Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
N
ngraph
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
ngraph
Commits
74af675d
Unverified
Commit
74af675d
authored
Nov 21, 2017
by
Robert Kimball
Committed by
GitHub
Nov 21, 2017
Browse files
Options
Browse Files
Download
Plain Diff
Merge branch 'master' into bob/simple_function_call
parents
ab6476fb
8ff5c586
Expand all
Show whitespace changes
Inline
Side-by-side
Showing
48 changed files
with
615 additions
and
657 deletions
+615
-657
CMakeLists.txt
src/ngraph/CMakeLists.txt
+1
-1
call_frame.hpp
src/ngraph/descriptor/call_frame.hpp
+0
-41
primary_tensor_view.cpp
src/ngraph/descriptor/primary_tensor_view.cpp
+3
-2
primary_tensor_view.hpp
src/ngraph/descriptor/primary_tensor_view.hpp
+2
-1
tensor.cpp
src/ngraph/descriptor/tensor.cpp
+3
-1
tensor.hpp
src/ngraph/descriptor/tensor.hpp
+4
-1
ngraph.hpp
src/ngraph/ngraph.hpp
+0
-1
node.cpp
src/ngraph/node.cpp
+7
-1
node.hpp
src/ngraph/node.hpp
+1
-0
constant.hpp
src/ngraph/ops/constant.hpp
+2
-0
liveness.cpp
src/ngraph/pass/liveness.cpp
+1
-2
aligned_buffer.cpp
src/ngraph/runtime/aligned_buffer.cpp
+23
-13
aligned_buffer.hpp
src/ngraph/runtime/aligned_buffer.hpp
+15
-10
backend.cpp
src/ngraph/runtime/backend.cpp
+43
-1
backend.hpp
src/ngraph/runtime/backend.hpp
+0
-11
emitter.cpp
src/ngraph/runtime/cpu/emitter.cpp
+0
-0
external_function.cpp
src/ngraph/runtime/cpu/external_function.cpp
+2
-2
tensor_view.cpp
src/ngraph/runtime/cpu/tensor_view.cpp
+9
-3
call_frame.hpp
src/ngraph/runtime/ngvm/call_frame.hpp
+3
-2
constant.hpp
src/ngraph/runtime/ngvm/eigen/constant.hpp
+1
-2
copy.hpp
src/ngraph/runtime/ngvm/eigen/copy.hpp
+2
-2
reduce_matrix_columns.hpp
src/ngraph/runtime/ngvm/eigen/reduce_matrix_columns.hpp
+2
-4
reduce_matrix_rows.hpp
src/ngraph/runtime/ngvm/eigen/reduce_matrix_rows.hpp
+2
-4
reduce_to_scalar.hpp
src/ngraph/runtime/ngvm/eigen/reduce_to_scalar.hpp
+2
-4
external_function.cpp
src/ngraph/runtime/ngvm/external_function.cpp
+12
-1
parameterized_tensor_view.hpp
src/ngraph/runtime/parameterized_tensor_view.hpp
+10
-34
tensor_view.cpp
src/ngraph/runtime/tensor_view.cpp
+1
-0
tensor_view.hpp
src/ngraph/runtime/tensor_view.hpp
+7
-8
utils.hpp
src/ngraph/runtime/utils.hpp
+10
-0
value.hpp
src/ngraph/runtime/value.hpp
+1
-0
element_type.cpp
src/ngraph/types/element_type.cpp
+17
-10
element_type.hpp
src/ngraph/types/element_type.hpp
+18
-13
CMakeLists.txt
test/CMakeLists.txt
+0
-3
backend_test.in.cpp
test/backend_test.in.cpp
+144
-7
build_graph.cpp
test/build_graph.cpp
+2
-4
copy.cpp
test/copy.cpp
+11
-3
pass_liveness.cpp
test/pass_liveness.cpp
+25
-1
pass_memory_layout.cpp
test/pass_memory_layout.cpp
+20
-0
tensor.cpp
test/tensor.cpp
+2
-2
util.cpp
test/util.cpp
+15
-6
all_close.cpp
test/util/all_close.cpp
+0
-111
all_close.hpp
test/util/all_close.hpp
+54
-58
backprop_derivative.cpp
test/util/autodiff/backprop_derivative.cpp
+0
-113
backprop_derivative.hpp
test/util/autodiff/backprop_derivative.hpp
+71
-17
backprop_function.hpp
test/util/autodiff/backprop_function.hpp
+0
-25
numeric_derivative.cpp
test/util/autodiff/numeric_derivative.cpp
+0
-112
numeric_derivative.hpp
test/util/autodiff/numeric_derivative.hpp
+64
-19
random.hpp
test/util/random.hpp
+3
-1
No files found.
src/ngraph/CMakeLists.txt
View file @
74af675d
...
...
@@ -63,6 +63,7 @@ set (SRC
pass/pass.cpp
pass/topological_sort.cpp
pass/visualize_tree.cpp
runtime/aligned_buffer.cpp
runtime/backend.cpp
runtime/manager.cpp
runtime/ngvm/call_frame.cpp
...
...
@@ -113,7 +114,6 @@ if (NGRAPH_CPU_ENABLE AND LLVM_INCLUDE_DIR AND
runtime/cpu/cpu_kernels.cpp
runtime/cpu/emitter.cpp
runtime/cpu/external_function.cpp
runtime/cpu/memory_handler.cpp
runtime/cpu/tensor_view.cpp
)
# LLVM binary builds are typically built without RTTI
...
...
src/ngraph/descriptor/call_frame.hpp
deleted
100644 → 0
View file @
ab6476fb
// ----------------------------------------------------------------------------
// Copyright 2017 Nervana Systems Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// ----------------------------------------------------------------------------
#pragma once
#include <memory>
#include <vector>
#include "ngraph/descriptor/tensor_view.hpp"
#include "ngraph/function.hpp"
namespace
ngraph
{
namespace
descriptor
{
// Describes the frame that will be used when a function is executing
class
CallFrame
{
protected
:
Function
m_function
;
// Will be provided by the caller
std
::
vector
<
std
::
shared_ptr
<
TensorView
>>
m_inputs
;
std
::
vector
<
std
::
shared_ptr
<
TensorView
>>
m_outputs
;
// Will be provided by the call mechanism
// Expect there to be only one buffer
std
::
vector
<
std
::
shared_ptr
<
Buffer
>>
m_buffers
;
};
}
}
src/ngraph/descriptor/primary_tensor_view.cpp
View file @
74af675d
...
...
@@ -20,9 +20,10 @@ using namespace descriptor;
PrimaryTensorView
::
PrimaryTensorView
(
const
std
::
shared_ptr
<
const
TensorViewType
>&
tensor_view_type
,
const
std
::
string
&
name
,
bool
is_output
,
bool
is_input
)
bool
is_input
,
bool
is_constant
)
:
TensorView
(
tensor_view_type
)
,
m_tensor
(
tensor_view_type
->
get_element_type
(),
this
,
name
,
is_output
,
is_input
)
,
m_tensor
(
tensor_view_type
->
get_element_type
(),
this
,
name
,
is_output
,
is_input
,
is_constant
)
{
// Set the name in the parent TensorView.
// This can't be done until after the m_tensor is constructed.
...
...
src/ngraph/descriptor/primary_tensor_view.hpp
View file @
74af675d
...
...
@@ -43,7 +43,8 @@ namespace ngraph
PrimaryTensorView
(
const
std
::
shared_ptr
<
const
TensorViewType
>&
tensor_view_type
,
const
std
::
string
&
name
,
bool
is_output
,
bool
is_input
);
bool
is_input
,
bool
is_constant
);
virtual
const
Tensor
&
get_tensor
()
const
override
;
virtual
Tensor
&
get_tensor
()
override
;
...
...
src/ngraph/descriptor/tensor.cpp
View file @
74af675d
...
...
@@ -23,12 +23,14 @@ Tensor::Tensor(const element::Type& element_type,
PrimaryTensorView
*
primary_tensor_view
,
const
std
::
string
&
name
,
bool
is_output
,
bool
is_input
)
bool
is_input
,
bool
is_constant
)
:
m_element_type
(
element_type
)
,
m_primary_tensor_view
(
primary_tensor_view
)
,
m_is_output
{
is_output
}
,
m_is_input
{
is_input
}
,
m_is_persistent
{
false
}
,
m_is_constant
{
is_constant
}
,
m_name
{
name
}
,
m_next_view_id
{
0
}
{
...
...
src/ngraph/descriptor/tensor.hpp
View file @
74af675d
...
...
@@ -47,7 +47,8 @@ private:
PrimaryTensorView
*
tensor_view
,
const
std
::
string
&
name
,
bool
is_output
,
bool
is_input
);
bool
is_input
,
bool
is_constant
);
std
::
string
get_next_view_name
();
...
...
@@ -55,6 +56,7 @@ public:
bool
is_output
()
const
{
return
m_is_output
;
}
bool
is_input
()
const
{
return
m_is_input
;
}
bool
is_persistent
()
const
{
return
m_is_persistent
;
}
bool
is_constant
()
const
{
return
m_is_constant
;
}
const
std
::
string
&
get_name
()
const
{
return
m_name
;
}
size_t
size
()
const
;
void
set_pool_offset
(
size_t
);
...
...
@@ -68,6 +70,7 @@ protected:
bool
m_is_output
;
bool
m_is_input
;
bool
m_is_persistent
;
bool
m_is_constant
;
std
::
string
m_name
;
size_t
m_next_view_id
;
size_t
m_size
;
...
...
src/ngraph/ngraph.hpp
View file @
74af675d
...
...
@@ -35,7 +35,6 @@
#include "ngraph/common.hpp"
#include "ngraph/descriptor/buffer.hpp"
#include "ngraph/descriptor/call_frame.hpp"
#include "ngraph/descriptor/input.hpp"
#include "ngraph/descriptor/layout/dense_tensor_view_layout.hpp"
#include "ngraph/descriptor/layout/tensor_view_layout.hpp"
...
...
src/ngraph/node.cpp
View file @
74af675d
...
...
@@ -70,7 +70,8 @@ void Node::set_value_type_checked(const shared_ptr<const ValueType>& value_type)
tvt
,
ngraph
::
descriptor
::
Tensor
::
make_tensor_name
(
this
,
i
),
is_output
(),
is_parameter
());
is_parameter
(),
is_constant
());
m_outputs
.
emplace_back
(
this
,
i
,
tensor_view_descriptor
);
i
++
;
}
...
...
@@ -124,6 +125,11 @@ void Node::set_is_output()
}
}
bool
Node
::
is_constant
()
const
{
return
false
;
}
std
::
string
Node
::
get_node_id
()
const
{
stringstream
ss
;
...
...
src/ngraph/node.hpp
View file @
74af675d
...
...
@@ -89,6 +89,7 @@ namespace ngraph
bool
is_parameter
()
const
;
bool
is_output
()
const
;
void
set_is_output
();
virtual
bool
is_constant
()
const
;
size_t
get_instance_id
()
const
{
return
m_instance_id
;
}
friend
std
::
ostream
&
operator
<<
(
std
::
ostream
&
,
const
Node
&
);
...
...
src/ngraph/ops/constant.hpp
View file @
74af675d
...
...
@@ -40,6 +40,8 @@ namespace ngraph
{
set_value_type_checked
(
type
);
}
virtual
bool
is_constant
()
const
override
{
return
true
;
}
};
/// \brief Class for constants whose element types are known at C++ compile-time.
...
...
src/ngraph/pass/liveness.cpp
View file @
74af675d
...
...
@@ -125,8 +125,7 @@ bool pass::Liveness::run_on_call_graph(list<shared_ptr<Node>>& ops)
bool
pass
::
Liveness
::
is_temporary
(
const
Tensor
&
tensor
)
{
return
tensor
.
is_persistent
()
==
false
&&
tensor
.
is_input
()
==
false
&&
tensor
.
is_output
()
==
false
;
// && tensor.is_constant() == false
tensor
.
is_output
()
==
false
&&
tensor
.
is_constant
()
==
false
;
// && tensor.is_compile_only() == false;
}
...
...
src/ngraph/runtime/
cpu/memory_handl
er.cpp
→
src/ngraph/runtime/
aligned_buff
er.cpp
View file @
74af675d
...
...
@@ -12,32 +12,42 @@
// See the License for the specific language governing permissions and
// ----------------------------------------------------------------------------
#include "ngraph/runtime/
cpu/memory_handl
er.hpp"
#include "ngraph/runtime/
aligned_buff
er.hpp"
using
namespace
ngraph
;
runtime
::
cpu
::
MemoryHandler
::
MemoryHandler
(
size_t
byte_size
,
size_t
alignment
)
:
m_allocated_buffer
_pool
(
nullptr
)
,
m_aligned_buffer
_pool
(
nullptr
)
runtime
::
AlignedBuffer
::
AlignedBuffer
(
)
:
m_allocated_buffer
(
nullptr
)
,
m_aligned_buffer
(
nullptr
)
{
if
(
byte_size
>
0
)
}
runtime
::
AlignedBuffer
::
AlignedBuffer
(
size_t
byte_size
,
size_t
alignment
)
{
initialize
(
byte_size
,
alignment
);
}
void
runtime
::
AlignedBuffer
::
initialize
(
size_t
byte_size
,
size_t
alignment
)
{
m_byte_size
=
byte_size
;
if
(
m_byte_size
>
0
)
{
size_t
allocation_size
=
byte_size
+
alignment
;
m_allocated_buffer
_pool
=
static_cast
<
char
*>
(
malloc
(
allocation_size
));
m_aligned_buffer
_pool
=
m_allocated_buffer_pool
;
size_t
mod
=
size_t
(
m_aligned_buffer
_pool
)
%
alignment
;
size_t
allocation_size
=
m_
byte_size
+
alignment
;
m_allocated_buffer
=
static_cast
<
char
*>
(
malloc
(
allocation_size
));
m_aligned_buffer
=
m_allocated_buffer
;
size_t
mod
=
size_t
(
m_aligned_buffer
)
%
alignment
;
if
(
mod
!=
0
)
{
m_aligned_buffer
_pool
+=
(
alignment
-
mod
);
m_aligned_buffer
+=
(
alignment
-
mod
);
}
}
}
runtime
::
cpu
::
MemoryHandler
::~
MemoryHandl
er
()
runtime
::
AlignedBuffer
::~
AlignedBuff
er
()
{
if
(
m_allocated_buffer
_pool
!=
nullptr
)
if
(
m_allocated_buffer
!=
nullptr
)
{
free
(
m_allocated_buffer
_pool
);
free
(
m_allocated_buffer
);
}
}
src/ngraph/runtime/
cpu/memory_handl
er.hpp
→
src/ngraph/runtime/
aligned_buff
er.hpp
View file @
74af675d
...
...
@@ -21,21 +21,26 @@ namespace ngraph
{
namespace
runtime
{
namespace
cpu
{
class
MemoryHandler
;
}
class
AlignedBuffer
;
}
}
class
ngraph
::
runtime
::
cpu
::
MemoryHandler
/// @brief Allocates a block of memory on the specified alignment. The actual size of the
/// allocated memory is larger than the requested size by the alignment, so allocating 1 byte
/// on 64 byte alignment will allocate 65 bytes.
class
ngraph
::
runtime
::
AlignedBuffer
{
public
:
MemoryHandler
(
size_t
pool_size
,
size_t
alignment
);
~
MemoryHandler
();
AlignedBuffer
(
size_t
byte_size
,
size_t
alignment
);
AlignedBuffer
();
void
initialize
(
size_t
byte_size
,
size_t
alignment
);
~
AlignedBuffer
();
void
*
get_ptr
(
size_t
offset
)
const
{
return
m_aligned_buffer_pool
+
offset
;
}
size_t
size
()
const
{
return
m_byte_size
;
}
void
*
get_ptr
(
size_t
offset
)
const
{
return
m_aligned_buffer
+
offset
;
}
void
*
get_ptr
()
const
{
return
m_aligned_buffer
;
}
private
:
char
*
m_allocated_buffer_pool
;
char
*
m_aligned_buffer_pool
;
char
*
m_allocated_buffer
;
char
*
m_aligned_buffer
;
size_t
m_byte_size
;
};
src/ngraph/runtime/backend.cpp
View file @
74af675d
...
...
@@ -15,6 +15,7 @@
#include <memory>
#include "ngraph/runtime/backend.hpp"
#include "ngraph/runtime/parameterized_tensor_view.hpp"
#include "ngraph/runtime/tensor_view.hpp"
#include "ngraph/runtime/tuple.hpp"
#include "ngraph/types/element_type.hpp"
...
...
@@ -24,7 +25,48 @@ using namespace ngraph::runtime;
std
::
shared_ptr
<
TensorView
>
Backend
::
make_primary_tensor_view
(
const
ngraph
::
element
::
Type
&
element_type
,
const
Shape
&
shape
)
{
return
element_type
.
make_primary_tensor_view
(
shape
);
std
::
shared_ptr
<
TensorView
>
rc
;
if
(
element_type
==
element
::
Bool
::
element_type
())
{
rc
=
std
::
make_shared
<
ParameterizedTensorView
<
element
::
Bool
>>
(
shape
);
}
else
if
(
element_type
==
element
::
Float32
::
element_type
())
{
rc
=
std
::
make_shared
<
ParameterizedTensorView
<
element
::
Float32
>>
(
shape
);
}
else
if
(
element_type
==
element
::
Float64
::
element_type
())
{
rc
=
std
::
make_shared
<
ParameterizedTensorView
<
element
::
Float64
>>
(
shape
);
}
else
if
(
element_type
==
element
::
Int8
::
element_type
())
{
rc
=
std
::
make_shared
<
ParameterizedTensorView
<
element
::
Int8
>>
(
shape
);
}
else
if
(
element_type
==
element
::
Int32
::
element_type
())
{
rc
=
std
::
make_shared
<
ParameterizedTensorView
<
element
::
Int32
>>
(
shape
);
}
else
if
(
element_type
==
element
::
Int64
::
element_type
())
{
rc
=
std
::
make_shared
<
ParameterizedTensorView
<
element
::
Int64
>>
(
shape
);
}
else
if
(
element_type
==
element
::
UInt8
::
element_type
())
{
rc
=
std
::
make_shared
<
ParameterizedTensorView
<
element
::
UInt8
>>
(
shape
);
}
else
if
(
element_type
==
element
::
UInt32
::
element_type
())
{
rc
=
std
::
make_shared
<
ParameterizedTensorView
<
element
::
UInt32
>>
(
shape
);
}
else
if
(
element_type
==
element
::
UInt64
::
element_type
())
{
rc
=
std
::
make_shared
<
ParameterizedTensorView
<
element
::
UInt64
>>
(
shape
);
}
else
{
throw
std
::
invalid_argument
(
"Unknown element type in make_primary_tensor_view"
);
}
return
rc
;
}
std
::
shared_ptr
<
ngraph
::
runtime
::
Tuple
>
...
...
src/ngraph/runtime/backend.hpp
View file @
74af675d
...
...
@@ -64,17 +64,6 @@ namespace ngraph
make_primary_tensor_view
(
ET
::
element_type
(),
shape
));
}
template
<
typename
ET
>
std
::
shared_ptr
<
ngraph
::
runtime
::
ParameterizedTensorView
<
ET
>>
make_parameterized_tensor_view
(
const
NDArrayBase
<
typename
ET
::
type
>&
ndarray
)
{
auto
result
=
std
::
dynamic_pointer_cast
<
ngraph
::
runtime
::
ParameterizedTensorView
<
ET
>>
(
make_primary_tensor_view
(
ET
::
element_type
(),
ndarray
.
get_shape
()));
*
result
=
ndarray
;
return
result
;
}
/// @brief Construct a tuple handle from a sequence of values.
virtual
std
::
shared_ptr
<
ngraph
::
runtime
::
Tuple
>
make_tuple
(
const
std
::
vector
<
std
::
shared_ptr
<
ngraph
::
runtime
::
Value
>>&
elements
);
...
...
src/ngraph/runtime/cpu/emitter.cpp
View file @
74af675d
This diff is collapsed.
Click to expand it.
src/ngraph/runtime/cpu/external_function.cpp
View file @
74af675d
...
...
@@ -189,9 +189,9 @@ void ExternalFunction::compile()
#include <Eigen/Dense>
#include "ngraph/runtime/aligned_buffer.hpp"
#include "ngraph/runtime/cpu/cpu_kernels.hpp"
#include "ngraph/runtime/cpu/eigen_utils.hpp"
#include "ngraph/runtime/cpu/memory_handler.hpp"
using namespace ngraph::runtime::cpu::eigen;
...
...
@@ -224,7 +224,7 @@ using namespace ngraph::runtime::cpu::eigen;
{
size_t
temp_pool_size
=
pass_manager
.
get_state
().
get_temporary_pool_size
();
TU
<<
"// Allocate the memory pool
\n
"
;
TU
<<
"ngraph::runtime::
cpu::MemoryHandl
er memory_handler("
<<
temp_pool_size
<<
", "
TU
<<
"ngraph::runtime::
AlignedBuff
er memory_handler("
<<
temp_pool_size
<<
", "
<<
ngraph
::
runtime
::
cpu
::
alignment
<<
");
\n
"
;
TU
<<
"
\n
"
;
...
...
src/ngraph/runtime/cpu/tensor_view.cpp
View file @
74af675d
...
...
@@ -14,8 +14,10 @@
#include <memory>
#include "cpu_backend.hpp"
#include "tensor_view.hpp"
#include "ngraph/descriptor/layout/dense_tensor_view_layout.hpp"
#include "ngraph/descriptor/primary_tensor_view.hpp"
#include "ngraph/runtime/cpu/cpu_backend.hpp"
#include "ngraph/runtime/cpu/tensor_view.hpp"
using
namespace
ngraph
;
using
namespace
std
;
...
...
@@ -23,7 +25,11 @@ using namespace std;
runtime
::
cpu
::
CPUTensorView
::
CPUTensorView
(
const
ngraph
::
element
::
Type
&
element_type
,
const
Shape
&
shape
)
:
runtime
::
TensorView
(
std
::
make_shared
<
ngraph
::
descriptor
::
PrimaryTensorView
>
(
std
::
make_shared
<
ngraph
::
TensorViewType
>
(
element_type
,
shape
),
"external"
,
true
,
true
))
std
::
make_shared
<
ngraph
::
TensorViewType
>
(
element_type
,
shape
),
"external"
,
true
,
true
,
false
))
,
m_allocated_buffer_pool
(
nullptr
)
,
m_aligned_buffer_pool
(
nullptr
)
...
...
src/ngraph/runtime/ngvm/call_frame.hpp
View file @
74af675d
...
...
@@ -58,13 +58,14 @@ namespace ngraph
template
<
typename
ET
>
ParameterizedTensorView
<
ET
>*
get_parameterized_tensor_view
(
size_t
i
)
{
return
m_tensor_views
[
i
]
->
get_parameterized_tensor_view
<
ET
>
(
);
return
dynamic_cast
<
ParameterizedTensorView
<
ET
>*>
(
m_tensor_views
[
i
].
get
()
);
}
template
<
typename
ET
>
typename
ET
::
type
*
get_tensor_view_data
(
size_t
i
)
{
return
&
get_parameterized_tensor_view
<
ET
>
(
i
)
->
get_vector
()[
0
];
return
static_cast
<
typename
ET
::
type
*>
(
get_parameterized_tensor_view
<
ET
>
(
i
)
->
get_data_ptr
());
}
protected
:
...
...
src/ngraph/runtime/ngvm/eigen/constant.hpp
View file @
74af675d
...
...
@@ -41,8 +41,7 @@ namespace ngraph
virtual
void
execute
(
CallFrame
&
call_frame
)
const
override
{
call_frame
.
get_parameterized_tensor_view
<
ET
>
(
m_out
.
get_index
())
->
get_vector
()
=
m_value
;
call_frame
.
get_tensor_view
(
m_out
.
get_index
())
->
write
(
m_value
);
}
protected
:
...
...
src/ngraph/runtime/ngvm/eigen/copy.hpp
View file @
74af675d
...
...
@@ -44,8 +44,8 @@ namespace ngraph
virtual
void
execute
(
CallFrame
&
call_frame
)
const
override
{
call_frame
.
get_parameterized_tensor_view
<
ET
>
(
m_out
)
->
get_vector
()
=
call_frame
.
get_parameterized_tensor_view
<
ET
>
(
m_in
)
->
get_vector
();
call_frame
.
get_parameterized_tensor_view
<
ET
>
(
m_out
)
->
write
(
call_frame
.
get_parameterized_tensor_view
<
ET
>
(
m_in
)
->
get_vector
()
)
;
}
protected
:
...
...
src/ngraph/runtime/ngvm/eigen/reduce_matrix_columns.hpp
View file @
74af675d
...
...
@@ -51,10 +51,8 @@ namespace ngraph
std
::
shared_ptr
<
CallFrame
>
cf
=
std
::
dynamic_pointer_cast
<
CallFrame
>
(
ef
->
make_call_frame
());
auto
tx
=
ngraph
::
runtime
::
make_tensor
<
ET
>
(
Shape
{});
*
tx
=
std
::
vector
<
typename
ET
::
type
>
({
x
});
auto
ty
=
ngraph
::
runtime
::
make_tensor
<
ET
>
(
Shape
{});
*
ty
=
std
::
vector
<
typename
ET
::
type
>
({
y
});
auto
tx
=
ngraph
::
runtime
::
make_tensor
<
ET
>
(
Shape
{},
{
x
});
auto
ty
=
ngraph
::
runtime
::
make_tensor
<
ET
>
(
Shape
{},
{
y
});
auto
tr
=
ngraph
::
runtime
::
make_tensor
<
ET
>
(
Shape
{});
(
*
cf
)({
tx
,
ty
},
{
tr
});
...
...
src/ngraph/runtime/ngvm/eigen/reduce_matrix_rows.hpp
View file @
74af675d
...
...
@@ -51,10 +51,8 @@ namespace ngraph
std
::
shared_ptr
<
CallFrame
>
cf
=
std
::
dynamic_pointer_cast
<
CallFrame
>
(
ef
->
make_call_frame
());
auto
tx
=
ngraph
::
runtime
::
make_tensor
<
ET
>
(
Shape
{});
*
tx
=
std
::
vector
<
typename
ET
::
type
>
({
x
});
auto
ty
=
ngraph
::
runtime
::
make_tensor
<
ET
>
(
Shape
{});
*
ty
=
std
::
vector
<
typename
ET
::
type
>
({
y
});
auto
tx
=
ngraph
::
runtime
::
make_tensor
<
ET
>
(
Shape
{},
{
x
});
auto
ty
=
ngraph
::
runtime
::
make_tensor
<
ET
>
(
Shape
{},
{
y
});
auto
tr
=
ngraph
::
runtime
::
make_tensor
<
ET
>
(
Shape
{});
(
*
cf
)({
tx
,
ty
},
{
tr
});
...
...
src/ngraph/runtime/ngvm/eigen/reduce_to_scalar.hpp
View file @
74af675d
...
...
@@ -51,10 +51,8 @@ namespace ngraph
std
::
shared_ptr
<
CallFrame
>
cf
=
std
::
dynamic_pointer_cast
<
CallFrame
>
(
ef
->
make_call_frame
());
auto
tx
=
ngraph
::
runtime
::
make_tensor
<
ET
>
(
Shape
{});
*
tx
=
std
::
vector
<
typename
ET
::
type
>
({
x
});
auto
ty
=
ngraph
::
runtime
::
make_tensor
<
ET
>
(
Shape
{});
*
ty
=
std
::
vector
<
typename
ET
::
type
>
({
y
});
auto
tx
=
ngraph
::
runtime
::
make_tensor
<
ET
>
(
Shape
{},
{
x
});
auto
ty
=
ngraph
::
runtime
::
make_tensor
<
ET
>
(
Shape
{},
{
y
});
auto
tr
=
ngraph
::
runtime
::
make_tensor
<
ET
>
(
Shape
{});
(
*
cf
)({
tx
,
ty
},
{
tr
});
...
...
src/ngraph/runtime/ngvm/external_function.cpp
View file @
74af675d
...
...
@@ -319,13 +319,24 @@ ExternalFunction::ExternalFunction(const std::shared_ptr<ngraph::Function>& func
instr_class); \
}
template
<
typename
ET
>
std
::
vector
<
typename
ET
::
type
>
get_vector
(
std
::
shared_ptr
<
ngraph
::
runtime
::
ParameterizedTensorView
<
ET
>>
ptv
)
{
std
::
vector
<
typename
ET
::
type
>
rc
;
rc
=
ptv
->
get_vector
();
return
rc
;
}
#define REGISTER_CONSTANT_INSTRUCTIONS(T) \
{ \
REGISTER_INSTRUCTION( \
op::ParameterizedConstant<T>, \
eigen::ConstantInstruction<T>, \
std::vector<T::type>{ \
dynamic_cast<const op::ParameterizedConstant<T>*>(n)->get_value()->get_vector()},
\
get_vector<T>(dynamic_cast<const op::ParameterizedConstant<T>*>(n)->get_value())},
\
out[0]); \
}
...
...
src/ngraph/runtime/parameterized_tensor_view.hpp
View file @
74af675d
...
...
@@ -23,7 +23,6 @@
#include "ngraph/descriptor/layout/dense_tensor_view_layout.hpp"
#include "ngraph/descriptor/primary_tensor_view.hpp"
#include "ngraph/runtime/ndarray.hpp"
#include "ngraph/runtime/tensor_view.hpp"
#include "ngraph/shape.hpp"
#include "ngraph/types/element_type.hpp"
...
...
@@ -33,7 +32,7 @@ namespace ngraph
namespace
runtime
{
template
<
typename
ET
>
class
ParameterizedTensorView
:
public
TensorView
class
ParameterizedTensorView
:
public
runtime
::
TensorView
{
public
:
/// Create a tensor
...
...
@@ -42,7 +41,8 @@ namespace ngraph
std
::
make_shared
<
ngraph
::
TensorViewType
>
(
ET
::
element_type
(),
shape
),
"external"
,
true
,
true
))
true
,
false
))
{
m_descriptor
->
set_tensor_view_layout
(
std
::
make_shared
<
ngraph
::
descriptor
::
layout
::
DenseTensorViewLayout
>
(
...
...
@@ -50,37 +50,12 @@ namespace ngraph
m_vector
.
resize
(
m_descriptor
->
get_tensor_view_layout
()
->
get_size
());
}
ParameterizedTensorView
(
const
std
::
shared_ptr
<
ngraph
::
descriptor
::
TensorView
>&
descriptor
);
ParameterizedTensorView
(
const
NDArrayBase
<
typename
ET
::
type
>&
initializer
)
:
ParameterizedTensorView
(
initializer
.
get_shape
())
{
m_vector
=
initializer
.
get_vector
();
}
using
element_type
=
ET
;
using
value_type
=
typename
ET
::
type
;
using
storage_type
=
std
::
vector
<
value_type
>
;
template
<
typename
T
>
ParameterizedTensorView
<
ET
>&
operator
=
(
const
std
::
vector
<
T
>&
value
)
{
get_vector
()
=
value
;
return
*
this
;
}
template
<
typename
T
>
ParameterizedTensorView
<
ET
>&
operator
=
(
const
NDArrayBase
<
T
>&
ndarray
)
{
assert
(
ndarray
.
get_shape
()
==
get_shape
());
std
::
copy
(
ndarray
.
begin
(),
ndarray
.
end
(),
m_vector
.
begin
());
return
*
this
;
}
// For getting the data out
storage_type
&
get_vector
()
{
return
m_vector
;
}
const
storage_type
&
get_vector
()
const
{
return
m_vector
;
}
void
*
get_data_ptr
()
{
return
m_vector
.
data
();
}
virtual
void
write
(
const
void
*
p
,
size_t
tensor_offset
,
size_t
n
)
override
{
size_t
elt_offset
=
tensor_offset
/
sizeof
(
typename
ET
::
type
);
...
...
@@ -102,6 +77,12 @@ namespace ngraph
std
::
memcpy
(
&
m_vector
[
elt_offset
],
p
,
n
);
}
template
<
typename
T
>
void
write
(
const
std
::
vector
<
T
>&
values
)
{
write
(
values
.
data
(),
0
,
values
.
size
()
*
sizeof
(
T
));
}
virtual
void
read
(
void
*
p
,
size_t
tensor_offset
,
size_t
n
)
const
override
{
size_t
elt_offset
=
tensor_offset
/
sizeof
(
typename
ET
::
type
);
...
...
@@ -123,11 +104,6 @@ namespace ngraph
std
::
memcpy
(
p
,
&
m_vector
[
elt_offset
],
n
);
}
bool
operator
==
(
const
NDArrayBase
<
typename
ET
::
type
>&
ndarray
)
const
{
return
get_shape
()
==
ndarray
.
get_shape
()
&&
get_vector
()
==
ndarray
.
get_vector
();
}
protected
:
storage_type
m_vector
;
};
...
...
src/ngraph/runtime/tensor_view.cpp
View file @
74af675d
...
...
@@ -15,6 +15,7 @@
#include "ngraph/runtime/tensor_view.hpp"
#include "ngraph/common.hpp"
#include "ngraph/types/element_type.hpp"
#include "ngraph/types/type.hpp"
using
namespace
ngraph
::
runtime
;
...
...
src/ngraph/runtime/tensor_view.hpp
View file @
74af675d
...
...
@@ -33,9 +33,6 @@ namespace ngraph
namespace
runtime
{
template
<
typename
ET
>
class
ParameterizedTensorView
;
class
TensorView
:
public
Value
{
protected
:
...
...
@@ -46,11 +43,7 @@ namespace ngraph
public
:
virtual
~
TensorView
()
{}
template
<
typename
ET
>
ParameterizedTensorView
<
ET
>*
get_parameterized_tensor_view
()
{
return
dynamic_cast
<
ParameterizedTensorView
<
ET
>*>
(
this
);
}
TensorView
&
operator
=
(
const
TensorView
&
)
=
default
;
std
::
shared_ptr
<
const
ngraph
::
descriptor
::
TensorView
>
get_tensor_view_descriptor
()
const
;
...
...
@@ -71,6 +64,12 @@ namespace ngraph
/// @param n Number of bytes to write, must be integral number of elements.
virtual
void
write
(
const
void
*
p
,
size_t
tensor_offset
,
size_t
n
)
=
0
;
template
<
typename
T
>
void
write
(
const
std
::
vector
<
T
>&
values
)
{
write
(
values
.
data
(),
0
,
values
.
size
()
*
sizeof
(
T
));
}
/// @brief Read bytes directly from the tensor
/// @param p Pointer to destination for data
/// @param tensor_offset Offset into tensor storage to begin reading. Must be element-aligned.
...
...
src/ngraph/runtime/utils.hpp
View file @
74af675d
...
...
@@ -34,6 +34,16 @@ namespace ngraph
return
std
::
make_shared
<
runtime
::
ParameterizedTensorView
<
ET
>>
(
shape
);
}
/// @brief Framework constructor of a tensor of a specific element type and shape.
template
<
typename
ET
>
std
::
shared_ptr
<
ngraph
::
runtime
::
ParameterizedTensorView
<
ET
>>
make_tensor
(
const
Shape
&
shape
,
const
std
::
vector
<
typename
ET
::
type
>&
data
)
{
auto
rc
=
std
::
make_shared
<
runtime
::
ParameterizedTensorView
<
ET
>>
(
shape
);
rc
->
write
(
data
.
data
(),
0
,
data
.
size
()
*
sizeof
(
typename
ET
::
type
));
return
rc
;
}
/// @brief Framework constructor of a tuple from a sequence of values.
std
::
shared_ptr
<
ngraph
::
runtime
::
Tuple
>
make_tuple
(
const
std
::
vector
<
std
::
shared_ptr
<
ngraph
::
runtime
::
Value
>>&
elements
);
...
...
src/ngraph/runtime/value.hpp
View file @
74af675d
...
...
@@ -35,6 +35,7 @@ namespace ngraph
{
public
:
virtual
~
Value
()
{}
Value
&
operator
=
(
const
Value
&
)
=
default
;
/// @brief The compile-time descriptor for this value.
virtual
std
::
shared_ptr
<
ngraph
::
descriptor
::
Value
>
get_descriptor
()
const
=
0
;
...
...
src/ngraph/types/element_type.cpp
View file @
74af675d
...
...
@@ -21,35 +21,42 @@
using
namespace
ngraph
;
ngraph
::
element
::
Type
::
Type
(
size_t
bitwidth
,
bool
is_float
,
bool
is_signed
,
const
std
::
string
&
cname
)
const
element
::
Type
element
::
boolean
(
8
,
false
,
false
,
"bool"
);
const
element
::
Type
element
::
f32
(
32
,
true
,
true
,
"float"
);
const
element
::
Type
element
::
f64
(
64
,
true
,
true
,
"double"
);
const
element
::
Type
element
::
i8
(
8
,
false
,
true
,
"int8_t"
);
const
element
::
Type
element
::
i32
(
32
,
false
,
true
,
"int32_t"
);
const
element
::
Type
element
::
i64
(
64
,
false
,
true
,
"int64_t"
);
const
element
::
Type
element
::
u8
(
8
,
false
,
false
,
"uint8_t"
);
const
element
::
Type
element
::
u32
(
32
,
false
,
false
,
"uint32_t"
);
const
element
::
Type
element
::
u64
(
64
,
false
,
false
,
"uint64_t"
);
element
::
Type
::
Type
(
size_t
bitwidth
,
bool
is_real
,
bool
is_signed
,
const
std
::
string
&
cname
)
:
m_bitwidth
{
bitwidth
}
,
m_is_
float
{
is_float
}
,
m_is_
real
{
is_real
}
,
m_is_signed
{
is_signed
}
,
m_cname
{
cname
}
{
assert
(
m_bitwidth
%
8
==
0
);
}
const
std
::
string
&
ngraph
::
element
::
Type
::
c_type_string
()
const
const
std
::
string
&
element
::
Type
::
c_type_string
()
const
{
return
m_cname
;
}
bool
ngraph
::
element
::
Type
::
operator
==
(
const
element
::
Type
&
other
)
const
bool
element
::
Type
::
operator
==
(
const
element
::
Type
&
other
)
const
{
return
m_bitwidth
==
other
.
m_bitwidth
&&
m_is_
float
==
other
.
m_is_float
&&
return
m_bitwidth
==
other
.
m_bitwidth
&&
m_is_
real
==
other
.
m_is_real
&&
m_is_signed
==
other
.
m_is_signed
&&
m_cname
==
other
.
m_cname
;
}
size_t
ngraph
::
element
::
Type
::
size
()
const
size_t
element
::
Type
::
size
()
const
{
return
std
::
ceil
(
static_cast
<
float
>
(
m_bitwidth
)
/
8.0
f
);
}
std
::
ostream
&
ngraph
::
element
::
operator
<<
(
std
::
ostream
&
out
,
const
ngraph
::
element
::
Type
&
obj
)
std
::
ostream
&
element
::
operator
<<
(
std
::
ostream
&
out
,
const
element
::
Type
&
obj
)
{
out
<<
obj
.
m_cname
;
return
out
;
...
...
src/ngraph/types/element_type.hpp
View file @
74af675d
...
...
@@ -26,11 +26,15 @@
#include "ngraph/common.hpp"
#include "ngraph/except.hpp"
#include "ngraph/runtime/parameterized_tensor_view.hpp"
#include "ngraph/runtime/tensor_view.hpp"
namespace
ngraph
{
namespace
runtime
{
template
<
typename
ET
>
class
ParameterizedTensorView
;
}
namespace
element
{
class
Type
...
...
@@ -40,7 +44,7 @@ namespace ngraph
public
:
virtual
~
Type
()
{}
Type
(
size_t
bitwidth
,
bool
is_
float
,
bool
is_signed
,
const
std
::
string
&
cname
);
Type
(
size_t
bitwidth
,
bool
is_
real
,
bool
is_signed
,
const
std
::
string
&
cname
);
const
std
::
string
&
c_type_string
()
const
;
size_t
size
()
const
;
...
...
@@ -50,9 +54,6 @@ namespace ngraph
return
h
(
m_cname
);
}
virtual
std
::
shared_ptr
<
ngraph
::
runtime
::
TensorView
>
make_primary_tensor_view
(
const
Shape
&
shape
)
const
=
0
;
bool
operator
==
(
const
Type
&
other
)
const
;
bool
operator
!=
(
const
Type
&
other
)
const
{
return
!
(
*
this
==
other
);
}
friend
std
::
ostream
&
operator
<<
(
std
::
ostream
&
,
const
Type
&
);
...
...
@@ -60,11 +61,21 @@ namespace ngraph
private
:
static
std
::
map
<
std
::
string
,
Type
>
m_element_list
;
size_t
m_bitwidth
;
bool
m_is_
float
;
bool
m_is_
real
;
bool
m_is_signed
;
const
std
::
string
m_cname
;
};
extern
const
Type
boolean
;
extern
const
Type
f32
;
extern
const
Type
f64
;
extern
const
Type
i8
;
extern
const
Type
i32
;
extern
const
Type
i64
;
extern
const
Type
u8
;
extern
const
Type
u32
;
extern
const
Type
u64
;
std
::
ostream
&
operator
<<
(
std
::
ostream
&
out
,
const
ngraph
::
element
::
Type
&
obj
);
// Provides a compile-time name for a C++ type.
...
...
@@ -111,12 +122,6 @@ namespace ngraph
static
TraitedType
<
T
>
t
;
return
t
;
}
virtual
std
::
shared_ptr
<
ngraph
::
runtime
::
TensorView
>
make_primary_tensor_view
(
const
ngraph
::
Shape
&
shape
)
const
override
{
return
std
::
make_shared
<
runtime
::
ParameterizedTensorView
<
TraitedType
<
T
>>>
(
shape
);
}
};
NGRAPH_DEFINE_TRAITED_TYPE_NAME
(
char
)
...
...
test/CMakeLists.txt
View file @
74af675d
...
...
@@ -37,10 +37,7 @@ set (SRC
tensor.cpp
topological_sort.cpp
type_prop.cpp
util/all_close.cpp
util/autodiff/backprop_derivative.cpp
util/autodiff/backprop_function.cpp
util/autodiff/numeric_derivative.cpp
util/test_tools.cpp
util.cpp
uuid.cpp
...
...
test/backend_test.in.cpp
View file @
74af675d
...
...
@@ -1065,11 +1065,30 @@ TEST(${BACKEND_NAME}, subtract)
ASSERT_EQ
((
vector
<
float
>
{
1
,
2
,
4
,
8
}),
result
->
get_vector
<
float
>
());
}
TEST
(
$
{
BACKEND_NAME
},
scalar_
constant
)
TEST
(
$
{
BACKEND_NAME
},
scalar_
parameterized_constant_bool
)
{
auto
shape
=
Shape
{};
auto
t
=
runtime
::
make_tensor
<
element
::
Float32
>
(
shape
);
(
*
t
)
=
std
::
vector
<
float
>
{
-
3.0
f
};
auto
t
=
runtime
::
make_tensor
<
element
::
Bool
>
(
shape
,
{
true
});
auto
A
=
make_shared
<
op
::
ParameterizedConstant
<
element
::
Bool
>>
(
shape
,
t
);
auto
rt
=
make_shared
<
TensorViewType
>
(
element
::
Bool
::
element_type
(),
shape
);
auto
f
=
make_shared
<
Function
>
(
A
,
rt
,
op
::
Parameters
{});
auto
manager
=
runtime
::
Manager
::
get
(
"${BACKEND_NAME}"
);
auto
external
=
manager
->
compile
(
f
);
auto
backend
=
manager
->
allocate_backend
();
auto
cf
=
backend
->
make_call_frame
(
external
);
// Create some tensors for input/output
auto
result
=
backend
->
make_primary_tensor_view
(
element
::
Bool
::
element_type
(),
shape
);
(
*
cf
)({},
{
result
});
ASSERT_EQ
((
vector
<
char
>
{
true
}),
result
->
get_vector
<
char
>
());
}
TEST
(
$
{
BACKEND_NAME
},
scalar_parameterized_constant_float
)
{
auto
shape
=
Shape
{};
auto
t
=
runtime
::
make_tensor
<
element
::
Float32
>
(
shape
,
{
-
3.0
f
});
auto
A
=
make_shared
<
op
::
ParameterizedConstant
<
element
::
Float32
>>
(
shape
,
t
);
auto
rt
=
make_shared
<
TensorViewType
>
(
element
::
Float32
::
element_type
(),
shape
);
auto
f
=
make_shared
<
Function
>
(
A
,
rt
,
op
::
Parameters
{});
...
...
@@ -1086,11 +1105,130 @@ TEST(${BACKEND_NAME}, scalar_constant)
ASSERT_EQ
((
vector
<
float
>
{
-
3.0
f
}),
result
->
get_vector
<
float
>
());
}
TEST
(
$
{
BACKEND_NAME
},
scalar_parameterized_constant_int8
)
{
auto
shape
=
Shape
{};
auto
t
=
runtime
::
make_tensor
<
element
::
Int8
>
(
shape
,
{
-
3
});
auto
A
=
make_shared
<
op
::
ParameterizedConstant
<
element
::
Int8
>>
(
shape
,
t
);
auto
rt
=
make_shared
<
TensorViewType
>
(
element
::
Int8
::
element_type
(),
shape
);
auto
f
=
make_shared
<
Function
>
(
A
,
rt
,
op
::
Parameters
{});
auto
manager
=
runtime
::
Manager
::
get
(
"${BACKEND_NAME}"
);
auto
external
=
manager
->
compile
(
f
);
auto
backend
=
manager
->
allocate_backend
();
auto
cf
=
backend
->
make_call_frame
(
external
);
// Create some tensors for input/output
auto
result
=
backend
->
make_primary_tensor_view
(
element
::
Int8
::
element_type
(),
shape
);
(
*
cf
)({},
{
result
});
ASSERT_EQ
((
vector
<
int8_t
>
{
-
3
}),
result
->
get_vector
<
int8_t
>
());
}
TEST
(
$
{
BACKEND_NAME
},
scalar_parameterized_constant_int32
)
{
auto
shape
=
Shape
{};
auto
t
=
runtime
::
make_tensor
<
element
::
Int32
>
(
shape
,
{
-
3
});
auto
A
=
make_shared
<
op
::
ParameterizedConstant
<
element
::
Int32
>>
(
shape
,
t
);
auto
rt
=
make_shared
<
TensorViewType
>
(
element
::
Int32
::
element_type
(),
shape
);
auto
f
=
make_shared
<
Function
>
(
A
,
rt
,
op
::
Parameters
{});
auto
manager
=
runtime
::
Manager
::
get
(
"${BACKEND_NAME}"
);
auto
external
=
manager
->
compile
(
f
);
auto
backend
=
manager
->
allocate_backend
();
auto
cf
=
backend
->
make_call_frame
(
external
);
// Create some tensors for input/output
auto
result
=
backend
->
make_primary_tensor_view
(
element
::
Int32
::
element_type
(),
shape
);
(
*
cf
)({},
{
result
});
ASSERT_EQ
((
vector
<
int32_t
>
{
-
3
}),
result
->
get_vector
<
int32_t
>
());
}
TEST
(
$
{
BACKEND_NAME
},
scalar_parameterized_constant_int64
)
{
auto
shape
=
Shape
{};
auto
t
=
runtime
::
make_tensor
<
element
::
Int64
>
(
shape
,
{
-
3
});
auto
A
=
make_shared
<
op
::
ParameterizedConstant
<
element
::
Int64
>>
(
shape
,
t
);
auto
rt
=
make_shared
<
TensorViewType
>
(
element
::
Int64
::
element_type
(),
shape
);
auto
f
=
make_shared
<
Function
>
(
A
,
rt
,
op
::
Parameters
{});
auto
manager
=
runtime
::
Manager
::
get
(
"${BACKEND_NAME}"
);
auto
external
=
manager
->
compile
(
f
);
auto
backend
=
manager
->
allocate_backend
();
auto
cf
=
backend
->
make_call_frame
(
external
);
// Create some tensors for input/output
auto
result
=
backend
->
make_primary_tensor_view
(
element
::
Int64
::
element_type
(),
shape
);
(
*
cf
)({},
{
result
});
ASSERT_EQ
((
vector
<
int64_t
>
{
-
3
}),
result
->
get_vector
<
int64_t
>
());
}
TEST
(
$
{
BACKEND_NAME
},
scalar_parameterized_constant_uint8
)
{
auto
shape
=
Shape
{};
auto
t
=
runtime
::
make_tensor
<
element
::
UInt8
>
(
shape
,
{
3
});
auto
A
=
make_shared
<
op
::
ParameterizedConstant
<
element
::
UInt8
>>
(
shape
,
t
);
auto
rt
=
make_shared
<
TensorViewType
>
(
element
::
UInt8
::
element_type
(),
shape
);
auto
f
=
make_shared
<
Function
>
(
A
,
rt
,
op
::
Parameters
{});
auto
manager
=
runtime
::
Manager
::
get
(
"${BACKEND_NAME}"
);
auto
external
=
manager
->
compile
(
f
);
auto
backend
=
manager
->
allocate_backend
();
auto
cf
=
backend
->
make_call_frame
(
external
);
// Create some tensors for input/output
auto
result
=
backend
->
make_primary_tensor_view
(
element
::
UInt8
::
element_type
(),
shape
);
(
*
cf
)({},
{
result
});
ASSERT_EQ
((
vector
<
uint8_t
>
{
3
}),
result
->
get_vector
<
uint8_t
>
());
}
TEST
(
$
{
BACKEND_NAME
},
scalar_parameterized_constant_uint32
)
{
auto
shape
=
Shape
{};
auto
t
=
runtime
::
make_tensor
<
element
::
UInt32
>
(
shape
,
{
3
});
auto
A
=
make_shared
<
op
::
ParameterizedConstant
<
element
::
UInt32
>>
(
shape
,
t
);
auto
rt
=
make_shared
<
TensorViewType
>
(
element
::
UInt32
::
element_type
(),
shape
);
auto
f
=
make_shared
<
Function
>
(
A
,
rt
,
op
::
Parameters
{});
auto
manager
=
runtime
::
Manager
::
get
(
"${BACKEND_NAME}"
);
auto
external
=
manager
->
compile
(
f
);
auto
backend
=
manager
->
allocate_backend
();
auto
cf
=
backend
->
make_call_frame
(
external
);
// Create some tensors for input/output
auto
result
=
backend
->
make_primary_tensor_view
(
element
::
UInt32
::
element_type
(),
shape
);
(
*
cf
)({},
{
result
});
ASSERT_EQ
((
vector
<
uint32_t
>
{
3
}),
result
->
get_vector
<
uint32_t
>
());
}
TEST
(
$
{
BACKEND_NAME
},
scalar_parameterized_constant_uint64
)
{
auto
shape
=
Shape
{};
auto
t
=
runtime
::
make_tensor
<
element
::
UInt64
>
(
shape
,
{
3
});
auto
A
=
make_shared
<
op
::
ParameterizedConstant
<
element
::
UInt64
>>
(
shape
,
t
);
auto
rt
=
make_shared
<
TensorViewType
>
(
element
::
UInt64
::
element_type
(),
shape
);
auto
f
=
make_shared
<
Function
>
(
A
,
rt
,
op
::
Parameters
{});
auto
manager
=
runtime
::
Manager
::
get
(
"${BACKEND_NAME}"
);
auto
external
=
manager
->
compile
(
f
);
auto
backend
=
manager
->
allocate_backend
();
auto
cf
=
backend
->
make_call_frame
(
external
);
// Create some tensors for input/output
auto
result
=
backend
->
make_primary_tensor_view
(
element
::
UInt64
::
element_type
(),
shape
);
(
*
cf
)({},
{
result
});
ASSERT_EQ
((
vector
<
uint64_t
>
{
3
}),
result
->
get_vector
<
uint64_t
>
());
}
TEST
(
$
{
BACKEND_NAME
},
tensor_constant
)
{
auto
shape
=
Shape
{
2
,
2
,
2
};
auto
t
=
runtime
::
make_tensor
<
element
::
Float32
>
(
shape
);
(
*
t
)
=
std
::
vector
<
float
>
{
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
};
auto
t
=
runtime
::
make_tensor
<
element
::
Float32
>
(
shape
,
{
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
});
auto
A
=
make_shared
<
op
::
ParameterizedConstant
<
element
::
Float32
>>
(
shape
,
t
);
auto
rt
=
make_shared
<
TensorViewType
>
(
element
::
Float32
::
element_type
(),
shape
);
auto
f
=
make_shared
<
Function
>
(
A
,
rt
,
op
::
Parameters
{});
...
...
@@ -1110,8 +1248,7 @@ TEST(${BACKEND_NAME}, tensor_constant)
TEST
(
$
{
BACKEND_NAME
},
tensor_constant_with_op
)
{
auto
shape
=
Shape
{
2
,
2
,
2
};
auto
t
=
runtime
::
make_tensor
<
element
::
Float32
>
(
shape
);
(
*
t
)
=
std
::
vector
<
float
>
{
-
1
,
2
,
3
,
-
4
,
5
,
-
6
,
-
7
,
8
};
auto
t
=
runtime
::
make_tensor
<
element
::
Float32
>
(
shape
,
{
-
1
,
2
,
3
,
-
4
,
5
,
-
6
,
-
7
,
8
});
auto
A
=
make_shared
<
op
::
ParameterizedConstant
<
element
::
Float32
>>
(
shape
,
t
);
auto
rt
=
make_shared
<
TensorViewType
>
(
element
::
Float32
::
element_type
(),
shape
);
auto
f
=
make_shared
<
Function
>
(
make_shared
<
op
::
Abs
>
(
A
),
rt
,
op
::
Parameters
{});
...
...
test/build_graph.cpp
View file @
74af675d
...
...
@@ -81,8 +81,7 @@ TEST(build_graph, literal)
{
// float scalar from a float
//auto float0 = FloatConstant::make(3.0);
auto
float_t
=
ngraph
::
runtime
::
make_tensor
<
element
::
Float32
>
(
Shape
{});
(
*
float_t
)
=
std
::
vector
<
float
>
{
3.0
};
auto
float_t
=
ngraph
::
runtime
::
make_tensor
<
element
::
Float32
>
(
Shape
{},
{
3.0
});
auto
float0
=
make_shared
<
op
::
Float32Constant
>
(
Shape
{},
float_t
);
auto
float_scalar_type
=
make_shared
<
TensorViewType
>
(
element
::
Float32
::
element_type
(),
Shape
{});
ASSERT_EQ
(
float0
->
get_value
()
->
get_vector
(),
std
::
vector
<
float
>
{
3.0
});
...
...
@@ -91,8 +90,7 @@ TEST(build_graph, literal)
ASSERT_EQ
(
d
->
get_arguments
().
at
(
0
),
float0
);
ASSERT_EQ
(
d
->
get_arguments
().
at
(
1
),
float0
);
auto
int32_t
=
ngraph
::
runtime
::
make_tensor
<
element
::
Int32
>
(
Shape
{});
(
*
int32_t
)
=
std
::
vector
<
int
>
{
3
};
auto
int32_t
=
ngraph
::
runtime
::
make_tensor
<
element
::
Int32
>
(
Shape
{},
{
3
});
auto
int32_0
=
make_shared
<
op
::
Int32Constant
>
(
Shape
{},
int32_t
);
auto
int32_scalar_type
=
make_shared
<
TensorViewType
>
(
element
::
Int32
::
element_type
(),
Shape
{});
ASSERT_EQ
(
int32_0
->
get_value
()
->
get_vector
(),
std
::
vector
<
int
>
{
3
});
...
...
test/copy.cpp
View file @
74af675d
...
...
@@ -22,6 +22,13 @@
using
namespace
std
;
using
namespace
ngraph
;
template
<
typename
T
>
static
void
copy_data
(
shared_ptr
<
runtime
::
TensorView
>
tv
,
const
vector
<
T
>&
data
)
{
size_t
data_size
=
data
.
size
()
*
sizeof
(
T
);
tv
->
write
(
data
.
data
(),
0
,
data_size
);
}
template
<
typename
OP
>
bool
check_unary
()
{
...
...
@@ -128,11 +135,12 @@ TEST(copy, parameterized_constant)
auto
backend
=
manager
->
allocate_backend
();
// Create some tensors for input/output
auto
c
=
backend
->
make_p
arameterized_tensor_view
<
element
::
Float32
>
(
runtime
::
NDArray
<
float
,
2
>
({{
1
,
2
},
{
3
,
4
}}
));
auto
c
=
backend
->
make_p
rimary_tensor_view
(
element
::
Float32
::
element_type
(),
Shape
{
2
,
2
});
copy_data
(
c
,
runtime
::
NDArray
<
float
,
2
>
({{
1
,
2
},
{
3
,
4
}}).
get_vector
(
));
Shape
shape
{
2
,
2
};
auto
node
=
make_shared
<
op
::
ParameterizedConstant
<
element
::
Float32
>>
(
shape
,
c
);
auto
cptv
=
dynamic_pointer_cast
<
ngraph
::
runtime
::
ParameterizedTensorView
<
element
::
Float32
>>
(
c
);
auto
node
=
make_shared
<
op
::
ParameterizedConstant
<
element
::
Float32
>>
(
shape
,
cptv
);
auto
new_node
=
node
->
copy_with_new_args
(
Nodes
{});
auto
node_cast
=
dynamic_pointer_cast
<
op
::
ParameterizedConstant
<
element
::
Float32
>>
(
new_node
);
ASSERT_TRUE
(
nullptr
!=
new_node
);
...
...
test/pass_liveness.cpp
View file @
74af675d
...
...
@@ -34,7 +34,31 @@ using namespace std;
using
namespace
ngraph
;
namespace
ng
=
ngraph
;
TEST
(
pass
,
liveness
)
TEST
(
liveness
,
constant
)
{
auto
shape
=
Shape
{
1
};
auto
c
=
make_shared
<
op
::
Constant
>
(
element
::
i32
,
Shape
{},
"5"
);
auto
rt
=
make_shared
<
TensorViewType
>
(
element
::
Float32
::
element_type
(),
shape
);
auto
f
=
make_shared
<
Function
>
(
make_shared
<
op
::
Negative
>
(
c
),
rt
,
op
::
Parameters
{});
pass
::
Manager
pass_manager
;
pass_manager
.
register_pass
<
pass
::
TopologicalSort
>
();
pass_manager
.
register_pass
<
pass
::
Liveness
>
();
pass_manager
.
run_passes
(
f
);
auto
tmp
=
f
->
get_ordered_ops
();
vector
<
shared_ptr
<
Node
>>
sorted
{
tmp
.
begin
(),
tmp
.
end
()};
ASSERT_EQ
(
2
,
sorted
.
size
());
EXPECT_EQ
(
0
,
sorted
[
0
]
->
liveness_live_list
.
size
());
EXPECT_EQ
(
0
,
sorted
[
0
]
->
liveness_new_list
.
size
());
EXPECT_EQ
(
0
,
sorted
[
0
]
->
liveness_free_list
.
size
());
EXPECT_EQ
(
0
,
sorted
[
1
]
->
liveness_live_list
.
size
());
EXPECT_EQ
(
0
,
sorted
[
1
]
->
liveness_new_list
.
size
());
EXPECT_EQ
(
0
,
sorted
[
1
]
->
liveness_free_list
.
size
());
}
TEST
(
liveness
,
liveness
)
{
string
image
=
"liveness.png"
;
string
dump_file
=
"liveness.txt"
;
...
...
test/pass_memory_layout.cpp
View file @
74af675d
...
...
@@ -218,3 +218,23 @@ TEST(memory_layout, basic)
size_t
temporary_pool_size
=
pass_manager
.
get_state
().
get_temporary_pool_size
();
EXPECT_EQ
(
12
,
temporary_pool_size
);
}
TEST
(
memory_layout
,
constant
)
{
string
dump_file
=
"constant.txt"
;
pass
::
Manager
pass_manager
;
pass_manager
.
register_pass
<
pass
::
TopologicalSort
>
();
pass_manager
.
register_pass
<
pass
::
Liveness
>
();
pass_manager
.
register_pass
<
pass
::
MemoryLayout
>
();
pass_manager
.
register_pass
<
pass
::
DumpSorted
>
(
dump_file
);
auto
shape
=
Shape
{
1
};
auto
c
=
make_shared
<
op
::
Constant
>
(
element
::
i32
,
Shape
{},
"5"
);
auto
rt
=
make_shared
<
TensorViewType
>
(
element
::
Float32
::
element_type
(),
shape
);
auto
f
=
make_shared
<
Function
>
(
make_shared
<
op
::
Negative
>
(
c
),
rt
,
op
::
Parameters
{});
pass_manager
.
run_passes
(
f
);
auto
sorted
=
f
->
get_ordered_ops
();
size_t
temporary_pool_size
=
pass_manager
.
get_state
().
get_temporary_pool_size
();
EXPECT_EQ
(
0
,
temporary_pool_size
);
}
test/tensor.cpp
View file @
74af675d
...
...
@@ -89,7 +89,6 @@ void test_read_write(const std::vector<typename ET::type>& x)
auto
backend
=
manager
->
allocate_backend
();
auto
a
=
backend
->
make_primary_tensor_view
(
ET
::
element_type
(),
Shape
{
2
,
x
.
size
()});
auto
af
=
a
->
template
get_parameterized_tensor_view
<
ET
>
();
std
::
vector
<
T
>
result
(
2
*
x
.
size
());
...
...
@@ -98,7 +97,8 @@ void test_read_write(const std::vector<typename ET::type>& x)
a
->
write
(
&
x
[
0
],
x
.
size
()
*
sizeof
(
T
),
x
.
size
()
*
sizeof
(
T
));
std
::
copy
(
x
.
begin
(),
x
.
end
(),
result
.
begin
()
+
x
.
size
());
auto
&
af_vector
=
af
->
get_vector
();
std
::
vector
<
T
>
af_vector
(
2
*
x
.
size
());
a
->
read
(
af_vector
.
data
(),
0
,
af_vector
.
size
()
*
sizeof
(
typename
ET
::
type
));
ASSERT_EQ
(
af_vector
,
result
);
std
::
vector
<
T
>
result1
(
x
.
size
());
...
...
test/util.cpp
View file @
74af675d
...
...
@@ -25,6 +25,13 @@
using
namespace
std
;
using
namespace
ngraph
;
template
<
typename
T
>
static
void
copy_data
(
shared_ptr
<
runtime
::
TensorView
>
tv
,
const
vector
<
T
>&
data
)
{
size_t
data_size
=
data
.
size
()
*
sizeof
(
T
);
tv
->
write
(
data
.
data
(),
0
,
data_size
);
}
TEST
(
util
,
split
)
{
{
...
...
@@ -178,15 +185,17 @@ TEST(util, all_close)
auto
backend
=
manager
->
allocate_backend
();
// Create some tensors for input/output
auto
a
=
backend
->
make_parameterized_tensor_view
<
element
::
Float32
>
(
runtime
::
NDArray
<
float
,
2
>
({{
1
,
2
,
3
},
{
3
,
4
,
5
}}));
auto
b
=
backend
->
make_parameterized_tensor_view
<
element
::
Float32
>
(
runtime
::
NDArray
<
float
,
2
>
({{
1
,
2
,
3
},
{
3
,
4
,
5
}}));
auto
a
=
backend
->
make_parameterized_tensor_view
<
element
::
Float32
>
(
Shape
{
2
,
3
});
auto
b
=
backend
->
make_parameterized_tensor_view
<
element
::
Float32
>
(
Shape
{
2
,
3
});
copy_data
(
a
,
runtime
::
NDArray
<
float
,
2
>
({{
1
,
2
,
3
},
{
3
,
4
,
5
}}).
get_vector
());
copy_data
(
b
,
runtime
::
NDArray
<
float
,
2
>
({{
1
,
2
,
3
},
{
3
,
4
,
5
}}).
get_vector
());
EXPECT_TRUE
(
ngraph
::
test
::
all_close
(
a
,
b
));
auto
c
=
backend
->
make_parameterized_tensor_view
<
element
::
Float32
>
(
runtime
::
NDArray
<
float
,
2
>
({{
1.1
f
,
2
,
3
},
{
3
,
4
,
5
}}));
auto
c
=
backend
->
make_parameterized_tensor_view
<
element
::
Float32
>
(
Shape
{
2
,
3
});
copy_data
(
c
,
runtime
::
NDArray
<
float
,
2
>
({{
1.1
f
,
2
,
3
},
{
3
,
4
,
5
}}).
get_vector
());
EXPECT_FALSE
(
ngraph
::
test
::
all_close
(
c
,
a
,
0
,
.05
f
));
EXPECT_TRUE
(
ngraph
::
test
::
all_close
(
c
,
a
,
0
,
.11
f
));
...
...
test/util/all_close.cpp
deleted
100644 → 0
View file @
ab6476fb
// ----------------------------------------------------------------------------
// Copyright 2017 Nervana Systems Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// ----------------------------------------------------------------------------
#include <cmath>
#include <memory>
#include <vector>
#include "all_close.hpp"
#include "ngraph/except.hpp"
template
<
typename
ET
>
bool
ngraph
::
test
::
all_close
(
const
std
::
vector
<
std
::
shared_ptr
<
ngraph
::
runtime
::
ParameterizedTensorView
<
ET
>>>&
as
,
const
std
::
vector
<
std
::
shared_ptr
<
ngraph
::
runtime
::
ParameterizedTensorView
<
ET
>>>&
bs
,
typename
ET
::
type
rtol
,
typename
ET
::
type
atol
)
{
if
(
as
.
size
()
!=
bs
.
size
())
{
return
false
;
}
for
(
size_t
i
=
0
;
i
<
as
.
size
();
++
i
)
{
if
(
!
all_close
(
as
[
i
],
bs
[
i
],
rtol
,
atol
))
{
return
false
;
}
}
return
true
;
}
template
bool
ngraph
::
test
::
all_close
<
ngraph
::
element
::
Float32
>
(
const
std
::
vector
<
std
::
shared_ptr
<
ngraph
::
runtime
::
ParameterizedTensorView
<
ngraph
::
element
::
Float32
>>>&
as
,
const
std
::
vector
<
std
::
shared_ptr
<
ngraph
::
runtime
::
ParameterizedTensorView
<
ngraph
::
element
::
Float32
>>>&
bs
,
ngraph
::
element
::
Float32
::
type
rtol
,
ngraph
::
element
::
Float32
::
type
atol
);
template
bool
ngraph
::
test
::
all_close
<
ngraph
::
element
::
Float64
>
(
const
std
::
vector
<
std
::
shared_ptr
<
ngraph
::
runtime
::
ParameterizedTensorView
<
ngraph
::
element
::
Float64
>>>&
as
,
const
std
::
vector
<
std
::
shared_ptr
<
ngraph
::
runtime
::
ParameterizedTensorView
<
ngraph
::
element
::
Float64
>>>&
bs
,
ngraph
::
element
::
Float64
::
type
rtol
,
ngraph
::
element
::
Float64
::
type
atol
);
template
<
typename
ET
>
bool
ngraph
::
test
::
all_close
(
const
std
::
shared_ptr
<
ngraph
::
runtime
::
ParameterizedTensorView
<
ET
>>&
a
,
const
std
::
shared_ptr
<
ngraph
::
runtime
::
ParameterizedTensorView
<
ET
>>&
b
,
typename
ET
::
type
rtol
,
typename
ET
::
type
atol
)
{
// Check that the layouts are compatible
if
(
*
a
->
get_tensor_view_layout
()
!=
*
b
->
get_tensor_view_layout
())
{
throw
ngraph_error
(
"Cannot compare tensors with different layouts"
);
}
if
(
a
->
get_shape
()
!=
b
->
get_shape
())
return
false
;
return
all_close
(
a
->
get_vector
(),
b
->
get_vector
(),
rtol
,
atol
);
}
template
bool
ngraph
::
test
::
all_close
<
ngraph
::
element
::
Float32
>
(
const
std
::
shared_ptr
<
ngraph
::
runtime
::
ParameterizedTensorView
<
ngraph
::
element
::
Float32
>>&
a
,
const
std
::
shared_ptr
<
ngraph
::
runtime
::
ParameterizedTensorView
<
ngraph
::
element
::
Float32
>>&
b
,
ngraph
::
element
::
Float32
::
type
rtol
,
ngraph
::
element
::
Float32
::
type
atol
);
template
bool
ngraph
::
test
::
all_close
<
ngraph
::
element
::
Float64
>
(
const
std
::
shared_ptr
<
ngraph
::
runtime
::
ParameterizedTensorView
<
ngraph
::
element
::
Float64
>>&
a
,
const
std
::
shared_ptr
<
ngraph
::
runtime
::
ParameterizedTensorView
<
ngraph
::
element
::
Float64
>>&
b
,
ngraph
::
element
::
Float64
::
type
rtol
,
ngraph
::
element
::
Float64
::
type
atol
);
template
<
typename
T
>
bool
ngraph
::
test
::
all_close
(
const
std
::
vector
<
T
>&
a
,
const
std
::
vector
<
T
>&
b
,
T
rtol
,
T
atol
)
{
assert
(
a
.
size
()
==
b
.
size
());
for
(
size_t
i
=
0
;
i
<
a
.
size
();
++
i
)
{
if
(
std
::
abs
(
a
[
i
]
-
b
[
i
])
>
atol
+
rtol
*
std
::
abs
(
b
[
i
]))
{
return
false
;
}
}
return
true
;
}
template
bool
ngraph
::
test
::
all_close
<
float
>
(
const
std
::
vector
<
float
>&
a
,
const
std
::
vector
<
float
>&
b
,
float
rtol
,
float
atol
);
template
bool
ngraph
::
test
::
all_close
<
double
>
(
const
std
::
vector
<
double
>&
a
,
const
std
::
vector
<
double
>&
b
,
double
rtol
,
double
atol
);
test/util/all_close.hpp
View file @
74af675d
...
...
@@ -14,6 +14,7 @@
#pragma once
#include <cmath>
#include <memory>
#include <vector>
...
...
@@ -25,33 +26,27 @@ namespace ngraph
namespace
test
{
/// @brief Same as numpy.allclose
/// @param a
s First tensors
to compare
/// @param b
s Second tensors
to compare
/// @param a
First tensor
to compare
/// @param b
Second tensor
to compare
/// @param rtol Relative tolerance
/// @param atol Absolute tolerance
/// Returns true if shapes match and for all elements, |a_i-b_i| <= atol + rtol*|b_i|.
template
<
typename
ET
>
bool
all_close
(
const
std
::
vector
<
std
::
shared_ptr
<
ngraph
::
runtime
::
ParameterizedTensorView
<
ET
>>>&
as
,
const
std
::
vector
<
std
::
shared_ptr
<
ngraph
::
runtime
::
ParameterizedTensorView
<
ET
>>>&
bs
,
typename
ET
::
type
rtol
,
typename
ET
::
type
atol
);
extern
template
bool
all_close
<
element
::
Float32
>
(
const
std
::
vector
<
std
::
shared_ptr
<
runtime
::
ParameterizedTensorView
<
element
::
Float32
>>>&
as
,
const
std
::
vector
<
std
::
shared_ptr
<
runtime
::
ParameterizedTensorView
<
element
::
Float32
>>>&
bs
,
element
::
Float32
::
type
rtol
,
element
::
Float32
::
type
atol
);
extern
template
bool
all_close
<
element
::
Float64
>
(
const
std
::
vector
<
std
::
shared_ptr
<
runtime
::
ParameterizedTensorView
<
element
::
Float64
>>>&
as
,
const
std
::
vector
<
std
::
shared_ptr
<
runtime
::
ParameterizedTensorView
<
element
::
Float64
>>>&
bs
,
element
::
Float64
::
type
rtol
,
element
::
Float64
::
type
atol
);
/// @returns true if shapes match and for all elements, |a_i-b_i| <= atol + rtol*|b_i|.
template
<
typename
T
>
bool
all_close
(
const
std
::
vector
<
T
>&
a
,
const
std
::
vector
<
T
>&
b
,
T
rtol
=
1e-5
f
,
T
atol
=
1e-8
f
)
{
assert
(
a
.
size
()
==
b
.
size
());
for
(
size_t
i
=
0
;
i
<
a
.
size
();
++
i
)
{
if
(
std
::
abs
(
a
[
i
]
-
b
[
i
])
>
atol
+
rtol
*
std
::
abs
(
b
[
i
]))
{
return
false
;
}
}
return
true
;
}
/// @brief Same as numpy.allclose
/// @param a First tensor to compare
...
...
@@ -63,44 +58,45 @@ namespace ngraph
bool
all_close
(
const
std
::
shared_ptr
<
ngraph
::
runtime
::
ParameterizedTensorView
<
ET
>>&
a
,
const
std
::
shared_ptr
<
ngraph
::
runtime
::
ParameterizedTensorView
<
ET
>>&
b
,
typename
ET
::
type
rtol
=
1e-5
f
,
typename
ET
::
type
atol
=
1e-8
f
);
typename
ET
::
type
atol
=
1e-8
f
)
{
// Check that the layouts are compatible
if
(
*
a
->
get_tensor_view_layout
()
!=
*
b
->
get_tensor_view_layout
())
{
throw
ngraph_error
(
"Cannot compare tensors with different layouts"
);
}
extern
template
bool
all_close
<
ngraph
::
element
::
Float32
>
(
const
std
::
shared_ptr
<
ngraph
::
runtime
::
ParameterizedTensorView
<
ngraph
::
element
::
Float32
>>&
a
,
const
std
::
shared_ptr
<
ngraph
::
runtime
::
ParameterizedTensorView
<
ngraph
::
element
::
Float32
>>&
b
,
ngraph
::
element
::
Float32
::
type
rtol
,
ngraph
::
element
::
Float32
::
type
atol
);
if
(
a
->
get_shape
()
!=
b
->
get_shape
())
return
false
;
extern
template
bool
all_close
<
ngraph
::
element
::
Float64
>
(
const
std
::
shared_ptr
<
ngraph
::
runtime
::
ParameterizedTensorView
<
ngraph
::
element
::
Float64
>>&
a
,
const
std
::
shared_ptr
<
ngraph
::
runtime
::
ParameterizedTensorView
<
ngraph
::
element
::
Float64
>>&
b
,
ngraph
::
element
::
Float64
::
type
rtol
,
ngraph
::
element
::
Float64
::
type
atol
);
return
all_close
(
a
->
get_vector
(),
b
->
get_vector
(),
rtol
,
atol
);
}
/// @brief Same as numpy.allclose
/// @param a
First tensor
to compare
/// @param b
Second tensor
to compare
/// @param a
s First tensors
to compare
/// @param b
s Second tensors
to compare
/// @param rtol Relative tolerance
/// @param atol Absolute tolerance
/// @returns true if shapes match and for all elements, |a_i-b_i| <= atol + rtol*|b_i|.
template
<
typename
T
>
bool
all_close
(
const
std
::
vector
<
T
>&
a
,
const
std
::
vector
<
T
>&
b
,
T
rtol
=
1e-5
f
,
T
atol
=
1e-8
f
);
extern
template
bool
all_close
<
float
>
(
const
std
::
vector
<
float
>&
a
,
const
std
::
vector
<
float
>&
b
,
float
rtol
,
float
atol
);
extern
template
bool
all_close
<
double
>
(
const
std
::
vector
<
double
>&
a
,
const
std
::
vector
<
double
>&
b
,
double
rtol
,
double
atol
);
/// Returns true if shapes match and for all elements, |a_i-b_i| <= atol + rtol*|b_i|.
template
<
typename
ET
>
bool
all_close
(
const
std
::
vector
<
std
::
shared_ptr
<
ngraph
::
runtime
::
ParameterizedTensorView
<
ET
>>>&
as
,
const
std
::
vector
<
std
::
shared_ptr
<
ngraph
::
runtime
::
ParameterizedTensorView
<
ET
>>>&
bs
,
typename
ET
::
type
rtol
,
typename
ET
::
type
atol
)
{
if
(
as
.
size
()
!=
bs
.
size
())
{
return
false
;
}
for
(
size_t
i
=
0
;
i
<
as
.
size
();
++
i
)
{
if
(
!
all_close
(
as
[
i
],
bs
[
i
],
rtol
,
atol
))
{
return
false
;
}
}
return
true
;
}
}
}
test/util/autodiff/backprop_derivative.cpp
deleted
100644 → 0
View file @
ab6476fb
// ----------------------------------------------------------------------------
// Copyright 2017 Nervana Systems Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// ----------------------------------------------------------------------------
#include <memory>
#include <vector>
#include "backprop_derivative.hpp"
#include "ngraph/function.hpp"
#include "ngraph/ops/tuple.hpp"
#include "ngraph/runtime/backend.hpp"
#include "ngraph/runtime/call_frame.hpp"
#include "ngraph/runtime/manager.hpp"
#include "ngraph/runtime/parameterized_tensor_view.hpp"
#include "ngraph/types/type.hpp"
using
namespace
ngraph
;
template
<
typename
ET
>
std
::
vector
<
std
::
shared_ptr
<
ngraph
::
runtime
::
ParameterizedTensorView
<
ET
>>>
autodiff
::
backprop_derivative
(
const
std
::
shared_ptr
<
runtime
::
Manager
>&
manager
,
const
std
::
shared_ptr
<
runtime
::
Backend
>&
backend
,
const
std
::
shared_ptr
<
Function
>&
f
,
const
std
::
vector
<
std
::
shared_ptr
<
runtime
::
ParameterizedTensorView
<
ET
>>>&
args
)
{
auto
y
=
f
->
get_result
();
Shape
y_shape
=
std
::
dynamic_pointer_cast
<
const
TensorViewType
>
(
y
->
get_value_type
())
->
get_shape
();
auto
c_param
=
std
::
make_shared
<
op
::
Parameter
>
(
ET
::
element_type
(),
y_shape
);
auto
c_arg
=
backend
->
make_parameterized_tensor_view
<
ET
>
(
y_shape
);
auto
params
=
f
->
get_parameters
();
std
::
vector
<
std
::
shared_ptr
<
Node
>>
deriv_nodes
;
std
::
vector
<
std
::
shared_ptr
<
runtime
::
ParameterizedTensorView
<
ET
>>>
bprops
;
std
::
vector
<
std
::
shared_ptr
<
runtime
::
ParameterizedTensorView
<
ET
>>>
results
;
for
(
auto
param
:
params
)
{
Shape
s
=
y_shape
;
auto
param_shape
=
std
::
dynamic_pointer_cast
<
const
TensorViewType
>
(
param
->
get_value_type
())
->
get_shape
();
s
.
insert
(
s
.
end
(),
param_shape
.
begin
(),
param_shape
.
end
());
results
.
push_back
(
backend
->
make_parameterized_tensor_view
<
ET
>
(
s
));
bprops
.
push_back
(
backend
->
make_parameterized_tensor_view
<
ET
>
(
param_shape
));
deriv_nodes
.
push_back
(
y
->
backprop_node
(
param
,
c_param
));
}
std
::
vector
<
std
::
shared_ptr
<
op
::
Parameter
>>
df_params
=
params
;
df_params
.
push_back
(
c_param
);
auto
df_result
=
std
::
make_shared
<
op
::
Tuple
>
(
deriv_nodes
);
auto
df
=
std
::
make_shared
<
Function
>
(
df_result
,
df_result
->
get_value_type
(),
df_params
);
auto
external
=
manager
->
compile
(
df
);
auto
cf
=
backend
->
make_call_frame
(
external
);
// We compute the derivatives chunk by chunk
std
::
vector
<
typename
std
::
vector
<
typename
ET
::
type
>::
iterator
>
result_pos
;
for
(
auto
result
:
results
)
{
result_pos
.
push_back
(
result
->
get_vector
().
begin
());
}
ngraph
::
runtime
::
TensorViewPtrs
args_tv
;
args_tv
.
insert
(
args_tv
.
begin
(),
args
.
begin
(),
args
.
end
());
args_tv
.
push_back
(
c_arg
);
runtime
::
TensorViewPtrs
bprops_tv
;
bprops_tv
.
insert
(
bprops_tv
.
begin
(),
bprops
.
begin
(),
bprops
.
end
());
auto
&
c_vec
=
c_arg
->
get_vector
();
for
(
size_t
i
=
0
;
i
<
c_vec
.
size
();
i
++
)
{
c_vec
[
i
]
=
1
;
cf
->
tensor_call
(
args_tv
,
bprops_tv
);
c_vec
[
i
]
=
0
;
for
(
size_t
j
=
0
;
j
<
results
.
size
();
j
++
)
{
auto
&
bprop_vec
=
bprops
[
j
]
->
get_vector
();
result_pos
[
j
]
=
std
::
copy
(
bprop_vec
.
begin
(),
bprop_vec
.
end
(),
result_pos
[
j
]);
}
}
return
results
;
}
template
std
::
vector
<
std
::
shared_ptr
<
ngraph
::
runtime
::
ParameterizedTensorView
<
ngraph
::
element
::
Float32
>>>
autodiff
::
backprop_derivative
<
ngraph
::
element
::
Float32
>
(
const
std
::
shared_ptr
<
runtime
::
Manager
>&
manager
,
const
std
::
shared_ptr
<
runtime
::
Backend
>&
backend
,
const
std
::
shared_ptr
<
Function
>&
f
,
const
std
::
vector
<
std
::
shared_ptr
<
ngraph
::
runtime
::
ParameterizedTensorView
<
element
::
Float32
>>>&
args
);
template
std
::
vector
<
std
::
shared_ptr
<
ngraph
::
runtime
::
ParameterizedTensorView
<
ngraph
::
element
::
Float64
>>>
autodiff
::
backprop_derivative
<
ngraph
::
element
::
Float64
>
(
const
std
::
shared_ptr
<
runtime
::
Manager
>&
manager
,
const
std
::
shared_ptr
<
runtime
::
Backend
>&
backend
,
const
std
::
shared_ptr
<
Function
>&
f
,
const
std
::
vector
<
std
::
shared_ptr
<
ngraph
::
runtime
::
ParameterizedTensorView
<
element
::
Float64
>>>&
args
);
test/util/autodiff/backprop_derivative.hpp
View file @
74af675d
...
...
@@ -16,8 +16,10 @@
#include <memory>
#include "ngraph/log.hpp"
#include "ngraph/runtime/parameterized_tensor_view.hpp"
#include "ngraph/types/element_type.hpp"
#include "ngraph/util.hpp"
namespace
ngraph
{
...
...
@@ -42,24 +44,76 @@ namespace ngraph
const
std
::
shared_ptr
<
runtime
::
Manager
>&
manager
,
const
std
::
shared_ptr
<
runtime
::
Backend
>&
backend
,
const
std
::
shared_ptr
<
Function
>&
f
,
const
std
::
vector
<
std
::
shared_ptr
<
runtime
::
ParameterizedTensorView
<
ET
>>>&
args
);
const
std
::
vector
<
std
::
shared_ptr
<
runtime
::
ParameterizedTensorView
<
ET
>>>&
args
)
{
auto
y
=
f
->
get_result
();
Shape
y_shape
=
std
::
dynamic_pointer_cast
<
const
TensorViewType
>
(
y
->
get_value_type
())
->
get_shape
();
extern
template
std
::
vector
<
std
::
shared_ptr
<
runtime
::
ParameterizedTensorView
<
ngraph
::
element
::
Float32
>>>
backprop_derivative
<
ngraph
::
element
::
Float32
>
(
const
std
::
shared_ptr
<
runtime
::
Manager
>&
manager
,
const
std
::
shared_ptr
<
runtime
::
Backend
>&
backend
,
const
std
::
shared_ptr
<
Function
>&
f
,
const
std
::
vector
<
std
::
shared_ptr
<
runtime
::
ParameterizedTensorView
<
element
::
Float32
>>>&
args
);
auto
c_param
=
std
::
make_shared
<
op
::
Parameter
>
(
ET
::
element_type
(),
y_shape
);
auto
c_arg
=
backend
->
make_parameterized_tensor_view
<
ET
>
(
y_shape
);
auto
params
=
f
->
get_parameters
();
extern
template
std
::
vector
<
std
::
shared_ptr
<
runtime
::
ParameterizedTensorView
<
ngraph
::
element
::
Float64
>>>
backprop_derivative
<
ngraph
::
element
::
Float64
>
(
const
std
::
shared_ptr
<
runtime
::
Manager
>&
manager
,
const
std
::
shared_ptr
<
runtime
::
Backend
>&
backend
,
const
std
::
shared_ptr
<
Function
>&
f
,
const
std
::
vector
<
std
::
shared_ptr
<
runtime
::
ParameterizedTensorView
<
element
::
Float64
>>>&
args
);
std
::
vector
<
std
::
shared_ptr
<
Node
>>
deriv_nodes
;
std
::
vector
<
std
::
shared_ptr
<
runtime
::
ParameterizedTensorView
<
ET
>>>
bprops
;
std
::
vector
<
std
::
shared_ptr
<
runtime
::
ParameterizedTensorView
<
ET
>>>
results
;
for
(
auto
param
:
params
)
{
Shape
s
=
y_shape
;
auto
param_shape
=
std
::
dynamic_pointer_cast
<
const
TensorViewType
>
(
param
->
get_value_type
())
->
get_shape
();
s
.
insert
(
s
.
end
(),
param_shape
.
begin
(),
param_shape
.
end
());
results
.
push_back
(
backend
->
make_parameterized_tensor_view
<
ET
>
(
s
));
bprops
.
push_back
(
backend
->
make_parameterized_tensor_view
<
ET
>
(
param_shape
));
deriv_nodes
.
push_back
(
y
->
backprop_node
(
param
,
c_param
));
}
std
::
vector
<
std
::
shared_ptr
<
op
::
Parameter
>>
df_params
=
params
;
df_params
.
push_back
(
c_param
);
auto
df_result
=
std
::
make_shared
<
op
::
Tuple
>
(
deriv_nodes
);
auto
df
=
std
::
make_shared
<
Function
>
(
df_result
,
df_result
->
get_value_type
(),
df_params
);
auto
external
=
manager
->
compile
(
df
);
auto
cf
=
backend
->
make_call_frame
(
external
);
// We compute the derivatives chunk by chunk
std
::
vector
<
typename
std
::
vector
<
typename
ET
::
type
>::
iterator
>
result_pos
;
std
::
vector
<
std
::
vector
<
typename
ET
::
type
>>
result_vect
;
for
(
auto
result
:
results
)
{
result_vect
.
push_back
(
result
->
get_vector
());
// storage for results
result_pos
.
push_back
(
result_vect
.
back
().
begin
());
}
ngraph
::
runtime
::
TensorViewPtrs
args_tv
;
args_tv
.
insert
(
args_tv
.
begin
(),
args
.
begin
(),
args
.
end
());
args_tv
.
push_back
(
c_arg
);
runtime
::
TensorViewPtrs
bprops_tv
;
bprops_tv
.
insert
(
bprops_tv
.
begin
(),
bprops
.
begin
(),
bprops
.
end
());
auto
c_vec
=
c_arg
->
get_vector
();
for
(
size_t
i
=
0
;
i
<
c_vec
.
size
();
i
++
)
{
c_vec
[
i
]
=
1
;
c_arg
->
write
(
c_vec
);
cf
->
tensor_call
(
args_tv
,
bprops_tv
);
c_vec
[
i
]
=
0
;
c_arg
->
write
(
c_vec
);
for
(
size_t
j
=
0
;
j
<
results
.
size
();
j
++
)
{
auto
bprop_vec
=
bprops
[
j
]
->
get_vector
();
result_pos
[
j
]
=
std
::
copy
(
bprop_vec
.
begin
(),
bprop_vec
.
end
(),
result_pos
[
j
]);
}
}
// Copy results from temp to result vector
for
(
size_t
j
=
0
;
j
<
results
.
size
();
j
++
)
{
results
[
j
]
->
write
(
result_vect
[
j
]);
}
return
results
;
}
}
}
test/util/autodiff/backprop_function.hpp
View file @
74af675d
...
...
@@ -36,30 +36,5 @@ namespace ngraph
/// @param f is f(X_i...)
/// @returns f'(X_i..., c) where f'(x_i, ..., c)_j is backprop for X_j
std
::
shared_ptr
<
Function
>
backprop_function
(
const
std
::
shared_ptr
<
Function
>&
f
);
template
<
typename
ET
>
std
::
vector
<
std
::
shared_ptr
<
runtime
::
ParameterizedTensorView
<
ET
>>>
backprop_derivative
(
const
std
::
shared_ptr
<
runtime
::
Manager
>&
manager
,
const
std
::
shared_ptr
<
runtime
::
Backend
>&
backend
,
const
std
::
shared_ptr
<
Function
>&
f
,
const
std
::
vector
<
std
::
shared_ptr
<
runtime
::
ParameterizedTensorView
<
ET
>>>&
args
);
extern
template
std
::
vector
<
std
::
shared_ptr
<
runtime
::
ParameterizedTensorView
<
ngraph
::
element
::
Float32
>>>
backprop_derivative
<
ngraph
::
element
::
Float32
>
(
const
std
::
shared_ptr
<
runtime
::
Manager
>&
manager
,
const
std
::
shared_ptr
<
runtime
::
Backend
>&
backend
,
const
std
::
shared_ptr
<
Function
>&
f
,
const
std
::
vector
<
std
::
shared_ptr
<
runtime
::
ParameterizedTensorView
<
element
::
Float32
>>>&
args
);
extern
template
std
::
vector
<
std
::
shared_ptr
<
runtime
::
ParameterizedTensorView
<
ngraph
::
element
::
Float64
>>>
backprop_derivative
<
ngraph
::
element
::
Float64
>
(
const
std
::
shared_ptr
<
runtime
::
Manager
>&
manager
,
const
std
::
shared_ptr
<
runtime
::
Backend
>&
backend
,
const
std
::
shared_ptr
<
Function
>&
f
,
const
std
::
vector
<
std
::
shared_ptr
<
runtime
::
ParameterizedTensorView
<
element
::
Float64
>>>&
args
);
}
}
test/util/autodiff/numeric_derivative.cpp
deleted
100644 → 0
View file @
ab6476fb
// ----------------------------------------------------------------------------
// Copyright 2017 Nervana Systems Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// ----------------------------------------------------------------------------
#include <algorithm>
#include <cassert>
#include <cmath>
#include "ngraph/function.hpp"
#include "ngraph/ops/tuple.hpp"
#include "ngraph/runtime/call_frame.hpp"
#include "numeric_derivative.hpp"
using
namespace
ngraph
;
template
<
typename
ET
>
std
::
vector
<
std
::
shared_ptr
<
ngraph
::
runtime
::
ParameterizedTensorView
<
ET
>>>
autodiff
::
numeric_derivative
(
const
std
::
shared_ptr
<
runtime
::
Manager
>&
manager
,
const
std
::
shared_ptr
<
runtime
::
Backend
>&
backend
,
const
std
::
shared_ptr
<
Function
>&
f
,
const
std
::
vector
<
std
::
shared_ptr
<
runtime
::
ParameterizedTensorView
<
ET
>>>&
args
,
typename
ET
::
type
delta
)
{
auto
y
=
f
->
get_result
();
Shape
y_shape
=
std
::
dynamic_pointer_cast
<
const
TensorViewType
>
(
y
->
get_value_type
())
->
get_shape
();
auto
params
=
f
->
get_parameters
();
// Results for each derivative, shape Y|X_i
std
::
vector
<
std
::
shared_ptr
<
runtime
::
ParameterizedTensorView
<
ET
>>>
results
;
for
(
auto
param
:
params
)
{
Shape
s
=
y_shape
;
auto
param_shape
=
std
::
dynamic_pointer_cast
<
const
TensorViewType
>
(
param
->
get_value_type
())
->
get_shape
();
s
.
insert
(
s
.
end
(),
param_shape
.
begin
(),
param_shape
.
end
());
results
.
push_back
(
backend
->
make_parameterized_tensor_view
<
ET
>
(
s
));
}
auto
external
=
manager
->
compile
(
f
);
auto
cf
=
backend
->
make_call_frame
(
external
);
// ref_y is the function evaluated at the args
auto
ref_y
=
backend
->
make_parameterized_tensor_view
<
ET
>
(
y_shape
);
ngraph
::
runtime
::
TensorViewPtrs
args_tv
;
args_tv
.
insert
(
args_tv
.
begin
(),
args
.
begin
(),
args
.
end
());
cf
->
tensor_call
(
args_tv
,
runtime
::
TensorViewPtrs
{
ref_y
});
auto
&
ref_vec
=
ref_y
->
get_vector
();
// inc_y will hold f(x+dx) values
auto
inc_y
=
backend
->
make_parameterized_tensor_view
<
ET
>
(
y_shape
);
auto
&
inc_vec
=
inc_y
->
get_vector
();
// Assuming vars, y, and results are row-major
typename
ET
::
type
inv_delta
=
1
/
delta
;
for
(
size_t
i
=
0
;
i
<
args
.
size
();
++
i
)
{
auto
arg
=
args
[
i
];
auto
&
res
=
results
[
i
]
->
get_vector
();
auto
&
vec
=
arg
->
get_vector
();
for
(
size_t
j
=
0
;
j
<
vec
.
size
();
j
++
)
{
auto
old_val
=
vec
[
j
];
vec
[
j
]
+=
delta
;
cf
->
tensor_call
(
args_tv
,
{
inc_y
});
vec
[
j
]
=
old_val
;
size_t
res_k
=
j
;
for
(
size_t
k
=
0
;
k
<
inc_vec
.
size
();
k
++
)
{
auto
y1
=
inc_vec
[
k
];
auto
y0
=
ref_vec
[
k
];
res
[
res_k
]
=
inv_delta
*
(
y1
-
y0
);
res_k
+=
vec
.
size
();
}
}
}
return
results
;
}
template
std
::
vector
<
std
::
shared_ptr
<
runtime
::
ParameterizedTensorView
<
element
::
Float32
>>>
autodiff
::
numeric_derivative
(
const
std
::
shared_ptr
<
runtime
::
Manager
>&
manager
,
const
std
::
shared_ptr
<
runtime
::
Backend
>&
backend
,
const
std
::
shared_ptr
<
Function
>&
f
,
const
std
::
vector
<
std
::
shared_ptr
<
runtime
::
ParameterizedTensorView
<
element
::
Float32
>>>&
args
,
element
::
Float32
::
type
delta
);
template
std
::
vector
<
std
::
shared_ptr
<
ngraph
::
runtime
::
ParameterizedTensorView
<
element
::
Float64
>>>
autodiff
::
numeric_derivative
(
const
std
::
shared_ptr
<
runtime
::
Manager
>&
manager
,
const
std
::
shared_ptr
<
runtime
::
Backend
>&
backend
,
const
std
::
shared_ptr
<
Function
>&
f
,
const
std
::
vector
<
std
::
shared_ptr
<
runtime
::
ParameterizedTensorView
<
element
::
Float64
>>>&
args
,
element
::
Float64
::
type
delta
);
test/util/autodiff/numeric_derivative.hpp
View file @
74af675d
...
...
@@ -39,26 +39,71 @@ namespace ngraph
const
std
::
shared_ptr
<
runtime
::
Backend
>&
backend
,
const
std
::
shared_ptr
<
Function
>&
f
,
const
std
::
vector
<
std
::
shared_ptr
<
runtime
::
ParameterizedTensorView
<
ET
>>>&
args
,
typename
ET
::
type
delta
);
typename
ET
::
type
delta
)
{
auto
y
=
f
->
get_result
();
extern
template
std
::
vector
<
std
::
shared_ptr
<
runtime
::
ParameterizedTensorView
<
element
::
Float32
>>>
numeric_derivative
(
const
std
::
shared_ptr
<
runtime
::
Manager
>&
manager
,
const
std
::
shared_ptr
<
runtime
::
Backend
>&
backend
,
const
std
::
shared_ptr
<
Function
>&
f
,
const
std
::
vector
<
std
::
shared_ptr
<
runtime
::
ParameterizedTensorView
<
element
::
Float32
>>>&
args
,
element
::
Float32
::
type
delta
);
Shape
y_shape
=
std
::
dynamic_pointer_cast
<
const
TensorViewType
>
(
y
->
get_value_type
())
->
get_shape
();
extern
template
std
::
vector
<
std
::
shared_ptr
<
runtime
::
ParameterizedTensorView
<
element
::
Float64
>>>
numeric_derivative
(
const
std
::
shared_ptr
<
runtime
::
Manager
>&
manager
,
const
std
::
shared_ptr
<
runtime
::
Backend
>&
backend
,
const
std
::
shared_ptr
<
Function
>&
f
,
const
std
::
vector
<
std
::
shared_ptr
<
runtime
::
ParameterizedTensorView
<
element
::
Float64
>>>&
args
,
element
::
Float64
::
type
delta
);
auto
params
=
f
->
get_parameters
();
// Results for each derivative, shape Y|X_i
std
::
vector
<
std
::
shared_ptr
<
runtime
::
ParameterizedTensorView
<
ET
>>>
results
;
for
(
auto
param
:
params
)
{
Shape
s
=
y_shape
;
auto
param_shape
=
std
::
dynamic_pointer_cast
<
const
TensorViewType
>
(
param
->
get_value_type
())
->
get_shape
();
s
.
insert
(
s
.
end
(),
param_shape
.
begin
(),
param_shape
.
end
());
results
.
push_back
(
backend
->
make_parameterized_tensor_view
<
ET
>
(
s
));
}
auto
external
=
manager
->
compile
(
f
);
auto
cf
=
backend
->
make_call_frame
(
external
);
// ref_y is the function evaluated at the args
auto
ref_y
=
backend
->
make_parameterized_tensor_view
<
ET
>
(
y_shape
);
ngraph
::
runtime
::
TensorViewPtrs
args_tv
;
args_tv
.
insert
(
args_tv
.
begin
(),
args
.
begin
(),
args
.
end
());
cf
->
tensor_call
(
args_tv
,
runtime
::
TensorViewPtrs
{
ref_y
});
auto
&
ref_vec
=
ref_y
->
get_vector
();
// inc_y will hold f(x+dx) values
auto
inc_y
=
backend
->
make_parameterized_tensor_view
<
ET
>
(
y_shape
);
auto
&
inc_vec
=
inc_y
->
get_vector
();
// Assuming vars, y, and results are row-major
typename
ET
::
type
inv_delta
=
1
/
delta
;
for
(
size_t
i
=
0
;
i
<
args
.
size
();
++
i
)
{
auto
arg
=
args
[
i
];
auto
res
=
results
[
i
]
->
get_vector
();
auto
vec
=
arg
->
get_vector
();
for
(
size_t
j
=
0
;
j
<
vec
.
size
();
j
++
)
{
auto
old_val
=
vec
[
j
];
vec
[
j
]
+=
delta
;
arg
->
write
(
vec
);
cf
->
tensor_call
(
args_tv
,
{
inc_y
});
vec
[
j
]
=
old_val
;
arg
->
write
(
vec
);
size_t
res_k
=
j
;
for
(
size_t
k
=
0
;
k
<
inc_vec
.
size
();
k
++
)
{
auto
y1
=
inc_vec
[
k
];
auto
y0
=
ref_vec
[
k
];
res
[
res_k
]
=
inv_delta
*
(
y1
-
y0
);
res_k
+=
vec
.
size
();
}
}
results
[
i
]
->
write
(
res
);
}
return
results
;
}
}
}
test/util/random.hpp
View file @
74af675d
...
...
@@ -43,10 +43,12 @@ namespace ngraph
const
std
::
shared_ptr
<
runtime
::
ParameterizedTensorView
<
ET
>>
initialize
(
const
std
::
shared_ptr
<
runtime
::
ParameterizedTensorView
<
ET
>>&
ptv
)
{
for
(
auto
&
elt
:
ptv
->
get_vector
())
auto
vec
=
ptv
->
get_vector
();
for
(
auto
&
elt
:
vec
)
{
elt
=
m_r
();
}
ptv
->
write
(
vec
);
return
ptv
;
}
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment