Commit 7188b5bd authored by Ayan Moitra's avatar Ayan Moitra Committed by Scott Cyphers

Support arg_reduce for int32 for nvGPU (#2122)

* Add argmReduce support for int32 +  tests

* add new line

* add to intelGPU manifest

* Address Fenglei's comment

* address comments

* Small change to emitter logic.

* Chris's comments incorporated

* minor edits + clang

* edit
parent d9c540bb
...@@ -16,3 +16,6 @@ quantize_clamp_int32 ...@@ -16,3 +16,6 @@ quantize_clamp_int32
# failing in CI build but passing on local machine # failing in CI build but passing on local machine
max_3d_to_scalar_int32 max_3d_to_scalar_int32
argmin_trivial_in_i32
argmax_4D_axis_3_i64_in_i32
This diff is collapsed.
...@@ -134,6 +134,7 @@ shape_of_vector ...@@ -134,6 +134,7 @@ shape_of_vector
shape_of_matrix shape_of_matrix
shape_of_5d shape_of_5d
sum_stable_acc sum_stable_acc
sum_trivial_in_double
product_2d_to_scalar_int32 product_2d_to_scalar_int32
product_to_scalar_int32 product_to_scalar_int32
product_to_scalar_int8 product_to_scalar_int8
...@@ -141,3 +142,6 @@ max_matrix_rows_zero_int32 ...@@ -141,3 +142,6 @@ max_matrix_rows_zero_int32
max_to_scalar_int8 max_to_scalar_int8
min_to_scalar_int8 min_to_scalar_int8
max_3d_to_scalar_double max_3d_to_scalar_double
argmin_trivial_in_i32
argmax_4D_axis_3_i64_in_i32
argmin_trivial_in_double
...@@ -311,3 +311,82 @@ NGRAPH_TEST(${BACKEND_NAME}, argmax_4D_axis_3) ...@@ -311,3 +311,82 @@ NGRAPH_TEST(${BACKEND_NAME}, argmax_4D_axis_3)
.get_vector()), .get_vector()),
read_vector<int>(result)); read_vector<int>(result));
} }
NGRAPH_TEST(${BACKEND_NAME}, argmin_trivial_in_i32)
{
Shape shape{4, 3};
Shape rshape{3};
auto A = make_shared<op::Parameter>(element::i32, shape);
auto f = make_shared<Function>(make_shared<op::ArgMin>(A, 0, element::i32), ParameterVector{A});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::i32, shape);
copy_data(a, vector<int32_t>{12, 2, 10, 9, 8, 4, 6, 1, 5, 3, 11, 7});
auto result = backend->create_tensor(element::i32, rshape);
backend->call_with_validate(f, {result}, {a});
EXPECT_EQ((vector<int>{3, 2, 1}), read_vector<int>(result));
}
NGRAPH_TEST(${BACKEND_NAME}, argmax_4D_axis_3_i64_in_i32)
{
Shape shape{2, 2, 5, 5}; // NCHW ->(0,1,2,3)
Shape rshape{2, 2, 5};
auto A = make_shared<op::Parameter>(element::i32, shape);
auto f = make_shared<Function>(make_shared<op::ArgMax>(A, 3, element::i64), ParameterVector{A});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::i32, shape);
copy_data(a,
test::NDArray<int32_t, 4>({{{{0, 1, 0, 2, 1}, // img 0 ch 0
{0, 3, 2, 0, 0},
{2, 0, 0, 0, 1},
{2, 0, 1, 1, 2},
{0, 2, 1, 0, 0}},
{{0, 0, 0, 2, 0}, // img 0 ch 1
{0, 2, 3, 0, 1},
{2, 0, 1, 0, 2},
{3, 1, 0, 0, 0},
{2, 0, 0, 0, 0}}},
{{{0, 2, 1, 1, 0}, // img 1 ch 0
{0, 0, 2, 0, 1},
{0, 0, 1, 2, 3},
{2, 0, 0, 3, 0},
{0, 0, 0, 0, 0}},
{{2, 1, 0, 0, 1}, // img 1 ch 1
{0, 2, 0, 0, 0},
{1, 1, 2, 0, 2},
{1, 1, 1, 0, 1},
{1, 0, 0, 0, 2}}}})
.get_vector());
auto result = backend->create_tensor(element::i64, rshape);
backend->call_with_validate(f, {result}, {a});
EXPECT_EQ((test::NDArray<int64_t, 3>({{{3, 1, 0, 0, 1}, {3, 2, 0, 0, 0}}, //ch0
{{1, 2, 4, 3, 0}, {0, 1, 2, 0, 4}}}) //ch1
.get_vector()),
read_vector<int64_t>(result));
}
NGRAPH_TEST(${BACKEND_NAME}, argmin_trivial_in_double)
{
Shape shape{4, 3};
Shape rshape{3};
auto A = make_shared<op::Parameter>(element::f64, shape);
auto f = make_shared<Function>(make_shared<op::ArgMin>(A, 0, element::i32), ParameterVector{A});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::f64, shape);
copy_data(a, vector<double>{12, 2, 10, 9, 8, 4, 6, 1, 5, 3, 11, 7});
auto result = backend->create_tensor(element::i32, rshape);
backend->call_with_validate(f, {result}, {a});
EXPECT_EQ((vector<int32_t>{3, 2, 1}), read_vector<int32_t>(result));
}
...@@ -485,6 +485,24 @@ NGRAPH_TEST(${BACKEND_NAME}, sum_2d_to_scalar_int8) ...@@ -485,6 +485,24 @@ NGRAPH_TEST(${BACKEND_NAME}, sum_2d_to_scalar_int8)
EXPECT_EQ(std::vector<int8_t>{45}, read_vector<int8_t>(result)); EXPECT_EQ(std::vector<int8_t>{45}, read_vector<int8_t>(result));
} }
NGRAPH_TEST(${BACKEND_NAME}, sum_trivial_in_double)
{
Shape shape{4, 3};
Shape rshape{3};
auto A = make_shared<op::Parameter>(element::f64, shape);
auto f = make_shared<Function>(make_shared<op::Sum>(A, AxisSet{0}), ParameterVector{A});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::f64, shape);
copy_data(a, vector<double>{12, 2, 10, 9, 8, 4, 6, 1, 5, 3, 11, 7});
auto result = backend->create_tensor(element::f64, rshape);
backend->call_with_validate(f, {result}, {a});
EXPECT_EQ((vector<double>{30, 22, 26}), read_vector<double>(result));
}
#if NGRAPH_INTERPRETER_ENABLE #if NGRAPH_INTERPRETER_ENABLE
NGRAPH_TEST(${BACKEND_NAME}, sum_stable_acc) NGRAPH_TEST(${BACKEND_NAME}, sum_stable_acc)
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment