Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
N
ngraph
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
ngraph
Commits
750b7e79
Unverified
Commit
750b7e79
authored
Jun 28, 2019
by
Scott Cyphers
Committed by
GitHub
Jun 28, 2019
Browse files
Options
Browse Files
Download
Plain Diff
Merge branch 'master' into aprocter/dyn-reshape
parents
fca1ed9f
1e358743
Expand all
Hide whitespace changes
Inline
Side-by-side
Showing
16 changed files
with
886 additions
and
78 deletions
+886
-78
CMakeLists.txt
src/ngraph/CMakeLists.txt
+4
-0
reshape.cpp
src/ngraph/frontend/onnx_import/utils/reshape.cpp
+0
-1
ngraph.hpp
src/ngraph/ngraph.hpp
+2
-0
gru_cell.cpp
src/ngraph/op/fused/gru_cell.cpp
+0
-0
gru_cell.hpp
src/ngraph/op/fused/gru_cell.hpp
+157
-0
lstm_cell.cpp
src/ngraph/op/fused/lstm_cell.cpp
+17
-62
lstm_cell.hpp
src/ngraph/op/fused/lstm_cell.hpp
+2
-2
rnn_cell.cpp
src/ngraph/op/fused/rnn_cell.cpp
+239
-0
rnn_cell.hpp
src/ngraph/op/fused/rnn_cell.hpp
+140
-0
fused_op_tbl.hpp
src/ngraph/op/fused_op_tbl.hpp
+2
-0
rnn_cell_base.cpp
src/ngraph/op/util/rnn_cell_base.cpp
+39
-0
rnn_cell_base.hpp
src/ngraph/op/util/rnn_cell_base.hpp
+42
-2
intelgpu_backend.cpp
src/ngraph/runtime/intelgpu/intelgpu_backend.cpp
+6
-0
serializer.cpp
src/ngraph/serializer.cpp
+75
-11
backend_fused_op.in.cpp
test/backend_fused_op.in.cpp
+0
-0
type_prop.cpp
test/type_prop.cpp
+161
-0
No files found.
src/ngraph/CMakeLists.txt
View file @
750b7e79
...
...
@@ -318,6 +318,8 @@ set (SRC
op/fused/group_conv.cpp
op/fused/group_conv_transpose.hpp
op/fused/group_conv_transpose.cpp
op/fused/gru_cell.cpp
op/fused/gru_cell.hpp
op/fused/leaky_relu.cpp
op/fused/leaky_relu.hpp
op/fused/lstm_cell.cpp
...
...
@@ -328,6 +330,8 @@ set (SRC
op/fused/normalize.hpp
op/fused/prelu.cpp
op/fused/prelu.hpp
op/fused/rnn_cell.cpp
op/fused/rnn_cell.hpp
op/fused/scale_shift.cpp
op/fused/scale_shift.hpp
op/fused/shuffle_channels.cpp
...
...
src/ngraph/frontend/onnx_import/utils/reshape.cpp
View file @
750b7e79
...
...
@@ -25,7 +25,6 @@
#include "exceptions.hpp"
#include "ngraph/builder/reshape.hpp"
#include "ngraph/op/reshape.hpp"
#include "ngraph/op/slice.hpp"
#include "utils/common.hpp"
#include "utils/reshape.hpp"
...
...
src/ngraph/ngraph.hpp
View file @
750b7e79
...
...
@@ -105,12 +105,14 @@
#include "ngraph/op/fused/grn.hpp"
#include "ngraph/op/fused/group_conv.hpp"
#include "ngraph/op/fused/group_conv_transpose.hpp"
#include "ngraph/op/fused/gru_cell.hpp"
#include "ngraph/op/fused/hard_sigmoid.hpp"
#include "ngraph/op/fused/leaky_relu.hpp"
#include "ngraph/op/fused/lstm_cell.hpp"
#include "ngraph/op/fused/mvn.hpp"
#include "ngraph/op/fused/normalize.hpp"
#include "ngraph/op/fused/prelu.hpp"
#include "ngraph/op/fused/rnn_cell.hpp"
#include "ngraph/op/fused/scale_shift.hpp"
#include "ngraph/op/fused/shuffle_channels.hpp"
#include "ngraph/op/fused/space_to_depth.hpp"
...
...
src/ngraph/op/fused/gru_cell.cpp
0 → 100644
View file @
750b7e79
This diff is collapsed.
Click to expand it.
src/ngraph/op/fused/gru_cell.hpp
0 → 100644
View file @
750b7e79
//*****************************************************************************
// Copyright 2017-2019 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#pragma once
#include <cstddef>
#include <memory>
#include <string>
#include <vector>
#include "ngraph/node.hpp"
#include "ngraph/op/util/activation_functions.hpp"
#include "ngraph/op/util/fused_op.hpp"
#include "ngraph/op/util/rnn_cell_base.hpp"
namespace
ngraph
{
namespace
op
{
///
/// \brief Class for GRU cell node.
///
/// \note It follows notation and equations defined as in ONNX standard:
/// https://github.com/onnx/onnx/blob/master/docs/Operators.md#GRU
///
/// Note this class represents only single *cell* and not whole GRU *layer*.
///
class
GRUCell
:
public
util
::
FusedOp
,
public
util
::
RNNCellBase
{
public
:
///
/// \brief Constructs GRUCell node.
///
/// \param[in] X The input tensor with shape: [batch_size, input_size].
/// \param[in] W The weight tensor with shape:
/// [gates_count * hidden_size, input_size].
/// \param[in] R The recurrence weight tensor with shape:
/// [gates_count * hidden_size, hidden_size].
/// \param[in] H_t The hidden state tensor at current time step with
/// shape: [batch_size, hidden_size].
/// \param[in] hidden_size The number of hidden units for recurrent cell.
///
GRUCell
(
const
std
::
shared_ptr
<
Node
>&
X
,
const
std
::
shared_ptr
<
Node
>&
W
,
const
std
::
shared_ptr
<
Node
>&
R
,
const
std
::
shared_ptr
<
Node
>&
H_t
,
std
::
size_t
hidden_size
);
///
/// \brief Constructs GRUCell node.
///
/// \param[in] X The input tensor with shape: [batch_size, input_size].
/// \param[in] W The weight tensor with shape:
/// [gates_count * hidden_size, input_size].
/// \param[in] R The recurrence weight tensor with shape:
/// [gates_count * hidden_size, hidden_size].
/// \param[in] H_t The hidden state tensor at current time step with
/// shape: [batch_size, hidden_size].
/// \param[in] hidden_size The number of hidden units for recurrent cell.
/// \param[in] activations The vector of activation functions used inside
/// recurrent cell.
/// \param[in] activation_alpha The vector of alpha parameters for activation
/// functions in order respective to activation list.
/// \param[in] activation_beta The vector of beta parameters for activation functions
/// in order respective to activation list.
/// \param[in] clip The value defining clipping range [-clip, clip] on
/// input of activation functions.
///
GRUCell
(
const
std
::
shared_ptr
<
Node
>&
X
,
const
std
::
shared_ptr
<
Node
>&
W
,
const
std
::
shared_ptr
<
Node
>&
R
,
const
std
::
shared_ptr
<
Node
>&
H_t
,
std
::
size_t
hidden_size
,
const
std
::
vector
<
std
::
string
>&
activations
,
const
std
::
vector
<
float
>&
activation_alpha
,
const
std
::
vector
<
float
>&
activation_beta
,
float
clip
,
bool
linear_before_reset
);
///
/// \brief Constructs GRUCell node.
///
/// \param[in] X The input tensor with shape: [batch_size, input_size].
/// \param[in] W The weight tensor with shape:
/// [gates_count * hidden_size, input_size].
/// \param[in] R The recurrence weight tensor with shape:
/// [gates_count * hidden_size, hidden_size].
/// \param[in] H_t The hidden state tensor at current time step with
/// shape: [batch_size, hidden_size].
/// \param[in] hidden_size The number of hidden units for recurrent cell.
/// \param[in] B The bias tensor for input gate with shape:
/// [2 * gates_count * hidden_size].
/// \param[in] activations The vector of activation functions used inside
/// recurrent cell.
/// \param[in] activation_alpha The vector of alpha parameters for activation
/// functions in order respective to activation list.
/// \param[in] activation_beta The vector of beta parameters for activation functions
/// in order respective to activation list.
/// \param[in] clip The value defining clipping range [-clip, clip] on
/// input of activation functions.
///
GRUCell
(
const
std
::
shared_ptr
<
Node
>&
X
,
const
std
::
shared_ptr
<
Node
>&
W
,
const
std
::
shared_ptr
<
Node
>&
R
,
const
std
::
shared_ptr
<
Node
>&
H_t
,
std
::
size_t
hidden_size
,
const
std
::
shared_ptr
<
Node
>&
B
,
const
std
::
vector
<
std
::
string
>&
activations
=
std
::
vector
<
std
::
string
>
{
"sigmoid"
,
"tanh"
},
const
std
::
vector
<
float
>&
activation_alpha
=
{},
const
std
::
vector
<
float
>&
activation_beta
=
{},
float
clip
=
0.
f
,
bool
linear_before_reset
=
false
);
virtual
void
pre_validate_and_infer_types
()
override
;
virtual
NodeVector
decompose_op
()
const
override
;
virtual
std
::
shared_ptr
<
Node
>
copy_with_new_args
(
const
NodeVector
&
new_args
)
const
override
;
bool
get_linear_before_reset
()
const
{
return
m_linear_before_reset
;
}
private
:
/// brief Add and initialize bias input to all zeros.
void
add_default_bias_input
();
///
/// \brief The Activation function f.
///
util
::
ActivationFunction
m_activation_f
;
///
/// \brief The Activation function g.
///
util
::
ActivationFunction
m_activation_g
;
static
constexpr
std
::
size_t
s_gates_count
{
3
};
///
/// \brief Control whether or not apply the linear transformation.
///
/// \note The linear transformation may be applied when computing the output of hidden gate.
/// It's done before multiplying by the output of the reset gate.
///
bool
m_linear_before_reset
;
};
}
}
src/ngraph/op/fused/lstm_cell.cpp
View file @
750b7e79
...
...
@@ -24,11 +24,6 @@
#include "ngraph/op/constant.hpp"
#include "ngraph/op/dot.hpp"
#include "ngraph/op/fused/lstm_cell.hpp"
#include "ngraph/op/maximum.hpp"
#include "ngraph/op/minimum.hpp"
#include "ngraph/op/multiply.hpp"
#include "ngraph/op/subtract.hpp"
#include "ngraph/op/util/broadcasting.hpp"
#include "ngraph/shape.hpp"
#include "ngraph/type/element_type.hpp"
#include "ngraph/util.hpp"
...
...
@@ -36,46 +31,6 @@
using
namespace
std
;
using
namespace
ngraph
;
// ------------- HELPER FUNCTIONS ---------------------------------------------
static
shared_ptr
<
Node
>
add
(
const
shared_ptr
<
Node
>&
lhs
,
const
shared_ptr
<
Node
>&
rhs
)
{
auto
args
=
op
::
numpy_style_broadcast
({
lhs
,
rhs
});
return
{
make_shared
<
op
::
Add
>
(
args
.
at
(
0
),
args
.
at
(
1
))};
}
static
shared_ptr
<
Node
>
sub
(
const
shared_ptr
<
Node
>&
lhs
,
const
shared_ptr
<
Node
>&
rhs
)
{
auto
args
=
op
::
numpy_style_broadcast
({
lhs
,
rhs
});
return
{
make_shared
<
op
::
Subtract
>
(
args
.
at
(
0
),
args
.
at
(
1
))};
}
static
shared_ptr
<
Node
>
mul
(
const
shared_ptr
<
Node
>&
lhs
,
const
shared_ptr
<
Node
>&
rhs
)
{
auto
args
=
op
::
numpy_style_broadcast
({
lhs
,
rhs
});
return
{
make_shared
<
op
::
Multiply
>
(
args
.
at
(
0
),
args
.
at
(
1
))};
}
static
shared_ptr
<
Node
>
clip
(
const
shared_ptr
<
Node
>&
data
,
float
threshold
)
{
if
(
threshold
==
0.
f
)
{
return
data
;
}
float
min_val
=
-
threshold
;
float
max_val
=
threshold
;
size_t
size
=
shape_size
(
data
->
get_shape
());
const
shared_ptr
<
Node
>
min_val_node
=
op
::
Constant
::
create
(
data
->
get_element_type
(),
data
->
get_shape
(),
vector
<
float
>
(
size
,
min_val
));
const
shared_ptr
<
Node
>
max_val_node
=
op
::
Constant
::
create
(
data
->
get_element_type
(),
data
->
get_shape
(),
vector
<
float
>
(
size
,
max_val
));
return
make_shared
<
op
::
Minimum
>
(
max_val_node
,
make_shared
<
op
::
Maximum
>
(
data
,
min_val_node
));
}
// ------------- LSTM_CELL ----------------------------------------------------
op
::
LSTMCell
::
LSTMCell
(
const
shared_ptr
<
Node
>&
X
,
const
shared_ptr
<
Node
>&
W
,
const
shared_ptr
<
Node
>&
R
,
...
...
@@ -166,18 +121,18 @@ void op::LSTMCell::pre_validate_and_infer_types()
const
Shape
&
ct_shape
{
ct_pshape
.
to_shape
()};
NODE_VALIDATION_CHECK
(
this
,
(
w_shape
==
Shape
{
m
_gates_count
*
get_hidden_size
(),
input_size
}),
(
w_shape
==
Shape
{
s
_gates_count
*
get_hidden_size
(),
input_size
}),
"Input tensor W must have shape ("
,
m
_gates_count
*
get_hidden_size
(),
s
_gates_count
*
get_hidden_size
(),
", "
,
input_size
,
"). Actual shape is:"
,
w_shape
,
"."
);
NODE_VALIDATION_CHECK
(
this
,
(
r_shape
==
Shape
{
m
_gates_count
*
get_hidden_size
(),
get_hidden_size
()}),
(
r_shape
==
Shape
{
s
_gates_count
*
get_hidden_size
(),
get_hidden_size
()}),
"Input tensor R must have shape ("
,
m
_gates_count
*
get_hidden_size
(),
s
_gates_count
*
get_hidden_size
(),
", "
,
get_hidden_size
(),
"). Actual shape is:"
,
...
...
@@ -213,7 +168,7 @@ void op::LSTMCell::pre_validate_and_infer_types()
const
Shape
&
p_shape
{
p_pshape
.
to_shape
()};
NODE_VALIDATION_CHECK
(
this
,
(
b_shape
==
Shape
{
2
*
m
_gates_count
*
get_hidden_size
()}),
(
b_shape
==
Shape
{
2
*
s
_gates_count
*
get_hidden_size
()}),
"Input tensor B must have shape ("
,
8
*
get_hidden_size
(),
"). Actual shape is:"
,
...
...
@@ -221,9 +176,9 @@ void op::LSTMCell::pre_validate_and_infer_types()
"."
);
NODE_VALIDATION_CHECK
(
this
,
(
p_shape
==
Shape
{
m
_peepholes_count
*
get_hidden_size
()}),
(
p_shape
==
Shape
{
s
_peepholes_count
*
get_hidden_size
()}),
"Input tensor P must have shape ("
,
m
_peepholes_count
*
get_hidden_size
(),
s
_peepholes_count
*
get_hidden_size
(),
"). Actual shape is:"
,
p_shape
,
"."
);
...
...
@@ -295,7 +250,7 @@ NodeVector op::LSTMCell::decompose_op() const
auto
c_t
=
split_gates
.
at
(
3
);
// f(Xt*(Wi^T) + Ht-1*(Ri^T) + Pi (.) Ct-1 + Wbi + Rbi)
i_t
=
m_activation_f
(
clip
(
add
(
i_t
,
mul
(
p_i
,
C_t
))
,
get_clip
()
));
i_t
=
m_activation_f
(
clip
(
add
(
i_t
,
mul
(
p_i
,
C_t
))));
if
(
m_input_forget
)
{
// Couple input with forget gate: 1 - i_t
...
...
@@ -307,14 +262,14 @@ NodeVector op::LSTMCell::decompose_op() const
else
{
// f(Xt*(Wf^T) + Ht-1*(Rf^T) + Pf (.) Ct-1 + Wbf + Rbf)
f_t
=
m_activation_f
(
clip
(
add
(
f_t
,
mul
(
p_f
,
C_t
))
,
get_clip
()
));
f_t
=
m_activation_f
(
clip
(
add
(
f_t
,
mul
(
p_f
,
C_t
))));
}
// ft (.) Ct-1 + it (.) ct
auto
C
=
add
(
mul
(
f_t
,
C_t
),
mul
(
i_t
,
m_activation_g
(
clip
(
c_t
,
get_clip
()
))));
auto
C
=
add
(
mul
(
f_t
,
C_t
),
mul
(
i_t
,
m_activation_g
(
clip
(
c_t
))));
// f(Xt*(Wo^T) + Ht-1*(Ro^T) + Po (.) Ct + Wbo + Rbo)
o_t
=
m_activation_f
(
clip
(
add
(
o_t
,
mul
(
p_o
,
C
))
,
get_clip
()
));
o_t
=
m_activation_f
(
clip
(
add
(
o_t
,
mul
(
p_o
,
C
))));
// ot (.) h(Ct)
auto
H
=
mul
(
o_t
,
m_activation_h
(
clip
(
C
,
get_clip
()
)));
auto
H
=
mul
(
o_t
,
m_activation_h
(
clip
(
C
)));
return
{
H
,
C
};
}
...
...
@@ -332,15 +287,15 @@ NodeVector op::LSTMCell::get_peephole_weigths() const
{
shared_ptr
<
Node
>
P
;
P
=
get_argument
(
6
);
return
builder
::
split
(
P
,
m
_peepholes_count
);
return
builder
::
split
(
P
,
s
_peepholes_count
);
}
void
op
::
LSTMCell
::
add_default_bias_input
()
{
shared_ptr
<
Node
>
B
=
op
::
Constant
::
create
(
input
(
0
).
get_element_type
(),
Shape
{
2
*
m
_gates_count
*
get_hidden_size
()},
vector
<
float
>
(
2
*
m
_gates_count
*
get_hidden_size
(),
0.
f
));
Shape
{
2
*
s
_gates_count
*
get_hidden_size
()},
vector
<
float
>
(
2
*
s
_gates_count
*
get_hidden_size
(),
0.
f
));
set_argument
(
5
,
B
->
output
(
0
));
}
...
...
@@ -348,8 +303,8 @@ void op::LSTMCell::add_default_peepholes_input()
{
shared_ptr
<
Node
>
P
=
op
::
Constant
::
create
(
input
(
0
).
get_element_type
(),
Shape
{
m
_peepholes_count
*
get_hidden_size
()},
vector
<
float
>
(
m
_peepholes_count
*
get_hidden_size
(),
0.
f
));
Shape
{
s
_peepholes_count
*
get_hidden_size
()},
vector
<
float
>
(
s
_peepholes_count
*
get_hidden_size
(),
0.
f
));
set_argument
(
6
,
P
->
output
(
0
));
}
...
...
src/ngraph/op/fused/lstm_cell.hpp
View file @
750b7e79
...
...
@@ -168,8 +168,8 @@ namespace ngraph
///
bool
m_input_forget
=
false
;
static
constexpr
std
::
size_t
m
_gates_count
{
4
};
static
constexpr
std
::
size_t
m
_peepholes_count
{
3
};
static
constexpr
std
::
size_t
s
_gates_count
{
4
};
static
constexpr
std
::
size_t
s
_peepholes_count
{
3
};
};
}
}
src/ngraph/op/fused/rnn_cell.cpp
0 → 100644
View file @
750b7e79
//*****************************************************************************
// Copyright 2017-2019 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#include <algorithm>
#include <cmath>
#include <functional>
#include "ngraph/builder/reshape.hpp"
#include "ngraph/builder/split.hpp"
#include "ngraph/op/add.hpp"
#include "ngraph/op/constant.hpp"
#include "ngraph/op/dot.hpp"
#include "ngraph/op/fused/rnn_cell.hpp"
#include "ngraph/shape.hpp"
#include "ngraph/type/element_type.hpp"
#include "ngraph/util.hpp"
using
namespace
std
;
using
namespace
ngraph
;
op
::
RNNCell
::
RNNCell
(
const
shared_ptr
<
Node
>&
X
,
const
shared_ptr
<
Node
>&
W
,
const
shared_ptr
<
Node
>&
R
,
const
shared_ptr
<
Node
>&
H_t
,
size_t
hidden_size
)
:
RNNCell
(
X
,
W
,
R
,
H_t
,
hidden_size
,
vector
<
string
>
{
"tanh"
},
vector
<
float
>
{},
vector
<
float
>
{},
0.
f
)
{
}
op
::
RNNCell
::
RNNCell
(
const
shared_ptr
<
Node
>&
X
,
const
shared_ptr
<
Node
>&
W
,
const
shared_ptr
<
Node
>&
R
,
const
shared_ptr
<
Node
>&
H_t
,
size_t
hidden_size
,
const
vector
<
string
>&
activations
,
const
vector
<
float
>&
activation_alpha
,
const
vector
<
float
>&
activation_beta
,
float
clip
)
:
FusedOp
(
"RNNCell"
,
{
X
,
W
,
R
,
H_t
})
,
RNNCellBase
(
hidden_size
,
clip
,
activations
,
activation_alpha
,
activation_beta
)
,
m_activation_f
{
get_activation_function
(
0
)}
{
add_default_bias_input
();
constructor_validate_and_infer_types
();
}
op
::
RNNCell
::
RNNCell
(
const
shared_ptr
<
Node
>&
X
,
const
shared_ptr
<
Node
>&
W
,
const
shared_ptr
<
Node
>&
R
,
const
shared_ptr
<
Node
>&
H_t
,
size_t
hidden_size
,
const
shared_ptr
<
Node
>&
B
,
const
vector
<
string
>&
activations
,
const
vector
<
float
>&
activation_alpha
,
const
vector
<
float
>&
activation_beta
,
float
clip
)
:
FusedOp
(
"RNNCell"
,
{
X
,
W
,
R
,
H_t
,
B
})
,
RNNCellBase
(
hidden_size
,
clip
,
activations
,
activation_alpha
,
activation_beta
)
,
m_activation_f
{
get_activation_function
(
0
)}
{
constructor_validate_and_infer_types
();
}
void
op
::
RNNCell
::
pre_validate_and_infer_types
()
{
const
auto
&
x_pshape
=
get_input_partial_shape
(
0
);
const
auto
&
w_pshape
=
get_input_partial_shape
(
1
);
const
auto
&
r_pshape
=
get_input_partial_shape
(
2
);
const
auto
&
ht_pshape
=
get_input_partial_shape
(
3
);
NODE_VALIDATION_CHECK
(
this
,
(
x_pshape
.
is_static
()
||
w_pshape
.
is_static
()
||
r_pshape
.
is_static
()
||
ht_pshape
.
is_static
()),
"RNNCell supports only static input tensors."
);
const
Shape
&
x_shape
{
x_pshape
.
to_shape
()};
const
size_t
batch_size
=
x_shape
.
at
(
0
);
const
size_t
input_size
=
x_shape
.
at
(
1
);
const
Shape
&
w_shape
{
w_pshape
.
to_shape
()};
const
Shape
&
r_shape
{
r_pshape
.
to_shape
()};
const
Shape
&
ht_shape
{
ht_pshape
.
to_shape
()};
NODE_VALIDATION_CHECK
(
this
,
(
w_shape
==
Shape
{
get_hidden_size
(),
input_size
}),
"Input tensor W must have shape ("
,
get_hidden_size
(),
", "
,
input_size
,
"). Actual shape is:"
,
w_shape
,
"."
);
NODE_VALIDATION_CHECK
(
this
,
(
r_shape
==
Shape
{
get_hidden_size
(),
get_hidden_size
()}),
"Input tensor R must have shape ("
,
get_hidden_size
(),
", "
,
get_hidden_size
(),
"). Actual shape is:"
,
w_shape
,
"."
);
NODE_VALIDATION_CHECK
(
this
,
(
ht_shape
==
Shape
{
batch_size
,
get_hidden_size
()}),
"Input tensor H_t must have shape ("
,
batch_size
,
", "
,
get_hidden_size
(),
"). Actual shape is:"
,
w_shape
,
"."
);
const
auto
&
b_pshape
=
get_input_partial_shape
(
4
);
NODE_VALIDATION_CHECK
(
this
,
b_pshape
.
is_static
(),
"RNNCell supports only static input tensors."
);
const
Shape
&
b_shape
{
b_pshape
.
to_shape
()};
NODE_VALIDATION_CHECK
(
this
,
(
b_shape
==
Shape
{
2
*
get_hidden_size
()}),
"Input tensor B must have shape ("
,
2
*
get_hidden_size
(),
"). Actual shape is:"
,
b_shape
,
"."
);
}
NodeVector
op
::
RNNCell
::
decompose_op
()
const
{
// ------ VARIABLE'S NAMES AND ACRONYM DEFINITIONS ------
// The names used below are analogous to the one used in ONNX documentation.
//
// ------ ACRONYMS ------
// i_t - input gate at current time step
// t - time step (t-1 means previous time step)
// X - The input data tensor. Shape: [batch_size, input_size].
// W - The weight tensor for input gate. Shape: [hidden_size, input_size].
// R - The recurrence weight tensor for input gate. Shape: [hidden_size, hidden_size].
// H_t - The hidden state tensor at current time step. Shape: [batch_size, hidden_size].
// B - The bias tensor for the input gate. Shape: [2 * hidden_size] Concatenation of `[Wb, Rb]`.
// Wb - W bias vectors for input gate.
// Rb - R bias vectors for input gate.
// ------ VARIABLE NAMES ------
// Xt_W - Input sequence multiplied by weights tensor at current time step.
// Ht_R - Hidden state multiplied by weights tensor at current time step.
// (.) - Denotes element-wise multiplication.
// * - Denotes dot product.
// ---- Equations ----
// f - is activation functions.
// Ht = f(Xt*(Wi^T) + Ht-1*(Ri^T) + Wbi + Rbi)
// --------------------
std
::
shared_ptr
<
Node
>
X
=
get_argument
(
0
);
std
::
shared_ptr
<
Node
>
W
=
get_argument
(
1
);
std
::
shared_ptr
<
Node
>
R
=
get_argument
(
2
);
std
::
shared_ptr
<
Node
>
H_t
=
get_argument
(
3
);
std
::
shared_ptr
<
Node
>
bias
=
get_bias
();
// Xt*(W^T)
auto
Xt_W
=
std
::
make_shared
<
op
::
Dot
>
(
X
,
builder
::
transpose
(
W
));
// Ht-1*(R^T)
auto
Ht_R
=
std
::
make_shared
<
op
::
Dot
>
(
H_t
,
builder
::
transpose
(
R
));
// Xt*(W^T) + Ht-1*(R^T) + Wb + Rb
auto
i_t
=
add
(
Xt_W
,
add
(
Ht_R
,
bias
));
// f(Xt*(Wi^T) + Ht-1*(Ri^T) + Wbi + Rbi)
i_t
=
m_activation_f
(
clip
(
i_t
));
return
{
i_t
};
}
shared_ptr
<
Node
>
op
::
RNNCell
::
get_bias
()
const
{
shared_ptr
<
Node
>
bias
;
// Split B onto Wb an Rb and add them.
NodeVector
b_W_R
=
builder
::
split
(
get_argument
(
4
),
2
);
bias
=
b_W_R
.
at
(
0
)
+
b_W_R
.
at
(
1
);
return
bias
;
}
void
op
::
RNNCell
::
add_default_bias_input
()
{
shared_ptr
<
Node
>
B
=
op
::
Constant
::
create
(
input
(
0
).
get_element_type
(),
Shape
{
2
*
s_gates_count
*
get_hidden_size
()},
vector
<
float
>
(
2
*
s_gates_count
*
get_hidden_size
(),
0.
f
));
set_argument
(
4
,
B
->
output
(
0
));
}
shared_ptr
<
Node
>
op
::
RNNCell
::
copy_with_new_args
(
const
NodeVector
&
new_args
)
const
{
check_new_args_count
(
this
,
new_args
);
if
(
new_args
.
size
()
==
4
)
{
return
make_shared
<
RNNCell
>
(
new_args
.
at
(
0
),
new_args
.
at
(
1
),
new_args
.
at
(
2
),
new_args
.
at
(
3
),
get_hidden_size
(),
get_activations
(),
get_activation_alpha
(),
get_activation_beta
(),
get_clip
());
}
else
if
(
new_args
.
size
()
==
5
)
{
return
make_shared
<
RNNCell
>
(
new_args
.
at
(
0
),
new_args
.
at
(
1
),
new_args
.
at
(
2
),
new_args
.
at
(
3
),
get_hidden_size
(),
new_args
.
at
(
4
),
get_activations
(),
get_activation_alpha
(),
get_activation_beta
(),
get_clip
());
}
else
{
throw
ngraph_error
(
"Incorrect number of new arguments"
);
}
}
src/ngraph/op/fused/rnn_cell.hpp
0 → 100644
View file @
750b7e79
//*****************************************************************************
// Copyright 2017-2019 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#pragma once
#include <cstddef>
#include <memory>
#include <string>
#include <vector>
#include "ngraph/node.hpp"
#include "ngraph/op/util/activation_functions.hpp"
#include "ngraph/op/util/fused_op.hpp"
#include "ngraph/op/util/rnn_cell_base.hpp"
namespace
ngraph
{
namespace
op
{
///
/// \brief Class for RNN cell node.
///
/// \note It follows notation and equations defined as in ONNX standard:
/// https://github.com/onnx/onnx/blob/master/docs/Operators.md#RNN
///
/// Note this class represents only single *cell* and not whole RNN *layer*.
///
class
RNNCell
:
public
util
::
FusedOp
,
public
util
::
RNNCellBase
{
public
:
///
/// \brief Constructs RNNCell node.
///
/// \param[in] X The input tensor with shape: [batch_size, input_size].
/// \param[in] W The weight tensor with shape: [hidden_size, input_size].
/// \param[in] R The recurrence weight tensor with shape:
/// [hidden_size, hidden_size].
/// \param[in] H_t The hidden state tensor at current time step with shape:
/// [batch_size, hidden_size].
/// \param[in] hidden_size The number of hidden units for recurrent cell.
///
RNNCell
(
const
std
::
shared_ptr
<
Node
>&
X
,
const
std
::
shared_ptr
<
Node
>&
W
,
const
std
::
shared_ptr
<
Node
>&
R
,
const
std
::
shared_ptr
<
Node
>&
H_t
,
std
::
size_t
hidden_size
);
///
/// \brief Constructs RNNCell node.
///
/// \param[in] X The input tensor with shape: [batch_size, input_size].
/// \param[in] W The weight tensor with shape: [hidden_size, input_size].
/// \param[in] R The recurrence weight tensor with shape:
/// [hidden_size, hidden_size].
/// \param[in] H_t The hidden state tensor at current time step with
/// shape: [batch_size, hidden_size].
/// \param[in] hidden_size The number of hidden units for recurrent cell.
/// \param[in] activations The vector of activation functions used inside
/// recurrent cell.
/// \param[in] activation_alpha The vector of alpha parameters for activation
/// functions in order respective to activation list.
/// \param[in] activation_beta The vector of beta parameters for activation functions
/// in order respective to activation list.
/// \param[in] clip The value defining clipping range [-clip, clip] on
/// input of activation functions.
///
RNNCell
(
const
std
::
shared_ptr
<
Node
>&
X
,
const
std
::
shared_ptr
<
Node
>&
W
,
const
std
::
shared_ptr
<
Node
>&
R
,
const
std
::
shared_ptr
<
Node
>&
H_t
,
std
::
size_t
hidden_size
,
const
std
::
vector
<
std
::
string
>&
activations
,
const
std
::
vector
<
float
>&
activation_alpha
,
const
std
::
vector
<
float
>&
activation_beta
,
float
clip
);
///
/// \brief Constructs RNNCell node.
///
/// \param[in] X The input tensor with shape: [batch_size, input_size].
/// \param[in] W The weight tensor with shape: [hidden_size, input_size].
/// \param[in] R The recurrence weight tensor with shape:
/// [hidden_size, hidden_size].
/// \param[in] H_t The hidden state tensor at current time step with
/// shape: [batch_size, hidden_size].
/// \param[in] hidden_size The number of hidden units for recurrent cell.
/// \param[in] B The bias tensor for input gate with shape: [2*hidden_size].
/// \param[in] activations The vector of activation functions used inside
/// recurrent cell.
/// \param[in] activation_alpha The vector of alpha parameters for activation
/// functions in order respective to activation list.
/// \param[in] activation_beta The vector of beta parameters for activation functions
/// in order respective to activation list.
/// \param[in] clip The value defining clipping range [-clip, clip] on
/// input of activation functions.
///
RNNCell
(
const
std
::
shared_ptr
<
Node
>&
X
,
const
std
::
shared_ptr
<
Node
>&
W
,
const
std
::
shared_ptr
<
Node
>&
R
,
const
std
::
shared_ptr
<
Node
>&
H_t
,
std
::
size_t
hidden_size
,
const
std
::
shared_ptr
<
Node
>&
B
,
const
std
::
vector
<
std
::
string
>&
activations
=
std
::
vector
<
std
::
string
>
{
"tanh"
},
const
std
::
vector
<
float
>&
activation_alpha
=
{},
const
std
::
vector
<
float
>&
activation_beta
=
{},
float
clip
=
0.
f
);
virtual
void
pre_validate_and_infer_types
()
override
;
virtual
NodeVector
decompose_op
()
const
override
;
virtual
std
::
shared_ptr
<
Node
>
copy_with_new_args
(
const
NodeVector
&
new_args
)
const
override
;
private
:
std
::
shared_ptr
<
Node
>
get_bias
()
const
;
/// brief Add and initialize bias input to all zeros.
void
add_default_bias_input
();
///
/// \brief The Activation function f.
///
util
::
ActivationFunction
m_activation_f
;
static
constexpr
std
::
size_t
s_gates_count
{
1
};
};
}
}
src/ngraph/op/fused_op_tbl.hpp
View file @
750b7e79
...
...
@@ -28,12 +28,14 @@ NGRAPH_OP(Gemm, ngraph::op)
NGRAPH_OP
(
GRN
,
ngraph
::
op
)
NGRAPH_OP
(
GroupConvolution
,
ngraph
::
op
)
NGRAPH_OP
(
GroupConvolutionTranspose
,
ngraph
::
op
)
NGRAPH_OP
(
GRUCell
,
ngraph
::
op
)
NGRAPH_OP
(
HardSigmoid
,
ngraph
::
op
)
NGRAPH_OP
(
LeakyRelu
,
ngraph
::
op
)
NGRAPH_OP
(
LSTMCell
,
ngraph
::
op
)
NGRAPH_OP
(
MVN
,
ngraph
::
op
)
NGRAPH_OP
(
Normalize
,
ngraph
::
op
)
NGRAPH_OP
(
PRelu
,
ngraph
::
op
)
NGRAPH_OP
(
RNNCell
,
ngraph
::
op
)
NGRAPH_OP
(
ScaleShift
,
ngraph
::
op
)
NGRAPH_OP
(
ShuffleChannels
,
ngraph
::
op
)
NGRAPH_OP
(
SpaceToDepth
,
ngraph
::
op
)
...
...
src/ngraph/op/util/rnn_cell_base.cpp
View file @
750b7e79
...
...
@@ -17,6 +17,14 @@
#include <algorithm>
#include <iterator>
#include "ngraph/op/add.hpp"
#include "ngraph/op/constant.hpp"
#include "ngraph/op/fused/clamp.hpp"
#include "ngraph/op/maximum.hpp"
#include "ngraph/op/minimum.hpp"
#include "ngraph/op/multiply.hpp"
#include "ngraph/op/subtract.hpp"
#include "ngraph/op/util/broadcasting.hpp"
#include "ngraph/op/util/rnn_cell_base.hpp"
#include "ngraph/util.hpp"
...
...
@@ -60,3 +68,34 @@ op::util::ActivationFunction op::util::RNNCellBase::get_activation_function(size
return
afunc
;
}
shared_ptr
<
Node
>
op
::
util
::
RNNCellBase
::
add
(
const
shared_ptr
<
Node
>&
lhs
,
const
shared_ptr
<
Node
>&
rhs
)
{
auto
args
=
op
::
numpy_style_broadcast
({
lhs
,
rhs
});
return
{
make_shared
<
op
::
Add
>
(
args
.
at
(
0
),
args
.
at
(
1
))};
}
shared_ptr
<
Node
>
op
::
util
::
RNNCellBase
::
sub
(
const
shared_ptr
<
Node
>&
lhs
,
const
shared_ptr
<
Node
>&
rhs
)
{
auto
args
=
op
::
numpy_style_broadcast
({
lhs
,
rhs
});
return
{
make_shared
<
op
::
Subtract
>
(
args
.
at
(
0
),
args
.
at
(
1
))};
}
shared_ptr
<
Node
>
op
::
util
::
RNNCellBase
::
mul
(
const
shared_ptr
<
Node
>&
lhs
,
const
shared_ptr
<
Node
>&
rhs
)
{
auto
args
=
op
::
numpy_style_broadcast
({
lhs
,
rhs
});
return
{
make_shared
<
op
::
Multiply
>
(
args
.
at
(
0
),
args
.
at
(
1
))};
}
shared_ptr
<
Node
>
op
::
util
::
RNNCellBase
::
clip
(
const
shared_ptr
<
Node
>&
data
)
const
{
if
(
m_clip
==
0.
f
)
{
return
data
;
}
return
make_shared
<
op
::
Clamp
>
(
data
,
-
m_clip
,
m_clip
);
}
src/ngraph/op/util/rnn_cell_base.hpp
View file @
750b7e79
...
...
@@ -17,9 +17,11 @@
#pragma once
#include <cstddef>
#include <memory>
#include <string>
#include <vector>
#include "ngraph/node.hpp"
#include "ngraph/op/util/activation_functions.hpp"
namespace
ngraph
...
...
@@ -71,10 +73,48 @@ namespace ngraph
/// \return The object representing activation function.
///
ActivationFunction
get_activation_function
(
std
::
size_t
idx
)
const
;
///
/// \brief Creates node with element-wise add operation with numpy broadcasting.
///
/// \param[in] lhs The left hand side argument node.
/// \param[in] rhs The right hand side argument node.
///
/// \return Node with element-wise add operation.
///
static
std
::
shared_ptr
<
Node
>
add
(
const
std
::
shared_ptr
<
Node
>&
lhs
,
const
std
::
shared_ptr
<
Node
>&
rhs
);
///
/// \brief Creates node with element-wise subtract operation with numpy broadcasting.
///
/// \param[in] lhs The left hand side argument node.
/// \param[in] rhs The right hand side argument node.
///
/// \return Node with element-wise subtract operation.
///
static
std
::
shared_ptr
<
Node
>
sub
(
const
std
::
shared_ptr
<
Node
>&
lhs
,
const
std
::
shared_ptr
<
Node
>&
rhs
);
///
/// \brief Creates node with element-wise multiply operation with numpy broadcasting.
///
/// \param[in] lhs The left hand side argument node.
/// \param[in] rhs The right hand side argument node.
///
/// \return Node with element-wise multiply operation.
///
static
std
::
shared_ptr
<
Node
>
mul
(
const
std
::
shared_ptr
<
Node
>&
lhs
,
const
std
::
shared_ptr
<
Node
>&
rhs
);
///
/// \brief Creates node with element-wise clip operation with numpy broadcasting.
///
/// \param[in] data The input tensor for clipping.
///
/// \return Node with element-wise clip operation.
///
std
::
shared_ptr
<
Node
>
clip
(
const
std
::
shared_ptr
<
Node
>&
data
)
const
;
private
:
std
::
size_t
m_hidden_size
=
0.
f
;
float
m_clip
=
0.
f
;
const
std
::
size_t
m_hidden_size
;
const
float
m_clip
;
const
std
::
vector
<
std
::
string
>
m_activations
;
const
std
::
vector
<
float
>
m_activation_alpha
;
const
std
::
vector
<
float
>
m_activation_beta
;
...
...
src/ngraph/runtime/intelgpu/intelgpu_backend.cpp
View file @
750b7e79
...
...
@@ -87,11 +87,13 @@
#include "ngraph/op/fused/grn.hpp"
#include "ngraph/op/fused/group_conv.hpp"
#include "ngraph/op/fused/group_conv_transpose.hpp"
#include "ngraph/op/fused/gru_cell.hpp"
#include "ngraph/op/fused/hard_sigmoid.hpp"
#include "ngraph/op/fused/leaky_relu.hpp"
#include "ngraph/op/fused/lstm_cell.hpp"
#include "ngraph/op/fused/mvn.hpp"
#include "ngraph/op/fused/normalize.hpp"
#include "ngraph/op/fused/rnn_cell.hpp"
#include "ngraph/op/fused/scale_shift.hpp"
#include "ngraph/op/fused/shuffle_channels.hpp"
#include "ngraph/op/fused/space_to_depth.hpp"
...
...
@@ -2070,6 +2072,7 @@ shared_ptr<runtime::Executable>
case
OP_TYPEID
:
:
GenerateMask
:
case
OP_TYPEID
:
:
GRN
:
case
OP_TYPEID
:
:
GroupConvolutionTranspose
:
case
OP_TYPEID
:
:
GRUCell
:
case
OP_TYPEID
:
:
HardSigmoid
:
case
OP_TYPEID
:
:
LeakyRelu
:
case
OP_TYPEID
:
:
LSTMCell
:
...
...
@@ -2077,6 +2080,7 @@ shared_ptr<runtime::Executable>
case
OP_TYPEID
:
:
Normalize
:
case
OP_TYPEID
:
:
PRelu
:
case
OP_TYPEID
:
:
Passthrough
:
case
OP_TYPEID
:
:
RNNCell
:
case
OP_TYPEID
:
:
QuantizedAvgPool
:
case
OP_TYPEID
:
:
QuantizedConvolution
:
case
OP_TYPEID
:
:
QuantizedConvolutionBias
:
...
...
@@ -2195,11 +2199,13 @@ bool runtime::intelgpu::IntelGPUBackend::is_supported_impl(const Node& node)
case
OP_TYPEID
:
:
Gemm
:
case
OP_TYPEID
:
:
GRN
:
case
OP_TYPEID
:
:
GroupConvolutionTranspose
:
case
OP_TYPEID
:
:
GRUCell
:
case
OP_TYPEID
:
:
LeakyRelu
:
case
OP_TYPEID
:
:
LSTMCell
:
case
OP_TYPEID
:
:
MVN
:
case
OP_TYPEID
:
:
Normalize
:
case
OP_TYPEID
:
:
PRelu
:
case
OP_TYPEID
:
:
RNNCell
:
case
OP_TYPEID
:
:
ScaleShift
:
case
OP_TYPEID
:
:
ShuffleChannels
:
case
OP_TYPEID
:
:
SpaceToDepth
:
...
...
src/ngraph/serializer.cpp
View file @
750b7e79
...
...
@@ -79,12 +79,14 @@
#include "ngraph/op/fused/grn.hpp"
#include "ngraph/op/fused/group_conv.hpp"
#include "ngraph/op/fused/group_conv_transpose.hpp"
#include "ngraph/op/fused/gru_cell.hpp"
#include "ngraph/op/fused/hard_sigmoid.hpp"
#include "ngraph/op/fused/leaky_relu.hpp"
#include "ngraph/op/fused/lstm_cell.hpp"
#include "ngraph/op/fused/mvn.hpp"
#include "ngraph/op/fused/normalize.hpp"
#include "ngraph/op/fused/prelu.hpp"
#include "ngraph/op/fused/rnn_cell.hpp"
#include "ngraph/op/fused/scale_shift.hpp"
#include "ngraph/op/fused/shuffle_channels.hpp"
#include "ngraph/op/fused/space_to_depth.hpp"
...
...
@@ -1230,13 +1232,6 @@ shared_ptr<Node> JSONDeserializer::deserialize_node(json node_js)
node
=
make_shared
<
op
::
GRN
>
(
args
[
0
],
bias
);
break
;
}
case
OP_TYPEID
:
:
HardSigmoid
:
{
auto
alpha
=
node_js
.
at
(
"alpha"
).
get
<
float
>
();
auto
beta
=
node_js
.
at
(
"beta"
).
get
<
float
>
();
node
=
make_shared
<
op
::
HardSigmoid
>
(
args
[
0
],
alpha
,
beta
);
break
;
}
case
OP_TYPEID
:
:
GroupConvolution
:
{
auto
window_movement_strides
=
...
...
@@ -1283,6 +1278,35 @@ shared_ptr<Node> JSONDeserializer::deserialize_node(json node_js)
output_shape
);
break
;
}
case
OP_TYPEID
:
:
GRUCell
:
{
auto
hidden_size
=
node_js
.
at
(
"hidden_size"
).
get
<
size_t
>
();
auto
clip
=
node_js
.
at
(
"clip"
).
get
<
float
>
();
auto
activations
=
node_js
.
at
(
"activations"
).
get
<
vector
<
string
>>
();
auto
activation_alpha
=
node_js
.
at
(
"activation_alpha"
).
get
<
vector
<
float
>>
();
auto
activation_beta
=
node_js
.
at
(
"activation_beta"
).
get
<
vector
<
float
>>
();
auto
linear_before_reset
=
node_js
.
at
(
"linear_before_reset"
).
get
<
bool
>
();
node
=
make_shared
<
op
::
GRUCell
>
(
args
[
0
],
args
[
1
],
args
[
2
],
args
[
3
],
hidden_size
,
args
[
4
],
activations
,
activation_alpha
,
activation_beta
,
clip
,
linear_before_reset
);
break
;
}
case
OP_TYPEID
:
:
HardSigmoid
:
{
auto
alpha
=
node_js
.
at
(
"alpha"
).
get
<
float
>
();
auto
beta
=
node_js
.
at
(
"beta"
).
get
<
float
>
();
node
=
make_shared
<
op
::
HardSigmoid
>
(
args
[
0
],
alpha
,
beta
);
break
;
}
case
OP_TYPEID
:
:
LeakyRelu
:
{
node
=
make_shared
<
op
::
LeakyRelu
>
(
args
[
0
],
args
[
1
]);
...
...
@@ -1664,6 +1688,25 @@ shared_ptr<Node> JSONDeserializer::deserialize_node(json node_js)
node
=
make_shared
<
op
::
ReverseSequence
>
(
args
[
0
],
args
[
1
],
batch_axis
,
sequence_axis
);
break
;
}
case
OP_TYPEID
:
:
RNNCell
:
{
auto
hidden_size
=
node_js
.
at
(
"hidden_size"
).
get
<
size_t
>
();
auto
clip
=
node_js
.
at
(
"clip"
).
get
<
float
>
();
auto
activations
=
node_js
.
at
(
"activations"
).
get
<
vector
<
string
>>
();
auto
activation_alpha
=
node_js
.
at
(
"activation_alpha"
).
get
<
vector
<
float
>>
();
auto
activation_beta
=
node_js
.
at
(
"activation_beta"
).
get
<
vector
<
float
>>
();
node
=
make_shared
<
op
::
RNNCell
>
(
args
[
0
],
args
[
1
],
args
[
2
],
args
[
3
],
hidden_size
,
args
[
4
],
activations
,
activation_alpha
,
activation_beta
,
clip
);
break
;
}
case
OP_TYPEID
:
:
ScalarConstantLike
:
{
double
value
=
node_js
.
at
(
"value"
).
get
<
double
>
();
...
...
@@ -2340,11 +2383,15 @@ json JSONSerializer::serialize_node(const Node& n)
node
[
"bias"
]
=
tmp
->
get_bias
();
break
;
}
case
OP_TYPEID
:
:
HardSigmoid
:
case
OP_TYPEID
:
:
GRUCell
:
{
auto
tmp
=
dynamic_cast
<
const
op
::
HardSigmoid
*>
(
&
n
);
node
[
"alpha"
]
=
tmp
->
get_alpha
();
node
[
"beta"
]
=
tmp
->
get_beta
();
auto
tmp
=
dynamic_cast
<
const
op
::
GRUCell
*>
(
&
n
);
node
[
"hidden_size"
]
=
tmp
->
get_hidden_size
();
node
[
"clip"
]
=
tmp
->
get_clip
();
node
[
"activations"
]
=
tmp
->
get_activations
();
node
[
"activation_alpha"
]
=
tmp
->
get_activation_alpha
();
node
[
"activation_beta"
]
=
tmp
->
get_activation_beta
();
node
[
"linear_before_reset"
]
=
tmp
->
get_linear_before_reset
();
break
;
}
case
OP_TYPEID
:
:
GroupConvolution
:
...
...
@@ -2372,6 +2419,13 @@ json JSONSerializer::serialize_node(const Node& n)
node
[
"output_shape"
]
=
tmp
->
get_output_shape
();
break
;
}
case
OP_TYPEID
:
:
HardSigmoid
:
{
auto
tmp
=
dynamic_cast
<
const
op
::
HardSigmoid
*>
(
&
n
);
node
[
"alpha"
]
=
tmp
->
get_alpha
();
node
[
"beta"
]
=
tmp
->
get_beta
();
break
;
}
case
OP_TYPEID
:
:
LeakyRelu
:
{
break
;
}
case
OP_TYPEID
:
:
Less
:
...
...
@@ -2662,6 +2716,16 @@ json JSONSerializer::serialize_node(const Node& n)
node
[
"sequence_axis"
]
=
tmp
->
get_sequence_axis
();
break
;
}
case
OP_TYPEID
:
:
RNNCell
:
{
auto
tmp
=
dynamic_cast
<
const
op
::
RNNCell
*>
(
&
n
);
node
[
"hidden_size"
]
=
tmp
->
get_hidden_size
();
node
[
"clip"
]
=
tmp
->
get_clip
();
node
[
"activations"
]
=
tmp
->
get_activations
();
node
[
"activation_alpha"
]
=
tmp
->
get_activation_alpha
();
node
[
"activation_beta"
]
=
tmp
->
get_activation_beta
();
break
;
}
case
OP_TYPEID
:
:
ScalarConstantLike
:
{
auto
tmp
=
dynamic_cast
<
const
op
::
ScalarConstantLikeBase
*>
(
&
n
);
...
...
test/backend_fused_op.in.cpp
View file @
750b7e79
This diff is collapsed.
Click to expand it.
test/type_prop.cpp
View file @
750b7e79
...
...
@@ -15763,3 +15763,164 @@ INSTANTIATE_TEST_CASE_P(type_prop,
::
testing
::
Values
(
RangeParams
{
0
,
1
,
0.25
,
PartialShape
{
4
}},
RangeParams
{
-
1
,
1
,
0.25
,
PartialShape
{
8
}},
RangeParams
{
-
1
,
0.875
,
0.25
,
PartialShape
{
8
}}));
TEST
(
type_prop
,
rnn_cell
)
{
const
size_t
batch_size
=
2
;
const
size_t
input_size
=
3
;
const
size_t
hidden_size
=
3
;
const
auto
X
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
Shape
{
batch_size
,
input_size
});
const
auto
W
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
Shape
{
hidden_size
,
input_size
});
const
auto
R
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
Shape
{
hidden_size
,
hidden_size
});
const
auto
H_t
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
Shape
{
batch_size
,
hidden_size
});
const
auto
rnn_cell
=
make_shared
<
op
::
RNNCell
>
(
X
,
W
,
R
,
H_t
,
hidden_size
);
EXPECT_EQ
(
rnn_cell
->
output
(
0
).
get_element_type
(),
element
::
f32
);
EXPECT_EQ
(
rnn_cell
->
output
(
0
).
get_shape
(),
(
Shape
{
batch_size
,
hidden_size
}));
}
TEST
(
type_prop
,
rnn_cell_invalid_input
)
{
const
size_t
batch_size
=
2
;
const
size_t
input_size
=
3
;
const
size_t
hidden_size
=
3
;
auto
X
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
Shape
{
batch_size
,
input_size
});
auto
R
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
Shape
{
hidden_size
,
hidden_size
});
auto
H_t
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
Shape
{
batch_size
,
hidden_size
});
// Invalid W tensor shape.
auto
W
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
Shape
{
2
*
hidden_size
,
input_size
});
try
{
const
auto
rnn_cell
=
make_shared
<
op
::
RNNCell
>
(
X
,
W
,
R
,
H_t
,
hidden_size
);
FAIL
()
<<
"RNNCell node was created with invalid data."
;
}
catch
(
const
NodeValidationFailure
&
error
)
{
EXPECT_HAS_SUBSTRING
(
error
.
what
(),
std
::
string
(
"Input tensor W must have shape"
));
}
// Invalid R tensor shape.
W
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
Shape
{
hidden_size
,
input_size
});
R
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
Shape
{
hidden_size
,
1
});
try
{
const
auto
rnn_cell
=
make_shared
<
op
::
RNNCell
>
(
X
,
W
,
R
,
H_t
,
hidden_size
);
FAIL
()
<<
"RNNCell node was created with invalid data."
;
}
catch
(
const
NodeValidationFailure
&
error
)
{
EXPECT_HAS_SUBSTRING
(
error
.
what
(),
std
::
string
(
"Input tensor R must have shape"
));
}
// Invalid H_t tensor shape.
R
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
Shape
{
hidden_size
,
hidden_size
});
H_t
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
Shape
{
4
,
hidden_size
});
try
{
const
auto
rnn_cell
=
make_shared
<
op
::
RNNCell
>
(
X
,
W
,
R
,
H_t
,
hidden_size
);
FAIL
()
<<
"RNNCell node was created with invalid data."
;
}
catch
(
const
NodeValidationFailure
&
error
)
{
EXPECT_HAS_SUBSTRING
(
error
.
what
(),
std
::
string
(
"Input tensor H_t must have shape"
));
}
// Invalid B tensor shape.
H_t
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
Shape
{
batch_size
,
hidden_size
});
auto
B
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
Shape
{
hidden_size
});
try
{
const
auto
rnn_cell
=
make_shared
<
op
::
RNNCell
>
(
X
,
W
,
R
,
H_t
,
hidden_size
,
B
);
FAIL
()
<<
"RNNCell node was created with invalid data."
;
}
catch
(
const
NodeValidationFailure
&
error
)
{
EXPECT_HAS_SUBSTRING
(
error
.
what
(),
std
::
string
(
"Input tensor B must have shape"
));
}
}
TEST
(
type_prop
,
gru_cell
)
{
const
size_t
batch_size
=
2
;
const
size_t
input_size
=
3
;
const
size_t
hidden_size
=
3
;
const
size_t
gates_count
=
3
;
const
auto
X
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
Shape
{
batch_size
,
input_size
});
const
auto
W
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
Shape
{
gates_count
*
hidden_size
,
input_size
});
const
auto
R
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
Shape
{
gates_count
*
hidden_size
,
hidden_size
});
const
auto
H_t
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
Shape
{
batch_size
,
hidden_size
});
const
auto
gru_cell
=
make_shared
<
op
::
GRUCell
>
(
X
,
W
,
R
,
H_t
,
hidden_size
);
EXPECT_EQ
(
gru_cell
->
output
(
0
).
get_element_type
(),
element
::
f32
);
EXPECT_EQ
(
gru_cell
->
output
(
0
).
get_shape
(),
(
Shape
{
batch_size
,
hidden_size
}));
}
TEST
(
type_prop
,
gru_cell_invalid_input
)
{
const
size_t
batch_size
=
2
;
const
size_t
input_size
=
3
;
const
size_t
hidden_size
=
3
;
const
size_t
gates_count
=
3
;
const
auto
X
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
Shape
{
batch_size
,
input_size
});
auto
R
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
Shape
{
gates_count
*
hidden_size
,
hidden_size
});
auto
H_t
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
Shape
{
batch_size
,
hidden_size
});
// Invalid W tensor shape.
auto
W
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
Shape
{
hidden_size
,
input_size
});
try
{
const
auto
gru_cell
=
make_shared
<
op
::
GRUCell
>
(
X
,
W
,
R
,
H_t
,
hidden_size
);
FAIL
()
<<
"GRUCell node was created with invalid data."
;
}
catch
(
const
NodeValidationFailure
&
error
)
{
EXPECT_HAS_SUBSTRING
(
error
.
what
(),
std
::
string
(
"Input tensor W must have shape"
));
}
// Invalid R tensor shape.
W
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
Shape
{
gates_count
*
hidden_size
,
input_size
});
R
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
Shape
{
hidden_size
,
1
});
try
{
const
auto
gru_cell
=
make_shared
<
op
::
GRUCell
>
(
X
,
W
,
R
,
H_t
,
hidden_size
);
FAIL
()
<<
"GRUCell node was created with invalid data."
;
}
catch
(
const
NodeValidationFailure
&
error
)
{
EXPECT_HAS_SUBSTRING
(
error
.
what
(),
std
::
string
(
"Input tensor R must have shape"
));
}
// Invalid H_t tensor shape.
R
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
Shape
{
gates_count
*
hidden_size
,
hidden_size
});
H_t
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
Shape
{
4
,
hidden_size
});
try
{
const
auto
gru_cell
=
make_shared
<
op
::
GRUCell
>
(
X
,
W
,
R
,
H_t
,
hidden_size
);
FAIL
()
<<
"GRUCell node was created with invalid data."
;
}
catch
(
const
NodeValidationFailure
&
error
)
{
EXPECT_HAS_SUBSTRING
(
error
.
what
(),
std
::
string
(
"Input tensor H_t must have shape"
));
}
// Invalid B tensor shape.
H_t
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
Shape
{
batch_size
,
hidden_size
});
auto
B
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
Shape
{
hidden_size
});
try
{
const
auto
gru_cell
=
make_shared
<
op
::
GRUCell
>
(
X
,
W
,
R
,
H_t
,
hidden_size
,
B
);
FAIL
()
<<
"GRUCell node was created with invalid data."
;
}
catch
(
const
NodeValidationFailure
&
error
)
{
EXPECT_HAS_SUBSTRING
(
error
.
what
(),
std
::
string
(
"Input tensor B must have shape"
));
}
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment