Commit 7809effd authored by Ewa Tusień's avatar Ewa Tusień Committed by Scott Cyphers

[Py] Added Dequantize, Quantize, Quantized Convolution, Quantized Dot… (#3527)

* [Py] Added Dequantize, Quantize, Quantized Convolution, Quantized Dot operators to Python API.

* [Py] Removed unnecess import.

* [Py] Changed docstring.
Co-Authored-By: 's avatarTomasz Socha <tomasz.socha@intel.com>

* [Py] Changed docstring.

* [Py] Changed docstring.

* [Py] Added missed imports.
parent 4954b8d5
...@@ -32,6 +32,7 @@ ngraph.ops ...@@ -32,6 +32,7 @@ ngraph.ops
cos cos
cosh cosh
depth_to_space depth_to_space
dequantize
divide divide
dot dot
elu elu
...@@ -68,6 +69,9 @@ ngraph.ops ...@@ -68,6 +69,9 @@ ngraph.ops
power power
prelu prelu
prod prod
quantize
quantized_convolution
quantized_dot
relu relu
replace_slice replace_slice
reshape reshape
......
...@@ -2,9 +2,9 @@ ngraph package ...@@ -2,9 +2,9 @@ ngraph package
============== ==============
.. automodule:: ngraph .. automodule:: ngraph
:members: :members:
:undoc-members: :undoc-members:
:show-inheritance: :show-inheritance:
Submodules Submodules
---------- ----------
...@@ -13,24 +13,23 @@ ngraph.exceptions module ...@@ -13,24 +13,23 @@ ngraph.exceptions module
------------------------ ------------------------
.. automodule:: ngraph.exceptions .. automodule:: ngraph.exceptions
:members: :members:
:undoc-members: :undoc-members:
:show-inheritance: :show-inheritance:
ngraph.ops module ngraph.ops module
----------------- -----------------
.. automodule:: ngraph.ops .. automodule:: ngraph.ops
:members: :members:
:undoc-members: :undoc-members:
:show-inheritance: :show-inheritance:
ngraph.runtime module ngraph.runtime module
--------------------- ---------------------
.. automodule:: ngraph.runtime .. automodule:: ngraph.runtime
:members: :members:
:undoc-members: :undoc-members:
:show-inheritance: :show-inheritance:
...@@ -45,6 +45,7 @@ from ngraph.ops import convolution_backprop_data ...@@ -45,6 +45,7 @@ from ngraph.ops import convolution_backprop_data
from ngraph.ops import cos from ngraph.ops import cos
from ngraph.ops import cosh from ngraph.ops import cosh
from ngraph.ops import depth_to_space from ngraph.ops import depth_to_space
from ngraph.ops import dequantize
from ngraph.ops import divide from ngraph.ops import divide
from ngraph.ops import dot from ngraph.ops import dot
from ngraph.ops import elu from ngraph.ops import elu
...@@ -81,6 +82,9 @@ from ngraph.ops import parameter ...@@ -81,6 +82,9 @@ from ngraph.ops import parameter
from ngraph.ops import power from ngraph.ops import power
from ngraph.ops import prod from ngraph.ops import prod
from ngraph.ops import prelu from ngraph.ops import prelu
from ngraph.ops import quantize
from ngraph.ops import quantized_convolution
from ngraph.ops import quantized_dot
from ngraph.ops import relu from ngraph.ops import relu
from ngraph.ops import replace_slice from ngraph.ops import replace_slice
from ngraph.ops import reshape from ngraph.ops import reshape
......
...@@ -69,6 +69,7 @@ from _pyngraph.op import ConvolutionBackpropFilters ...@@ -69,6 +69,7 @@ from _pyngraph.op import ConvolutionBackpropFilters
from _pyngraph.op import Cos from _pyngraph.op import Cos
from _pyngraph.op import Cosh from _pyngraph.op import Cosh
from _pyngraph.op import DepthToSpace from _pyngraph.op import DepthToSpace
from _pyngraph.op import Dequantize
from _pyngraph.op import Divide from _pyngraph.op import Divide
from _pyngraph.op import Dot from _pyngraph.op import Dot
from _pyngraph.op import Elu from _pyngraph.op import Elu
...@@ -106,6 +107,9 @@ from _pyngraph.op import Parameter ...@@ -106,6 +107,9 @@ from _pyngraph.op import Parameter
from _pyngraph.op import Power from _pyngraph.op import Power
from _pyngraph.op import PRelu from _pyngraph.op import PRelu
from _pyngraph.op import Product from _pyngraph.op import Product
from _pyngraph.op import Quantize
from _pyngraph.op import QuantizedConvolution
from _pyngraph.op import QuantizedDot
from _pyngraph.op import Relu from _pyngraph.op import Relu
from _pyngraph.op import ReluBackprop from _pyngraph.op import ReluBackprop
from _pyngraph.op import ReplaceSlice from _pyngraph.op import ReplaceSlice
......
...@@ -22,10 +22,11 @@ from ngraph.impl import AxisSet, AxisVector, Coordinate, CoordinateDiff, Functio ...@@ -22,10 +22,11 @@ from ngraph.impl import AxisSet, AxisVector, Coordinate, CoordinateDiff, Functio
from ngraph.impl.op import Abs, Acos, Add, And, Asin, ArgMax, ArgMin, Atan, AvgPool, \ from ngraph.impl.op import Abs, Acos, Add, And, Asin, ArgMax, ArgMin, Atan, AvgPool, \
BatchNormTraining, BatchNormInference, Broadcast, Ceiling, Clamp, Concat, Constant, Convert, \ BatchNormTraining, BatchNormInference, Broadcast, Ceiling, Clamp, Concat, Constant, Convert, \
Convolution, ConvolutionBackpropData, Cos, Cosh, DepthToSpace, Divide, Dot, Elu, FakeQuantize, \ Convolution, ConvolutionBackpropData, Cos, Cosh, DepthToSpace, Dequantize, Divide, Dot, Elu, \
Equal, Exp, Floor, Gelu, Gemm, GetOutputElement, Greater, GreaterEq, GRN, HardSigmoid, Less, \ FakeQuantize, Equal, Exp, Floor, Gelu, Gemm, GetOutputElement, Greater, GreaterEq, GRN, \
LessEq, Log, LRN, Max, Maximum, MaxPool, Min, Minimum, Multiply, MVN, Negative, Not, NotEqual, \ HardSigmoid, Less, LessEq, Log, LRN, Max, Maximum, MaxPool, Min, Minimum, Multiply, MVN, \
OneHot, Or, Pad, Parameter, Product, Power, PRelu, Relu, ReplaceSlice, Reshape, Reverse, \ Negative, Not, NotEqual, OneHot, Or, Pad, Parameter, Product, Power, Quantize, \
QuantizedConvolution, QuantizedDot, PRelu, Relu, ReplaceSlice, Reshape, Reverse, \
ScaleShift, Select, ShuffleChannels, Sign, Sin, Sinh, Slice, Softmax, SpaceToDepth, Sqrt, \ ScaleShift, Select, ShuffleChannels, Sign, Sin, Sinh, Slice, Softmax, SpaceToDepth, Sqrt, \
SquaredDifference, Squeeze, Subtract, Sum, Tan, Tanh, TopK, Unsqueeze SquaredDifference, Squeeze, Subtract, Sum, Tan, Tanh, TopK, Unsqueeze
...@@ -243,6 +244,190 @@ def mvn(data, axes, normalize_variance, eps, name=None): ...@@ -243,6 +244,190 @@ def mvn(data, axes, normalize_variance, eps, name=None):
return MVN(data, AxisSet(axes), normalize_variance, eps) return MVN(data, AxisSet(axes), normalize_variance, eps)
@nameable_op
def quantize(data, scale, zero_point, new_type, axes, round_mode, name=None):
# type: (Node, Node, Node, NumericType, Set[int], Quantize.RoundMode, str) -> Node
r"""Perform quantize operation on data from input node.
Computes quantize on the input tensor:
.. math:: output = ROUND((input / scale) + zero\_point)
:param data: The node with data tensor.
:param scale: Scale used for mapping.
:param zero_point: Zero point used for mapping.
:param new_type: Output element type.
:param round_mode: Number describes how to perform ROUND function.
ROUND_NEAREST_TOWARD_INFINITY: Round to nearest integer. In case of two
equidistant integers round away from zero e.g. 2.5 -> 3, -3.5 -> -4
ROUND_NEAREST_TOWARD_ZERO: Round to nearest integer. In case of two equidistant
integers round toward zero e.g. 2.5 -> 2, -3.5 -> -3
ROUND_NEAREST_UPWARD: Round to nearest integer. In case of two equidistant
integers round up e.g. 2.5 -> 2, -3.5 -> -3
ROUND_NEAREST_DOWNWARD: Round to nearest integer. In case of two equidistant
integers round down e.g. 2.5 -> 2, -3.5 -> -4
ROUND_NEAREST_TOWARD_EVEN: Round to nearest integer. In case of two equidistant
integers round down e.g. 2.5 -> 2, -3.5 -> -4
ROUND_TOWARD_INFINITY: Round to nearest integer away from zero.
ROUND_TOWARD_ZERO: Round to nearest integer toward zero.
ROUND_UP: Round to nearest integer toward infinity (ceiling).
ROUND_DOWN: Round to nearest integer toward negative infinity (floor).
:param name: Optional output node name.
:return: The new node performing a quantize operation on input tensor.
"""
new_element_type = get_element_type(new_type)
return Quantize(data,
scale,
zero_point,
new_element_type,
AxisSet(axes),
round_mode)
@nameable_op
def dequantize(data, scale, zero_point, element_type, axes, name=None):
# type: (Node, Node, Node, NumericType, Set[int], str) -> Node
r"""Perform dequantize operation on data from input node.
Computes dequantize on the input tensor:
.. math:: output = (input - zero\_point) * scale
:param data: The node with data tensor.
:param scale: Scale used for mapping.
:param zero_point: Zero point used for mapping.
:param element_type: Output element type.
:param name: Optional output node name.
:return: The new node performing a dequantize operation on input tensor.
"""
new_element_type = get_element_type(element_type)
return Dequantize(data, scale, zero_point, new_element_type, AxisSet(axes))
@nameable_op
def quantized_convolution(data, # type: Node
filters, # type: Node
window_movement_strides, # type: List[int]
window_dilation_strides, # type: List[int]
padding_below, # type: List[int]
padding_above, # type: List[int]
data_dilation_strides, # type: List[int]
input_scale, # type: Node
input_zero_point, # type: Node
filter_scale, # type: Node
filter_zero_point, # type: Node
output_scale, # type: Node
output_zero_point, # type: Node
output_type, # type: NumericType
input_axes, # type: Set[int]
filter_axes, # type: Set[int]
output_axes, # type: Set[int]
name=None, # type: str
):
# type: (...) -> Node
r"""Perform quantized convolution operation on data from input node.
:param data: The node producing the input data batch tensor.
:param filters: The node producing the filters tensor.
:param window_movement_strides: The window movement strides.
:param window_dilation_strides: he window dilation strides.
:param padding_below: The padding-below sizes.
:param padding_above: The padding-above sizes.
:param data_dilation_strides: The data dilation strides.
:param input_scale: Scale to transform the input.
:param input_zero_point: Zero point used for mapping.
:param filter_scale: Scale to transform the filters.
:param filter_zero_point: Zero point used for mapping.
:param output_scale: Scale to transform the output.
:param output_zero_point: Zero point used for mapping.
:param output_type: Output element type.
:param input_axes: Input axes set for channel wise quantization.
:param filter_axes: Filter axes set for channel wise quantization.
:param output_type: Output axes set for channel wise quantization.
:param name: Optional output node name.
:return: The new node performing a quantized convolution operation on input tensor.
"""
new_output_type = get_element_type(output_type)
return QuantizedConvolution(data,
filters,
Strides(window_movement_strides),
Strides(window_dilation_strides),
CoordinateDiff(padding_below),
CoordinateDiff(padding_above),
Strides(data_dilation_strides),
input_scale,
input_zero_point,
filter_scale,
filter_zero_point,
output_scale,
output_zero_point,
new_output_type,
AxisSet(input_axes),
AxisSet(filter_axes),
AxisSet(output_axes))
@nameable_op
def quantized_dot(input0, # type: Node
input1, # type: Node
reduction_axes_count, # type: int
input0_scale, # type: Node
input0_zero_point, # type: Node
input1_scale, # type: Node
input1_zero_point, # type: Node
output_scale, # type: Node
output_zero_point, # type: Node
output_type, # type: NumericType
input0_axes, # type: Set[int]
input1_axes, # type: Set[int]
output_axes, # type: Set[int]
name=None, # type: str
):
# type: (...) -> Node
r"""Perform quantized dot operation on data from input node.
:param input0: The node producing the input data batch tensor.
:param input1: The node producing the filters tensor.
:param reduction_axes_count: Number of reduction axes.
:param input0_scale: Scale to transform the input.
:param input0_zero_point: Zero point used for mapping.
:param input1_scale: Scale to transform the filters.
:param input1_zero_point: Zero point used for mapping.
:param output_scale: Scale to transform the output.
:param output_zero_point: Zero point used for mapping.
:param output_type: Output element type.
:param input0_axes: Input0 axes set for channel wise quantization
:param input1_axes: Input1 axes set for channel wise quantization
:param output_axes: Output axes set for channel wise quantization
:param name: Optional output node name.
:return: The new node performing a quantized dot operation on input tensor.
"""
new_output_type = get_element_type(output_type)
return QuantizedDot(input0,
input1,
reduction_axes_count,
input0_scale,
input0_zero_point,
input1_scale,
input1_zero_point,
output_scale,
output_zero_point,
new_output_type,
AxisSet(input0_axes),
AxisSet(input1_axes),
AxisSet(output_axes))
# Unary ops # Unary ops
@unary_op @unary_op
def absolute(node, name=None): # type: (NodeInput, str) -> Node def absolute(node, name=None): # type: (NodeInput, str) -> Node
......
//*****************************************************************************
// Copyright 2017-2019 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
#include "ngraph/op/dequantize.hpp"
#include "pyngraph/ops/dequantize.hpp"
namespace py = pybind11;
void regclass_pyngraph_op_Dequantize(py::module m)
{
py::class_<ngraph::op::Dequantize, std::shared_ptr<ngraph::op::Dequantize>, ngraph::op::Op>
dequantize(m, "Dequantize");
dequantize.doc() = "ngraph.impl.op.Dequantize wraps ngraph::op::Dequantize";
dequantize.def(py::init<const std::shared_ptr<ngraph::Node>&,
const std::shared_ptr<ngraph::Node>&,
const std::shared_ptr<ngraph::Node>&,
const ngraph::element::Type&,
const ngraph::AxisSet&>());
}
//*****************************************************************************
// Copyright 2017-2019 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#pragma once
#include <pybind11/pybind11.h>
namespace py = pybind11;
void regclass_pyngraph_op_Dequantize(py::module m);
//*****************************************************************************
// Copyright 2017-2019 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
#include "ngraph/op/quantize.hpp"
#include "pyngraph/ops/quantize.hpp"
namespace py = pybind11;
void regclass_pyngraph_op_Quantize(py::module m)
{
py::class_<ngraph::op::Quantize, std::shared_ptr<ngraph::op::Quantize>, ngraph::op::Op>
quantize(m, "Quantize");
quantize.doc() = "ngraph.impl.op.Quantize wraps ngraph::op::Quantize";
quantize.def(py::init<const std::shared_ptr<ngraph::Node>&,
const std::shared_ptr<ngraph::Node>&,
const std::shared_ptr<ngraph::Node>&,
const ngraph::element::Type&,
const ngraph::AxisSet&,
ngraph::op::Quantize::RoundMode>());
py::enum_<ngraph::op::Quantize::RoundMode>(quantize, "RoundMode", py::arithmetic())
.value("ROUND_NEAREST_TOWARD_INFINITY",
ngraph::op::Quantize::RoundMode::ROUND_NEAREST_TOWARD_INFINITY)
.value("ROUND_NEAREST_TOWARD_ZERO",
ngraph::op::Quantize::RoundMode::ROUND_NEAREST_TOWARD_ZERO)
.value("ROUND_NEAREST_UPWARD", ngraph::op::Quantize::RoundMode::ROUND_NEAREST_UPWARD)
.value("ROUND_NEAREST_DOWNWARD", ngraph::op::Quantize::RoundMode::ROUND_NEAREST_DOWNWARD)
.value("ROUND_NEAREST_TOWARD_EVEN",
ngraph::op::Quantize::RoundMode::ROUND_NEAREST_TOWARD_EVEN)
.value("ROUND_TOWARD_INFINITY", ngraph::op::Quantize::RoundMode::ROUND_TOWARD_INFINITY)
.value("ROUND_TOWARD_ZERO", ngraph::op::Quantize::RoundMode::ROUND_TOWARD_ZERO)
.value("ROUND_UP", ngraph::op::Quantize::RoundMode::ROUND_UP)
.value("ROUND_DOWN", ngraph::op::Quantize::RoundMode::ROUND_DOWN)
.export_values();
}
//*****************************************************************************
// Copyright 2017-2019 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#pragma once
#include <pybind11/pybind11.h>
namespace py = pybind11;
void regclass_pyngraph_op_Quantize(py::module m);
//*****************************************************************************
// Copyright 2017-2019 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
#include "ngraph/op/quantized_convolution.hpp"
#include "pyngraph/ops/quantized_convolution.hpp"
namespace py = pybind11;
void regclass_pyngraph_op_QuantizedConvolution(py::module m)
{
py::class_<ngraph::op::QuantizedConvolution,
std::shared_ptr<ngraph::op::QuantizedConvolution>,
ngraph::op::Op>
quantizedconvolution(m, "QuantizedConvolution");
quantizedconvolution.doc() =
"ngraph.impl.op.QuantizedConvolution wraps ngraph::op::QuantizedConvolution";
quantizedconvolution.def(py::init<const std::shared_ptr<ngraph::Node>&,
const std::shared_ptr<ngraph::Node>&,
const ngraph::Strides&,
const ngraph::Strides&,
const ngraph::CoordinateDiff&,
const ngraph::CoordinateDiff&,
const ngraph::Strides&,
const std::shared_ptr<ngraph::Node>&,
const std::shared_ptr<ngraph::Node>&,
const std::shared_ptr<ngraph::Node>&,
const std::shared_ptr<ngraph::Node>&,
const std::shared_ptr<ngraph::Node>&,
const std::shared_ptr<ngraph::Node>&,
const ngraph::element::Type&,
const ngraph::AxisSet&,
const ngraph::AxisSet&,
const ngraph::AxisSet&>());
}
//*****************************************************************************
// Copyright 2017-2019 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#pragma once
#include <pybind11/pybind11.h>
namespace py = pybind11;
void regclass_pyngraph_op_QuantizedConvolution(py::module m);
//*****************************************************************************
// Copyright 2017-2019 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
#include "ngraph/op/quantized_dot.hpp"
#include "pyngraph/ops/quantized_dot.hpp"
namespace py = pybind11;
void regclass_pyngraph_op_QuantizedDot(py::module m)
{
py::class_<ngraph::op::QuantizedDot, std::shared_ptr<ngraph::op::QuantizedDot>, ngraph::op::Op>
quantizeddot(m, "QuantizedDot");
quantizeddot.doc() = "ngraph.impl.op.QuantizedDot wraps ngraph::op::QuantizedDot";
quantizeddot.def(py::init<const std::shared_ptr<ngraph::Node>&,
const std::shared_ptr<ngraph::Node>&,
const int,
const std::shared_ptr<ngraph::Node>&,
const std::shared_ptr<ngraph::Node>&,
const std::shared_ptr<ngraph::Node>&,
const std::shared_ptr<ngraph::Node>&,
const std::shared_ptr<ngraph::Node>&,
const std::shared_ptr<ngraph::Node>&,
const ngraph::element::Type&,
const ngraph::AxisSet&,
const ngraph::AxisSet&,
const ngraph::AxisSet&>());
}
//*****************************************************************************
// Copyright 2017-2019 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#pragma once
#include <pybind11/pybind11.h>
namespace py = pybind11;
void regclass_pyngraph_op_QuantizedDot(py::module m);
...@@ -49,6 +49,7 @@ void regmodule_pyngraph_op(py::module m_op) ...@@ -49,6 +49,7 @@ void regmodule_pyngraph_op(py::module m_op)
regclass_pyngraph_op_Cos(m_op); regclass_pyngraph_op_Cos(m_op);
regclass_pyngraph_op_Cosh(m_op); regclass_pyngraph_op_Cosh(m_op);
regclass_pyngraph_op_DepthToSpace(m_op); regclass_pyngraph_op_DepthToSpace(m_op);
regclass_pyngraph_op_Dequantize(m_op);
regclass_pyngraph_op_Divide(m_op); regclass_pyngraph_op_Divide(m_op);
regclass_pyngraph_op_Dot(m_op); regclass_pyngraph_op_Dot(m_op);
regclass_pyngraph_op_Elu(m_op); regclass_pyngraph_op_Elu(m_op);
...@@ -86,6 +87,9 @@ void regmodule_pyngraph_op(py::module m_op) ...@@ -86,6 +87,9 @@ void regmodule_pyngraph_op(py::module m_op)
regclass_pyngraph_op_Power(m_op); regclass_pyngraph_op_Power(m_op);
regclass_pyngraph_op_PRelu(m_op); regclass_pyngraph_op_PRelu(m_op);
regclass_pyngraph_op_Product(m_op); regclass_pyngraph_op_Product(m_op);
regclass_pyngraph_op_Quantize(m_op);
regclass_pyngraph_op_QuantizedConvolution(m_op);
regclass_pyngraph_op_QuantizedDot(m_op);
regclass_pyngraph_op_Relu(m_op); regclass_pyngraph_op_Relu(m_op);
regclass_pyngraph_op_ReluBackprop(m_op); regclass_pyngraph_op_ReluBackprop(m_op);
regclass_pyngraph_op_ReplaceSlice(m_op); regclass_pyngraph_op_ReplaceSlice(m_op);
......
...@@ -37,6 +37,7 @@ ...@@ -37,6 +37,7 @@
#include "pyngraph/ops/convolution.hpp" #include "pyngraph/ops/convolution.hpp"
#include "pyngraph/ops/cos.hpp" #include "pyngraph/ops/cos.hpp"
#include "pyngraph/ops/cosh.hpp" #include "pyngraph/ops/cosh.hpp"
#include "pyngraph/ops/dequantize.hpp"
#include "pyngraph/ops/divide.hpp" #include "pyngraph/ops/divide.hpp"
#include "pyngraph/ops/dot.hpp" #include "pyngraph/ops/dot.hpp"
#include "pyngraph/ops/equal.hpp" #include "pyngraph/ops/equal.hpp"
...@@ -81,6 +82,9 @@ ...@@ -81,6 +82,9 @@
#include "pyngraph/ops/passthrough.hpp" #include "pyngraph/ops/passthrough.hpp"
#include "pyngraph/ops/power.hpp" #include "pyngraph/ops/power.hpp"
#include "pyngraph/ops/product.hpp" #include "pyngraph/ops/product.hpp"
#include "pyngraph/ops/quantize.hpp"
#include "pyngraph/ops/quantized_convolution.hpp"
#include "pyngraph/ops/quantized_dot.hpp"
#include "pyngraph/ops/relu.hpp" #include "pyngraph/ops/relu.hpp"
#include "pyngraph/ops/replace_slice.hpp" #include "pyngraph/ops/replace_slice.hpp"
#include "pyngraph/ops/reshape.hpp" #include "pyngraph/ops/reshape.hpp"
......
...@@ -179,6 +179,7 @@ sources = [ ...@@ -179,6 +179,7 @@ sources = [
'pyngraph/ops/cosh.cpp', 'pyngraph/ops/cosh.cpp',
'pyngraph/ops/ceiling.cpp', 'pyngraph/ops/ceiling.cpp',
'pyngraph/ops/fused/depth_to_space.cpp', 'pyngraph/ops/fused/depth_to_space.cpp',
'pyngraph/ops/dequantize.cpp',
'pyngraph/ops/divide.cpp', 'pyngraph/ops/divide.cpp',
'pyngraph/ops/dot.cpp', 'pyngraph/ops/dot.cpp',
'pyngraph/ops/fused/elu.cpp', 'pyngraph/ops/fused/elu.cpp',
...@@ -214,6 +215,9 @@ sources = [ ...@@ -214,6 +215,9 @@ sources = [
'pyngraph/ops/passthrough.cpp', 'pyngraph/ops/passthrough.cpp',
'pyngraph/ops/power.cpp', 'pyngraph/ops/power.cpp',
'pyngraph/ops/fused/prelu.cpp', 'pyngraph/ops/fused/prelu.cpp',
'pyngraph/ops/quantize.cpp',
'pyngraph/ops/quantized_convolution.cpp',
'pyngraph/ops/quantized_dot.cpp',
'pyngraph/ops/regmodule_pyngraph_op.cpp', 'pyngraph/ops/regmodule_pyngraph_op.cpp',
'pyngraph/ops/relu.cpp', 'pyngraph/ops/relu.cpp',
'pyngraph/ops/replace_slice.cpp', 'pyngraph/ops/replace_slice.cpp',
......
# ******************************************************************************
# Copyright 2017-2019 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ******************************************************************************
import numpy as np
import ngraph as ng
from test.ngraph.util import get_runtime
from ngraph.impl.op import Quantize
def test_quantize_operator():
runtime = get_runtime()
data_shape = [6]
scale_shape = []
zero_point_shape = []
data_value = np.array([0, 2, 3, 1000, -254, -1000]).astype(np.float32)
scale_value = np.float32(2)
zero_point_value = np.uint8(128)
new_type = np.uint8
axis_set = []
parameter_data = ng.parameter(data_shape, name='Data', dtype=np.float32)
parameter_scale = ng.parameter(scale_shape, name='Scale', dtype=np.float32)
parameter_zero_point = ng.parameter(zero_point_shape, name='Zero_Point', dtype=np.uint8)
model = ng.quantize(parameter_data,
parameter_scale,
parameter_zero_point,
new_type,
axis_set,
Quantize.RoundMode.ROUND_NEAREST_TOWARD_INFINITY)
computation = runtime.computation(model,
parameter_data,
parameter_scale,
parameter_zero_point)
result = computation(data_value, scale_value, zero_point_value)
expected = np.array([128, 129, 130, 255, 1, 0]).astype(np.uint8)
assert np.allclose(result, expected)
def test_quantized_convoluction_operator():
runtime = get_runtime()
data_shape = [1, 1, 3, 4]
filters_shape = [1, 1, 3, 3]
result_shape = [1, 1, 3, 4]
shape = []
data_value = np.array([1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4]).astype(np.uint8).reshape(data_shape)
filters_value = np.array([1, 2, 3, 4, 5, 0, 0, 1, 2]).astype(np.uint8).reshape(filters_shape)
window_movement_strides = [1, 1]
window_dilation_strides = [1, 1]
padding_below = [1, 1]
padding_above = [1, 1]
data_dilation_strides = [1, 1]
input_scale_value = 1
input_zero_point_value = 0
filter_scale_value = 1
filter_zero_point_value = 0
output_scale_value = 1
output_zero_point_value = 0
output_type = np.int32
input_axes = []
filter_axes = []
output_axes = []
parameter_data = ng.parameter(data_shape, name='Data', dtype=np.uint8)
parameter_filters = ng.parameter(filters_shape, name='Filters', dtype=np.uint8)
parameter_input_scale = ng.parameter(shape, name='Input_scale', dtype=np.float32)
parameter_input_zero_point = ng.parameter(shape, name='Input_zero_point', dtype=np.uint8)
parameter_filter_scale = ng.parameter(shape, name='Filter_scale', dtype=np.float32)
parameter_filter_zero_point = ng.parameter(shape, name='Filter_zero_point', dtype=np.uint8)
parameter_output_scale = ng.parameter(shape, name='Output_scale', dtype=np.float32)
parameter_output_zero_point = ng.parameter(shape, name='Output_zero_point', dtype=np.int32)
model = ng.quantized_convolution(parameter_data,
parameter_filters,
window_movement_strides,
window_dilation_strides,
padding_below,
padding_above,
data_dilation_strides,
parameter_input_scale,
parameter_input_zero_point,
parameter_filter_scale,
parameter_filter_zero_point,
parameter_output_scale,
parameter_output_zero_point,
output_type,
input_axes,
filter_axes,
output_axes)
computation = runtime.computation(model,
parameter_data,
parameter_filters,
parameter_input_scale,
parameter_input_zero_point,
parameter_filter_scale,
parameter_filter_zero_point,
parameter_output_scale,
parameter_output_zero_point)
result = computation(data_value,
filters_value,
input_scale_value,
input_zero_point_value,
filter_scale_value,
filter_zero_point_value,
output_scale_value,
output_zero_point_value)
expected = np.array([22, 34, 30, 32, 38, 72,
90, 43, 33, 52, 43, 39]).astype(np.int8).reshape(result_shape)
assert np.allclose(result, expected)
def test_quantized_dot_operator():
runtime = get_runtime()
input0_shape = [1, 2]
input1_shape = [2, 3]
result_shape = [1, 3]
shape = []
input0_value = np.array([2, 3]).astype(np.uint8).reshape(input0_shape)
input1_value = np.array([0, 2, 4, 1, 3, 5]).astype(np.uint8).reshape(input1_shape)
reduction_axes_count = 1
input0_scale_value = 2
input0_zero_point_value = 0
input1_scale_value = 1
input1_zero_point_value = 0
output_scale_value = 2
output_zero_point_value = 0
output_type = np.uint8
input0_axes = []
input1_axes = []
output_axes = []
parameter_input0 = ng.parameter(input0_shape, name='Input0', dtype=np.uint8)
parameter_input1 = ng.parameter(input1_shape, name='Input1', dtype=np.uint8)
parameter_input0_scale = ng.parameter(shape, name='Input0_scale', dtype=np.float32)
parameter_input0_zero_point = ng.parameter(shape, name='Input0_zero_point', dtype=np.uint8)
parameter_input1_scale = ng.parameter(shape, name='Input1_scale', dtype=np.float32)
parameter_input1_zero_point = ng.parameter(shape, name='Input1_zero_point', dtype=np.uint8)
parameter_output_scale = ng.parameter(shape, name='Output_scale', dtype=np.float32)
parameter_output_zero_point = ng.parameter(shape, name='Output_zero_point', dtype=np.uint8)
model = ng.quantized_dot(parameter_input0,
parameter_input1,
reduction_axes_count,
parameter_input0_scale,
parameter_input0_zero_point,
parameter_input1_scale,
parameter_input1_zero_point,
parameter_output_scale,
parameter_output_zero_point,
output_type,
input0_axes,
input1_axes,
output_axes)
computation = runtime.computation(model,
parameter_input0,
parameter_input1,
parameter_input0_scale,
parameter_input0_zero_point,
parameter_input1_scale,
parameter_input1_zero_point,
parameter_output_scale,
parameter_output_zero_point)
result = computation(input0_value,
input1_value,
input0_scale_value,
input0_zero_point_value,
input1_scale_value,
input1_zero_point_value,
output_scale_value,
output_zero_point_value)
expected = np.array([3, 13, 23]).astype(np.int8).reshape(result_shape)
assert np.allclose(result, expected)
def test_dequantize_operator():
runtime = get_runtime()
data_shape = [4, 3]
scale_shape = []
zero_point_shape = []
result_shape = [4, 3]
data_value = np.array([1, 1, 2, -1, 3, -1,
4, -3, 5, -3, 6, -5]).astype(np.int8).reshape(data_shape)
scale_value = np.float32(2)
zero_point_value = np.int8(1)
element_type = np.float32
axis_set = []
parameter_data = ng.parameter(data_shape, name='Data', dtype=np.int8)
parameter_scale = ng.parameter(scale_shape, name='Scale', dtype=np.float32)
parameter_zero_point = ng.parameter(zero_point_shape, name='Zero_Point', dtype=np.int8)
model = ng.dequantize(parameter_data,
parameter_scale,
parameter_zero_point,
element_type,
axis_set)
computation = runtime.computation(model,
parameter_data,
parameter_scale,
parameter_zero_point)
result = computation(data_value, scale_value, zero_point_value)
expected = np.array([0, 0, 2, -4, 4, -4,
6, -8, 8, -8, 10, -12]).astype(np.float32).reshape(result_shape)
assert np.allclose(result, expected)
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment