
nullptr
,
NodeVector
{
pad
});
auto
conv_filter
=
std
::
make_shared
<
pattern
::
op
::
Label
>
(
element
::
f32
,
Shape
{
1
,
1
,
1
,
1
});
auto
conv
=
std
::
make_shared
<
op
::
Convolution
>
(
pad_label
,
conv_filter
,
Strides
{
1
,
1
},
Strides
{
1
,
1
},
CoordinateDiff
{
1
,
1
},
CoordinateDiff
{
1
,
1
},
Strides
{
1
,
1
});
auto
conv_label
=
std
::
make_shared
<
pattern
::
op
::
Label
>
(
conv
,
nullptr
,
NodeVector
{
conv
});
ngraph
::
pattern
::
gr_callback_fn
callback
=
[
pad_input
,
pad_value
,
pad_label
,
conv_filter
,
conv_label
](
pattern
::
Matcher
&
m
)
->
std
::
shared_ptr
<
Node
>
{
auto
pattern_map
=
m
.
get_pattern_map
();
auto
pad_value_op
=
std
::
dynamic_pointer_cast
<
op
::
Constant
>
(
pattern_map
[
pad_value
]);
const
auto
&
matched_conv
=
std
::
dynamic_pointer_cast
<
op
::
Convolution
>
(
pattern_map
[
conv_label
]);
const
auto
&
matched_pad
=
std
::
dynamic_pointer_cast
<
op
::
Pad
>
(
pattern_map
[
pad_label
]);
if
(
!
zero_padded_conv_consistency_check
(
m
.
match_root
(),
pad_value_op
,
pattern_map
[
pad_input
],
matched_pad
,
matched_conv
,
0
,
1
))
{
return
nullptr
;
}
CoordinateDiff
padding_below
{
static_cast
<
CoordinateDiff
::
value_type
>
(
matched_pad
->
get_padding_below
().
at
(
2
)),
static_cast
<
CoordinateDiff
::
value_type
>
(
matched_pad
->
get_padding_below
().
at
(
3
))};
CoordinateDiff
padding_above
{
static_cast
<
CoordinateDiff
::
value_type
>
(
matched_pad
->
get_padding_above
().
at
(
2
)),
static_cast
<
CoordinateDiff
::
value_type
>
(
matched_pad
->
get_padding_above
().
at
(
3
))};
auto
zero_padded_conv
=
std
::
make_shared
<
op
::
Convolution
>
(
pattern_map
[
pad_input
],
pattern_map
[
conv_filter
],
matched_conv
->
get_window_movement_strides
(),
matched_conv
->
get_window_dilation_strides
(),
padding_below
,
padding_above
,
matched_conv
->
get_data_dilation_strides
());
return
zero_padded_conv
;
};
this
->
add_matcher
(
std
::
make_shared
<
ngraph
::
pattern
::
Matcher
>
(
conv_label
,
callback
));
}
void
ngraph
::
runtime
::
cpu
::
pass
::
CPUFusion
::
construct_conv_bias
()
{
Shape
shape
{
2
,
2
,
1
,
1
};
auto
data_batch
=
std
::
make_shared
<
pattern
::
op
::
Label
>
(
element
::
f32
,
shape
);
auto
filters
=
std
::
make_shared
<
pattern
::
op
::
Label
>
(
element
::
f32
,
shape
);
auto
pbias
=
std
::
make_shared
<
pattern
::
op
::
Label
>
(
element
::
f32
,
Shape
{});
auto
pbroadcast
=
std
::
make_shared
<
op
::
Broadcast
>
(
pbias
,
shape
,
AxisSet
{
0
,
1
,
2
,
3
});
auto
pconv1
=
std
::
make_shared
<
op
::
Convolution
>
(
data_batch
,
filters
,
Strides
{
1
,
1
},
Strides
{
1
,
1
},
CoordinateDiff
{
0
,
0
},
CoordinateDiff
{
0
,
0
},
Strides
{
1
,
1
});
auto
p_conv_bias
=
pbroadcast
+
pconv1
;
ngraph
::
pattern
::
gr_callback_fn
callback
=
[](
pattern
::
Matcher
&
m
)
{
NGRAPH_DEBUG
<<
"In callback for construct_conv_bias against node = "
<<
m
.
match_root
()
->
get_name
();
auto
pattern_map
=
m
.
get_pattern_map
();
std
::
shared_ptr
<
Node
>
nn
;
auto
conv
=
std
::
dynamic_pointer_cast
<
op
::
Convolution
>
(
m
.
match_root
()
->
get_input_op
(
0
));
auto
bias
=
m
.
match_root
()
->
get_input_op
(
1
)
->
get_input_op
(
0
);
auto
conv_bias
=
std
::
shared_ptr
<
Node
>
(
new
op
::
ConvolutionBias
(
conv
,
bias
));
return
conv_bias
;
};
auto
m
=
std
::
make_shared
<
ngraph
::
pattern
::
Matcher
>
(
p_conv_bias
,
callback
);
this
->
add_matcher
(
m
);
}
/*******************************************************************************
* Copyright 2017-2018 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
#include "cpu_fusion.hpp"
#include <algorithm>
#include <iostream>
#include <numeric>
#include <unordered_set>
#include "ngraph/graph_util.hpp"
#include "ngraph/log.hpp"
#include "ngraph/ops/add.hpp"
#include "ngraph/ops/add.hpp"
#include "ngraph/ops/batch_norm.hpp"
#include "ngraph/ops/broadcast.hpp"
#include "ngraph/ops/broadcast.hpp"
#include "ngraph/ops/constant.hpp"
#include "ngraph/ops/convolution.hpp"
#include "ngraph/ops/divide.hpp"
#include "ngraph/ops/dot.hpp"
#include "ngraph/ops/multiply.hpp"
#include "ngraph/ops/pad.hpp"
#include "ngraph/ops/parameter.hpp"
#include "ngraph/ops/reshape.hpp"
#include "ngraph/ops/sqrt.hpp"
#include "ngraph/ops/subtract.hpp"
#include "ngraph/ops/sum.hpp"
#include "ngraph/pattern/matcher.hpp"
#include "ngraph/pattern/op/any.hpp"
#include "ngraph/pattern/op/label.hpp"
#include "ngraph/runtime/cpu/ops/conv_bias.hpp"
#include "ngraph/runtime/cpu/ops/matmul_bias.hpp"
static
bool
init_cblas_arg
(
std
::
shared_ptr
<
ngraph
::
Node
>
reshape
,
std
::
shared_ptr
<
ngraph
::
Node
>
arg
,
bool
&
transpose_w
,
ngraph
::
Shape
&
shape_w
)
{
auto
r_w
=
std
::
dynamic_pointer_cast
<
ngraph
::
op
::
Reshape
>
(
reshape
);
if
(
!
r_w
)
{
if
(
arg
->
get_shape
().
size
()
!=
2
)
{
NGRAPH_DEBUG
<<
arg
->
get_name
()
<<
" 's rank != 2 "
<<
ngraph
::
vector_to_string
(
arg
->
get_shape
());
return
false
;
}
return
true
;
//nth to do; reshape isn't a reshape
}
if
(
r_w
->
get_shape
().
size
()
!=
2
)
{
NGRAPH_DEBUG
<<
"Reshape for "
<<
reshape
->
get_name
()
<<
" doesn't reshape into matrix"
<<
ngraph
::
vector_to_string
(
r_w
->
get_shape
());
return
false
;
}
auto
io
=
r_w
->
get_input_order
();
if
(
r_w
->
get_shape
().
size
()
!=
arg
->
get_shape
().
size
())
//reshape
{
ngraph
::
AxisVector
dio
(
io
.
size
());
std
::
iota
(
begin
(
dio
),
end
(
dio
),
0
);
if
(
io
!=
dio
)
//we can't reshape and transpose at the same time
{
NGRAPH_DEBUG
<<
"Reshape for "
<<
reshape
->
get_name
()
<<
" is not in default order "
<<
ngraph
::
vector_to_string
(
io
);
NGRAPH_DEBUG
<<
"r_w shape = "
<<
ngraph
::
vector_to_string
(
r_w
->
get_shape
());
NGRAPH_DEBUG
<<
"arg shape = "
<<
ngraph
::
vector_to_string
(
arg
->
get_shape
());
return
false
;
}
shape_w
=
r_w
->
get_shape
();
}
else
{
if
(
io
==
ngraph
::
AxisVector
{
1
,
0
})
{
transpose_w
=
true
;
}
//otherwise no-op reshape
}
return
true
;
}
template
<
typename
T
>
static
std
::
vector
<
T
>
apply_permutation
(
std
::
vector
<
T
>
input
,
ngraph
::
AxisVector
order
)
{
if
(
input
.
size
()
!=
order
.
size
())
{
throw
"input and order sizes don't match!"
;
}
std
::
vector
<
T
>
output
(
input
.
size
());
for
(
size_t
i
=
0
;
i
<
order
.
size
();
i
++
)
{
output
[
i
]
=
input
.
at
(
order
.
at
(
i
));
}
return
output
;
}
void
ngraph
::
runtime
::
cpu
::
pass
::
CPUFusion
::
construct_matmulbias_pattern
()
{
Shape
shape_w
{
2
,
4
};
Shape
shape_x
{
4
,
1
};
Shape
shape_b
{
1
};
auto
W
=
std
::
make_shared
<
pattern
::
op
::
Label
>
(
element
::
f32
,
shape_w
);
auto
x
=
std
::
make_shared
<
pattern
::
op
::
Label
>
(
element
::
f32
,
shape_x
);
auto
b
=
std
::
make_shared
<
pattern
::
op
::
Label
>
(
element
::
f32
,
shape_b
);
auto
pmmb
=
std
::
make_shared
<
op
::
MatmulBias
>
(
W
,
x
,
nullptr
,
W
->
get_shape
(),
x
->
get_shape
(),
false
,
false
);
auto
pbroadcast
=
std
::
make_shared
<
op
::
Broadcast
>
(
b
,
pmmb
->
get_shape
(),
AxisSet
{
0
});
auto
padd
=
pmmb
+
pbroadcast
;
ngraph
::
pattern
::
gr_callback_fn
callback
=
[
W
,
x
](
pattern
::
Matcher
&
m
)
{
NGRAPH_DEBUG
<<
"In callback for construct_matmulbias_pattern against node = "
<<
m
.
match_root
()
->
get_name
();
auto
mpattern
=
m
.
match_root
();
//add
auto
m_matmul
=
mpattern
->
get_input_op
(
0
);
auto
m_broadcast
=
mpattern
->
get_input_op
(
1
);
auto
pattern_map
=
m
.
get_pattern_map
();
return
m_matmul
->
copy_with_new_args
(
NodeVector
{
pattern_map
[
W
],
pattern_map
[
x
],
m_broadcast
});
};
auto
m
=
std
::
make_shared
<
ngraph
::
pattern
::
Matcher
>
(
padd
,
callback
);
this
->
add_matcher
(
m
);
}
void
ngraph
::
runtime
::
cpu
::
pass
::
CPUFusion
::
construct_matmul_pattern
()
{
Shape
shape_w
{
2
,
4
};
Shape
shape_x
{
4
,
1
};
Shape
shape_b
{
1
};
Shape
shape_dot
{
2
,
1
};
auto
W
=
std
::
make_shared
<
pattern
::
op
::
Label
>
(
element
::
f32
,
shape_w
);
auto
x
=
std
::
make_shared
<
pattern
::
op
::
Label
>
(
element
::
f32
,
shape_x
);
auto
reshape_pred
=
[](
std
::
shared_ptr
<
Node
>
n
)
{
return
static_cast
<
bool
>
(
std
::
dynamic_pointer_cast
<
op
::
Reshape
>
(
n
));
};
auto
skip_w
=
std
::
make_shared
<
pattern
::
op
::
Any
>
(
W
,
reshape_pred
);
auto
skip_x
=
std
::
make_shared
<
pattern
::
op
::
Any
>
(
x
,
reshape_pred
);
auto
pdot
=
std
::
make_shared
<
op
::
Dot
>
(
skip_w
,
skip_x
);
ngraph
::
pattern
::
gr_callback_fn
callback
=
[
W
,
x
](
pattern
::
Matcher
&
m
)
{
NGRAPH_DEBUG
<<
"In callback for construct_matmul_pattern against node = "
<<
m
.
match_root
()
->
get_name
();
auto
pattern_map
=
m
.
get_pattern_map
();
std
::
shared_ptr
<
Node
>
nn
;
auto
mpattern
=
m
.
match_root
();
auto
dot
=
m
.
match_root
();
if
(
mpattern
->
get_element_type
()
!=
element
::
f32
)
{
NGRAPH_DEBUG
<<
"mpattern = "
<<
mpattern
->
get_name
()
<<
" type is not float!"
;
return
nn
;
}
if
(
dot
->
get_shape
().
size
()
!=
2
)
{
NGRAPH_DEBUG
<<
"dot = "
<<
dot
->
get_name
()
<<
" shape is not equal to 2!"
;
return
nn
;
}
if
(
shape_size
(
dot
->
get_shape
())
==
0
)
{
NGRAPH_DEBUG
<<
"dot has a zero dimension"
;
return
nn
;
}
bool
transpose_w
=
false
;
Shape
shape_arg0
{
pattern_map
[
W
]
->
get_shape
()};
if
(
!
init_cblas_arg
(
dot
->
get_input_op
(
0
),
pattern_map
[
W
],
transpose_w
,
shape_arg0
))
{
return
nn
;
}
bool
transpose_x
=
false
;
Shape
shape_arg1
{
pattern_map
[
x
]
->
get_shape
()};
if
(
!
init_cblas_arg
(
dot
->
get_input_op
(
1
),
pattern_map
[
x
],
transpose_x
,
shape_arg1
))
{
return
nn
;
}
auto
cg
=
std
::
shared_ptr
<
Node
>
(
new
op
::
MatmulBias
(
pattern_map
[
W
],
pattern_map
[
x
],
nullptr
,
shape_arg0
,
shape_arg1
,
transpose_w
,
transpose_x
));
return
cg
;
};
auto
m
=
std
::
make_shared
<
ngraph
::
pattern
::
Matcher
>
(
pdot
,
callback
);
this
->
add_matcher
(
m
);
}
void
ngraph
::
runtime
::
cpu
::
pass
::
CPUFusion
::
construct_fprop_bn
()
{
// construct varaiance
auto
N
=
op
::
Constant
::
create
(
element
::
f32
,
Shape
{
3
},
{
2
,
2
,
2
});
auto
input
=
std
::
make_shared
<
pattern
::
op
::
Label
>
(
element
::
f32
,
Shape
{
2
,
3
});
auto
input_sq
=
std
::
make_shared
<
op
::
Multiply
>
(
input
,
input
);
auto
sum_input
=
std
::
make_shared
<
op
::
Sum
>
(
input
,
AxisSet
{
0
});
auto
square_sumed_input
=
std
::
make_shared
<
op
::
Multiply
>
(
sum_input
,
sum_input
);
auto
sum_squared_input
=
std
::
make_shared
<
op
::
Sum
>
(
input_sq
,
AxisSet
{
0
});
auto
avg_input_sum_sq
=
std
::
make_shared
<
op
::
Divide
>
(
square_sumed_input
,
N
);
auto
xmu
=
std
::
make_shared
<
op
::
Subtract
>
(
sum_squared_input
,
avg_input_sum_sq
);
auto
variance
=
std
::
make_shared
<
op
::
Divide
>
(
xmu
,
N
);
auto
variance_label
=
std
::
make_shared
<
pattern
::
op
::
Label
>
(
variance
,
nullptr
,
NodeVector
{
variance
});
auto
variance_with_broadcast
=
std
::
make_shared
<
op
::
Broadcast
>
(
variance_label
,
Shape
{
2
,
3
},
AxisSet
{
0
});
// construct mean
auto
sum_input1
=
std
::
make_shared
<
op
::
Sum
>
(
input
,
AxisSet
{
0
});
auto
mean
=
std
::
make_shared
<
op
::
Divide
>
(
sum_input1
,
N
);
auto
mean_label
=
std
::
make_shared
<
pattern
::
op
::
Label
>
(
mean
,
nullptr
,
NodeVector
{
mean
});
auto
mean_with_broadcast
=
std
::
make_shared
<
op
::
Broadcast
>
(
mean_label
,
Shape
{
2
,
3
},
AxisSet
{
0
});
auto
input_diff_mean
=
std
::
make_shared
<
op
::
Subtract
>
(
input
,
mean_with_broadcast
);
// Eps
auto
eps_label
=
std
::
make_shared
<
pattern
::
op
::
Label
>
(
element
::
f32
,
Shape
{
3
});
auto
eps_with_broadcast
=
std
::
make_shared
<
op
::
Broadcast
>
(
eps_label
,
Shape
{
2
,
3
},
AxisSet
{
0
});
auto
add1
=
std
::
make_shared
<
op
::
Add
>
(
eps_with_broadcast
,
variance_with_broadcast
);
auto
sqrt_variance_eps
=
std
::
make_shared
<
op
::
Sqrt
>
(
add1
);
auto
divide_mean_variance
=
std
::
make_shared
<
op
::
Divide
>
(
input_diff_mean
,
sqrt_variance_eps
);
//Gamma
auto
gamma_label
=
std
::
make_shared
<
pattern
::
op
::
Label
>
(
element
::
f32
,
Shape
{
3
});
auto
gamma_with_broadcast
=
std
::
make_shared
<
op
::
Broadcast
>
(
gamma_label
,
Shape
{
2
,
3
},
AxisSet
{
0
});
auto
multiply_gamma
=
std
::
make_shared
<
op
::
Multiply
>
(
gamma_with_broadcast
,
divide_mean_variance
);
//Beta
auto
beta_label
=
std
::
make_shared
<
pattern
::
op
::
Label
>
(
element
::
f32
,
Shape
{
3
});
auto
beta_with_broadcast
=
std
::
make_shared
<
op
::
Broadcast
>
(
beta_label
,
Shape
{
2
,
3
},
AxisSet
{
0
});
auto
add_beta
=
std
::
make_shared
<
op
::
Add
>
(
beta_with_broadcast
,
multiply_gamma
);
// This completes fprop bn pattern
//Define a call back that needs to called once the DFG matches the pattern
ngraph
::
pattern
::
gr_callback_fn
callback
=
[
variance_label
,
mean_label
,
input
,
eps_label
,
gamma_label
,
beta_label
](
pattern
::
Matcher
&
m
)
{
NGRAPH_DEBUG
<<
"In a callback for construct_fprop_bn pattern against "
<<
m
.
match_root
()
->
get_name
();
std
::
shared_ptr
<
Node
>
nn
=
nullptr
;
//TODO - add assert's based on the matched node
auto
pattern_map
=
m
.
get_pattern_map
();
NGRAPH_DEBUG
<<
"Input: "
<<
pattern_map
[
input
]
->
get_name
()
<<
" "
<<
pattern_map
[
input
]
->
get_shape
().
size
();
NGRAPH_DEBUG
<<
"Variance: "
<<
pattern_map
[
variance_label
]
->
get_name
()
<<
" "
<<
pattern_map
[
variance_label
]
->
get_shape
().
size
();
NGRAPH_DEBUG
<<
"Mean: "
<<
pattern_map
[
mean_label
]
->
get_name
()
<<
" "
<<
pattern_map
[
mean_label
]
->
get_shape
().
size
();
NGRAPH_DEBUG
<<
"eps: "
<<
pattern_map
[
eps_label
]
->
get_name
()
<<
" "
<<
pattern_map
[
eps_label
]
->
get_shape
().
size
();
NGRAPH_DEBUG
<<
"gamma: "
<<
pattern_map
[
gamma_label
]
->
get_name
()
<<
" "
<<
pattern_map
[
gamma_label
]
->
get_shape
().
size
();
NGRAPH_DEBUG
<<
"beta: "
<<
pattern_map
[
beta_label
]
->
get_name
()
<<
" "
<<
pattern_map
[
beta_label
]
->
get_shape
().
size
();
// dont fuse if the inout doesnt have 4dims
if
(
pattern_map
[
input
]
->
get_shape
().
size
()
!=
4
)
{
NGRAPH_DEBUG
<<
"Input to bn doesnt not have a rank=4, so not fusing"
;
return
nn
;
}
Shape
bn_output_shape
{
m
.
match_root
()
->
get_shape
()};
Shape
m_bn_mean_shape
{
pattern_map
[
mean_label
]
->
get_shape
()};
Shape
m_bn_variance_shape
{
pattern_map
[
variance_label
]
->
get_shape
()};
// get epsilon value
auto
eps_ptr
=
std
::
dynamic_pointer_cast
<
op
::
Constant
>
(
pattern_map
[
eps_label
]);
double
epsilon
=
*
(
reinterpret_cast
<
const
double
*>
(
eps_ptr
->
get_data_ptr
()));
auto
bn_node
=
std
::
shared_ptr
<
Node
>
(
new
op
::
BatchNorm
(
epsilon
,
pattern_map
[
gamma_label
],
pattern_map
[
beta_label
],
pattern_map
[
input
],
pattern_map
[
mean_label
],
pattern_map
[
variance_label
]));
return
bn_node
;
};
auto
m
=
std
::
make_shared
<
ngraph
::
pattern
::
Matcher
>
(
add_beta
,
callback
);
this
->
add_matcher
(
m
);
}
static
bool
zero_padded_conv_consistency_check
(
const
std
::
shared_ptr
<
ngraph
::
Node
>&
match_root
,
const
std
::
shared_ptr
<
ngraph
::
op
::
Constant
>&
pad_value_op
,
const
std
::
shared_ptr
<
ngraph
::
Node
>&
pad_input
,
const
std
::
shared_ptr
<
ngraph
::
op
::
Pad
>&
matched_pad
,
const
std
::
shared_ptr
<
ngraph
::
op
::
Convolution
>&
matched_conv
,
size_t
batch_index
,
size_t
channel_index
)
{
// Only match float32 convolutions
if
(
match_root
->
get_element_type
()
!=
ngraph
::
element
::
f32
)
{
return
false
;
}
// Only match zero padding
if
(
pad_value_op
->
get_vector
<
float
>
().
at
(
0
)
!=
0.0
f
)
{
return
false
;
}
// Only match 4D tensors
if
(
pad_input
->
get_shape
().
size
()
!=
4
)
{
return
false
;
}
// Only match no interior padding
if
(
matched_pad
->
get_padding_interior
()
!=
ngraph
::
Shape
(
pad_input
->
get_shape
().
size
()))
{
return
false
;
}
// Only match convolutions with no padding specification
if
(
matched_conv
->
get_padding_below
()
!=
ngraph
::
CoordinateDiff
(
2
)
||
matched_conv
->
get_padding_above
()
!=
ngraph
::
CoordinateDiff
(
2
))
{
return
false
;
}
// Only match no padding in the batch dimension
if
(
matched_pad
->
get_padding_above
().
at
(
batch_index
)
!=
0
||
matched_pad
->
get_padding_below
().
at
(
batch_index
)
!=
0
)
{
return
false
;
}
// Only match no padding in the channel dimension
if
(
matched_pad
->
get_padding_above
().
at
(
channel_index
)
!=
0
||
matched_pad
->
get_padding_below
().
at
(
channel_index
)
!=
0
)
{
return
false
;
}
return
true
;
}
void
ngraph
::
runtime
::
cpu
::
pass
::
CPUFusion
::
construct_zero_padded_reshaped_conv
()
{
auto
pad_input
=
std
::
make_shared
<
pattern
::
op
::
Label
>
(
element
::
f32
,
Shape
{});
auto
pad_value
=
std
::
make_shared
<
pattern
::
op
::
Label
>
(
element
::
f32
,
Shape
{});
auto
pad
=
std
::
make_shared
<
op
::
Pad
>
(
pad_input
,
pad_value
,
Shape
{},
Shape
{},
Shape
{});
auto
pad_label
=
std
::
make_shared
<
pattern
::
op
::
Label
>
(
pad
,
nullptr
,
NodeVector
{
pad
});
auto
reshape
=
std
::
make_shared
<
op
::
Reshape
>
(
pad_label
,
AxisVector
{},
Shape
{
1
,
1
,
1
,
1
});
auto
reshape_label
=
std
::
make_shared
<
pattern
::
op
::
Label
>
(
reshape
,
nullptr
,
NodeVector
{
reshape
});
auto
conv_filter
=
std
::
make_shared
<
pattern
::
op
::
Label
>
(
element
::
f32
,
Shape
{
1
,
1
,
1
,
1
});
auto
conv
=
std
::
make_shared
<
op
::
Convolution
>
(
reshape_label
,
conv_filter
,
Strides
{
1
,
1
},
Strides
{
1
,
1
},
CoordinateDiff
{
1
,
1
},
CoordinateDiff
{
1
,
1
},
Strides
{
1
,
1
});
auto
conv_label
=
std
::
make_shared
<
pattern
::
op
::
Label
>
(
conv
,
nullptr
,
NodeVector
{
conv
});
ngraph
::
pattern
::
gr_callback_fn
callback
=
[
pad_input
,
pad_value
,
pad_label
,
reshape_label
,
conv_filter
,
conv_label
](
pattern
::
Matcher
&
m
)
->
std
::
shared_ptr
<
Node
>
{
auto
pattern_map
=
m
.
get_pattern_map
();
auto
pad_value_op
=
std
::
dynamic_pointer_cast
<
op
::
Constant
>
(
pattern_map
[
pad_value
]);
const
auto
&
matched_conv
=
std
::
dynamic_pointer_cast
<
op
::
Convolution
>
(
pattern_map
[
conv_label
]);
const
auto
&
matched_pad
=
std
::
dynamic_pointer_cast
<
op
::
Pad
>
(
pattern_map
[
pad_label
]);
const
auto
&
matched_reshape
=
std
::
dynamic_pointer_cast
<
op
::
Reshape
>
(
pattern_map
[
reshape_label
]);
const
auto
&
input_order
=
matched_reshape
->
get_input_order
();
auto
hoisted_reshape_output_shape
=
apply_permutation
<
Shape
::
value_type
>
(
pattern_map
[
pad_input
]
->
get_shape
(),
input_order
);
auto
hoisted_reshape
=
std
::
make_shared
<
op
::
Reshape
>
(
pattern_map
[
pad_input
],
input_order
,
Shape
(
hoisted_reshape_output_shape
.
begin
(),
hoisted_reshape_output_shape
.
end
()));
if
(
!
zero_padded_conv_consistency_check
(
m
.
match_root
(),
pad_value_op
,
pattern_map
[
pad_input
],
matched_pad
,
matched_conv
,
input_order
[
0
],
input_order
[
1
]))
{
return
nullptr
;
}
CoordinateDiff
padding_below
{
static_cast
<
CoordinateDiff
::
value_type
>
(
matched_pad
->
get_padding_below
().
at
(
input_order
[
2
])),
static_cast
<
CoordinateDiff
::
value_type
>
(
matched_pad
->
get_padding_below
().
at
(
input_order
[
3
]))};
CoordinateDiff
padding_above
{
static_cast
<
CoordinateDiff
::
value_type
>
(
matched_pad
->
get_padding_above
().
at
(
input_order
[
2
])),
static_cast
<
CoordinateDiff
::
value_type
>
(
matched_pad
->
get_padding_above
().
at
(
input_order
[
3
]))};
auto
zero_padded_conv
=
std
::
make_shared
<
op
::
Convolution
>
(
hoisted_reshape
,
pattern_map
[
conv_filter
],
matched_conv
->
get_window_movement_strides
(),
matched_conv
->
get_window_dilation_strides
(),
padding_below
,
padding_above
,
matched_conv
->
get_data_dilation_strides
());
return
zero_padded_conv
;
};
this
->
add_matcher
(
std
::
make_shared
<
ngraph
::
pattern
::
Matcher
>
(
conv_label
,
callback
));
}
void
ngraph
::
runtime
::
cpu
::
pass
::
CPUFusion
::
construct_zero_padded_conv
()
{
auto
pad_input
=
std
::
make_shared
<
pattern
::
op
::
Label
>
(
element
::
f32
,
Shape
{
1
,
1
,
1
,
1
});
auto
pad_value
=
std
::
make_shared
<
pattern
::
op
::
Label
>
(
element
::
f32
,
Shape
{});
auto
pad
=
std
::
make_shared
<
op
::
Pad
>
(
pad_input
,
pad_value
,
Shape
{
0
,
0
,
0
,
0
},
Shape
{
0
,
0
,
0
,
0
},
Shape
{
0
,
0
,
0
,
0
});
auto
pad_label
=
std
::
make_shared
<
pattern
::
op
::
Label
>
(
pad
,
nullptr
,
NodeVector
{
pad
});
auto
conv_filter
=
std
::
make_shared
<
pattern
::
op
::
Label
>
(
element
::
f32
,
Shape
{
1
,
1
,
1
,
1
});
auto
conv
=
std
::
make_shared
<
op
::
Convolution
>
(
pad_label
,
conv_filter
,
Strides
{
1
,
1
},
Strides
{
1
,
1
},
CoordinateDiff
{
1
,
1
},
CoordinateDiff
{
1
,
1
},
Strides
{
1
,
1
});
auto
conv_label
=
std
::
make_shared
<
pattern
::
op
::
Label
>
(
conv
,
nullptr
,
NodeVector
{
conv
});
ngraph
::
pattern
::
gr_callback_fn
callback
=
[
pad_input
,
pad_value
,
pad_label
,
conv_filter
,
conv_label
](
pattern
::
Matcher
&
m
)
->
std
::
shared_ptr
<
Node
>
{
auto
pattern_map
=
m
.
get_pattern_map
();
auto
pad_value_op
=
std
::
dynamic_pointer_cast
<
op
::
Constant
>
(
pattern_map
[
pad_value
]);
const
auto
&
matched_conv
=
std
::
dynamic_pointer_cast
<
op
::
Convolution
>
(
pattern_map
[
conv_label
]);
const
auto
&
matched_pad
=
std
::
dynamic_pointer_cast
<
op
::
Pad
>
(
pattern_map
[
pad_label
]);
if
(
!
zero_padded_conv_consistency_check
(
m
.
match_root
(),
pad_value_op
,
pattern_map
[
pad_input
],
matched_pad
,
matched_conv
,
0
,
1
))
{
return
nullptr
;
}
CoordinateDiff
padding_below
{
static_cast
<
CoordinateDiff
::
value_type
>
(
matched_pad
->
get_padding_below
().
at
(
2
)),
static_cast
<
CoordinateDiff
::
value_type
>
(
matched_pad
->
get_padding_below
().
at
(
3
))};
CoordinateDiff
padding_above
{
static_cast
<
CoordinateDiff
::
value_type
>
(
matched_pad
->
get_padding_above
().
at
(
2
)),
static_cast
<
CoordinateDiff
::
value_type
>
(
matched_pad
->
get_padding_above
().
at
(
3
))};
auto
zero_padded_conv
=
std
::
make_shared
<
op
::
Convolution
>
(
pattern_map
[
pad_input
],
pattern_map
[
conv_filter
],
matched_conv
->
get_window_movement_strides
(),
matched_conv
->
get_window_dilation_strides
(),
padding_below
,
padding_above
,
matched_conv
->
get_data_dilation_strides
());
return
zero_padded_conv
;
};
this
->
add_matcher
(
std
::
make_shared
<
ngraph
::
pattern
::
Matcher
>
(
conv_label
,
callback
));
}
void
ngraph
::
runtime
::
cpu
::
pass
::
CPUFusion
::
construct_conv_bias
()
{
Shape
shape
{
2
,
2
,
1
,
1
};
auto
data_batch
=
std
::
make_shared
<
pattern
::
op
::
Label
>
(
element
::
f32
,
shape
);
auto
filters
=
std
::
make_shared
<
pattern
::
op
::
Label
>
(
element
::
f32
,
shape
);
auto
pbias
=
std
::
make_shared
<
pattern
::
op
::
Label
>
(
element
::
f32
,
Shape
{});
auto
pbroadcast
=
std
::
make_shared
<
op
::
Broadcast
>
(
pbias
,
shape
,
AxisSet
{
0
,
1
,
2
,
3
});
auto
pconv1
=
std
::
make_shared
<
op
::
Convolution
>
(
data_batch
,
filters
,
Strides
{
1
,
1
},
Strides
{
1
,
1
},
CoordinateDiff
{
0
,
0
},
CoordinateDiff
{
0
,
0
},
Strides
{
1
,
1
});
auto
p_conv_bias
=
pbroadcast
+
pconv1
;
ngraph
::
pattern
::
gr_callback_fn
callback
=
[](
pattern
::
Matcher
&
m
)
{
NGRAPH_DEBUG
<<
"In callback for construct_conv_bias against node = "
<<
m
.
match_root
()
->
get_name
();
auto
pattern_map
=
m
.
get_pattern_map
();
std
::
shared_ptr
<
Node
>
nn
;
auto
conv
=
std
::
dynamic_pointer_cast
<
op
::
Convolution
>
(
m
.
match_root
()
->
get_input_op
(
0
));
auto
bias
=
m
.
match_root
()
->
get_input_op
(
1
)
->
get_input_op
(
0
);
auto
conv_bias
=
std
::
shared_ptr
<
Node
>
(
new
op
::
ConvolutionBias
(
conv
,
bias
));
return
conv_bias
;
};
auto
m
=
std
::
make_shared
<
ngraph
::
pattern
::
Matcher
>
(
p_conv_bias
,
callback
);
this
->
add_matcher
(
m
);
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment