Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
N
ngraph
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
ngraph
Commits
6e1b6058
Commit
6e1b6058
authored
Apr 10, 2018
by
Yixing Lao
Committed by
Scott Cyphers
Apr 10, 2018
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Use new backend API in graph partition (#844)
* new backend API in graph partition * update API
parent
da6cf5cb
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
151 additions
and
192 deletions
+151
-192
graph_partition.cpp
test/graph_partition.cpp
+151
-192
No files found.
test/graph_partition.cpp
View file @
6e1b6058
...
@@ -35,76 +35,108 @@
...
@@ -35,76 +35,108 @@
using
namespace
std
;
using
namespace
std
;
using
namespace
ngraph
;
using
namespace
ngraph
;
static
shared_ptr
<
runtime
::
Manager
>
get_cached_manager
(
const
string
&
name
)
// Perform all operations on INTERPRETER and fallback Multiply to CPU
{
static
function
<
Placement
(
shared_ptr
<
Node
>
)
>
int_with_cpu_mul_policy
=
[](
shared_ptr
<
Node
>
node
)
{
static
unordered_map
<
string
,
shared_ptr
<
runtime
::
Manager
>>
cached_managers
=
{};
Placement
placement
;
if
(
cached_managers
.
find
(
name
)
==
cached_managers
.
end
())
string
node_op
=
node
->
description
();
if
(
node_op
==
"Multiply"
)
{
{
cached_managers
[
name
]
=
runtime
::
Manager
::
get
(
name
)
;
placement
=
Placement
::
CPU
;
}
}
return
cached_managers
.
at
(
name
);
else
}
static
shared_ptr
<
runtime
::
Backend
>
get_cached_backend
(
const
string
&
name
)
{
static
unordered_map
<
string
,
shared_ptr
<
runtime
::
Backend
>>
cached_backends
=
{};
if
(
cached_backends
.
find
(
name
)
==
cached_backends
.
end
())
{
{
cached_backends
[
name
]
=
get_cached_manager
(
name
)
->
allocate_backend
()
;
placement
=
Placement
::
INTERPRETER
;
}
}
return
cached_backends
.
at
(
name
)
;
return
placement
;
}
}
;
class
HybridCallFrame
// HybridCallFrame servers 2 purposes:
// 1. HybridBackend's main use case is to test device placement and graph partition routines.
// 2. It also shows how glued-hybrid runtime can be built by combining different runtimes.
//
// By default, HybridBackend operates on INTERPRETER (for example, the primary tensor view is
// INTERPRETER tensor view). It falls back to CPU when requested by placement.
class
HybridBackend
{
{
public
:
public
:
HybridCallFrame
(
const
vector
<
shared_ptr
<
Function
>>&
sub_functions
,
HybridBackend
(
const
function
<
Placement
(
shared_ptr
<
Node
>
)
>&
placement_policy
)
const
vector
<
shared_ptr
<
runtime
::
CallFrame
>>&
call_frames
,
:
m_placement_policy
(
placement_policy
)
const
unordered_map
<
shared_ptr
<
op
::
Parameter
>
,
shared_ptr
<
op
::
Result
>>&
{
map_parameter_to_result
,
}
const
vector
<
shared_ptr
<
op
::
Parameter
>>&
main_function_parameters
,
const
vector
<
shared_ptr
<
op
::
Result
>>&
main_function_results
)
~
HybridBackend
()
{}
:
m_sub_functions
(
sub_functions
)
shared_ptr
<
runtime
::
TensorView
>
create_tensor
(
const
element
::
Type
&
element_type
,
,
m_call_frames
(
call_frames
)
const
Shape
&
shape
)
,
m_map_parameter_to_result
(
map_parameter_to_result
)
,
m_main_function_parameters
(
main_function_parameters
)
,
m_main_function_results
(
main_function_results
)
{
{
return
get_cached_backend
(
Placement
::
INTERPRETER
)
->
create_tensor
(
element_type
,
shape
);
}
}
void
call
(
const
vector
<
shared_ptr
<
runtime
::
TensorView
>>&
outputs
,
bool
compile
(
const
shared_ptr
<
Function
>&
func
)
{
if
(
!
contains_key
(
m_function_map
,
func
))
{
// Clone function
FunctionInstance
instance
;
instance
.
m_function
=
clone_function
(
*
func
);
// Run placement pass
pass
::
Manager
pass_manager
;
pass_manager
.
register_pass
<
pass
::
AssignPlacement
>
(
int_with_cpu_mul_policy
);
pass_manager
.
run_passes
(
instance
.
m_function
);
// Split function to sub_functions
tie
(
instance
.
m_sub_functions
,
instance
.
m_map_parameter_to_result
)
=
split_function_by_placement
(
instance
.
m_function
);
m_function_map
.
insert
({
func
,
instance
});
// Compile subfunctions in corresponding backends
for
(
shared_ptr
<
Function
>&
sub_function
:
instance
.
m_sub_functions
)
{
Placement
placement
=
get_colocated_function_placement
(
sub_function
);
auto
backend
=
get_cached_backend
(
placement
);
backend
->
compile
(
sub_function
);
}
}
return
true
;
}
bool
call
(
const
shared_ptr
<
Function
>&
func
,
const
vector
<
shared_ptr
<
runtime
::
TensorView
>>&
outputs
,
const
vector
<
shared_ptr
<
runtime
::
TensorView
>>&
inputs
)
const
vector
<
shared_ptr
<
runtime
::
TensorView
>>&
inputs
)
{
{
// Every parameter and result node in every sub_function maps to one TensorView
// Get FunctionInstance
unordered_map
<
shared_ptr
<
Node
>
,
shared_ptr
<
runtime
::
TensorView
>>
map_node_to_tensor_view
;
bool
rc
=
true
;
auto
it
=
m_function_map
.
find
(
func
);
if
(
it
==
m_function_map
.
end
())
{
compile
(
func
);
it
=
m_function_map
.
find
(
func
);
}
if
(
it
==
m_function_map
.
end
())
{
throw
runtime_error
(
"Error constructing backend."
);
}
FunctionInstance
&
instance
=
it
->
second
;
// Main function's parameters and results
// Parameter and result node in sub_function maps to one TensorView
unordered_map
<
shared_ptr
<
Node
>
,
shared_ptr
<
runtime
::
TensorView
>>
map_node_to_tensor_view
;
for
(
size_t
i
=
0
;
i
<
inputs
.
size
();
++
i
)
for
(
size_t
i
=
0
;
i
<
inputs
.
size
();
++
i
)
{
{
map_node_to_tensor_view
[
m_main_function_parameters
[
i
]]
=
inputs
[
i
];
map_node_to_tensor_view
[
instance
.
m_function
->
get_parameters
()
[
i
]]
=
inputs
[
i
];
}
}
for
(
size_t
i
=
0
;
i
<
outputs
.
size
();
++
i
)
for
(
size_t
i
=
0
;
i
<
outputs
.
size
();
++
i
)
{
{
map_node_to_tensor_view
[
m_main_function_results
[
i
]]
=
outputs
[
i
];
map_node_to_tensor_view
[
instance
.
m_function
->
get_results
()
[
i
]]
=
outputs
[
i
];
}
}
// Call
call_frame
s
// Call
subfunction
s
for
(
auto
idx
=
0
;
idx
<
m_call_frames
.
size
();
idx
++
)
for
(
shared_ptr
<
Function
>&
sub_function
:
instance
.
m_sub_functions
)
{
{
// Get placement
// Init backend
auto
sub_function
=
m_sub_functions
[
idx
];
auto
call_frame
=
m_call_frames
[
idx
];
Placement
placement
=
get_colocated_function_placement
(
sub_function
);
Placement
placement
=
get_colocated_function_placement
(
sub_function
);
if
(
placement
!=
Placement
::
CPU
&&
placement
!=
Placement
::
INTERPRETER
)
auto
backend
=
get_cached_backend
(
placement
);
{
throw
ngraph_error
(
"Placement must be CPU or INTERPRETER"
);
}
// Get backend
// Prepare parameter TensorViews
auto
manager
=
get_cached_manager
(
placement_to_string
(
placement
));
auto
backend
=
get_cached_backend
(
placement_to_string
(
placement
));
// Prepare input TensorViews
vector
<
shared_ptr
<
runtime
::
TensorView
>>
parameter_tvs
;
vector
<
shared_ptr
<
runtime
::
TensorView
>>
parameter_tvs
;
for
(
auto
parameter_node
:
sub_function
->
get_parameters
())
for
(
auto
parameter_node
:
sub_function
->
get_parameters
())
{
{
...
@@ -114,17 +146,17 @@ public:
...
@@ -114,17 +146,17 @@ public:
}
}
else
else
{
{
auto
result_node
=
m_map_parameter_to_result
.
at
(
parameter_node
);
auto
result_node
=
instance
.
m_map_parameter_to_result
.
at
(
parameter_node
);
auto
result_tv
=
map_node_to_tensor_view
.
at
(
result_node
);
auto
result_tv
=
map_node_to_tensor_view
.
at
(
result_node
);
auto
parameter_tv
=
backend
->
make_primary_tensor_view
(
auto
parameter_tv
=
backend
->
create_tensor
(
parameter_node
->
get_element_type
(),
parameter_node
->
get_element_type
(),
parameter_node
->
get_shape
());
parameter_node
->
get_shape
());
copy_data
(
parameter_tv
,
read_vector
<
float
>
(
result_tv
));
copy_data
(
parameter_tv
,
read_vector
<
float
>
(
result_tv
));
map_node_to_tensor_view
[
parameter_node
]
=
parameter_tv
;
map_node_to_tensor_view
[
parameter_node
]
=
parameter_tv
;
parameter_tvs
.
push_back
(
parameter_tv
);
parameter_tvs
.
push_back
(
parameter_tv
);
}
}
}
}
// Prepare
outpu
t TensorViews
// Prepare
resul
t TensorViews
vector
<
shared_ptr
<
runtime
::
TensorView
>>
result_tvs
;
vector
<
shared_ptr
<
runtime
::
TensorView
>>
result_tvs
;
for
(
auto
result_node
:
sub_function
->
get_results
())
for
(
auto
result_node
:
sub_function
->
get_results
())
{
{
...
@@ -134,86 +166,40 @@ public:
...
@@ -134,86 +166,40 @@ public:
}
}
else
else
{
{
auto
result_tv
=
backend
->
make_primary_tensor_view
(
auto
result_tv
=
backend
->
create_tensor
(
result_node
->
get_element_type
(),
result_node
->
get_element_type
(),
result_node
->
get_shape
());
result_node
->
get_shape
());
map_node_to_tensor_view
[
result_node
]
=
result_tv
;
map_node_to_tensor_view
[
result_node
]
=
result_tv
;
result_tvs
.
push_back
(
result_tv
);
result_tvs
.
push_back
(
result_tv
);
}
}
}
}
// Call
// Call
call_frame
->
call
(
result_tvs
,
parameter_tvs
);
backend
->
call
(
sub_function
,
result_tvs
,
parameter_tvs
);
}
}
return
rc
;
}
}
protected
:
protected
:
class
FunctionInstance
{
public
:
shared_ptr
<
Function
>
m_function
;
vector
<
shared_ptr
<
Function
>>
m_sub_functions
;
vector
<
shared_ptr
<
Function
>>
m_sub_functions
;
vector
<
shared_ptr
<
runtime
::
CallFrame
>>
m_call_frames
;
unordered_map
<
shared_ptr
<
op
::
Parameter
>
,
shared_ptr
<
op
::
Result
>>
m_map_parameter_to_result
;
unordered_map
<
shared_ptr
<
op
::
Parameter
>
,
shared_ptr
<
op
::
Result
>>
m_map_parameter_to_result
;
vector
<
shared_ptr
<
op
::
Parameter
>>
m_main_function_parameters
;
};
vector
<
shared_ptr
<
op
::
Result
>>
m_main_function_results
;
};
// HybridCallFrame servers 2 purposes:
shared_ptr
<
runtime
::
Backend
>
get_cached_backend
(
Placement
placement
)
// 1. HybridBackend's main use case is to test device placement and graph partition routines.
// 2. It also shows how glued-hybrid runtime can be built by combining different runtimes.
//
// By default, HybridBackend operates on INTERPRETER (for example, the primary tensor view is
// INTERPRETER tensor view). It falls back to CPU when requested by placement.
class
HybridBackend
{
public
:
shared_ptr
<
runtime
::
TensorView
>
make_primary_tensor_view
(
const
element
::
Type
&
element_type
,
const
Shape
&
shape
)
{
return
get_cached_backend
(
"INTERPRETER"
)
->
make_primary_tensor_view
(
element_type
,
shape
);
}
// Returns CallFrame directly, simplifies calling process
shared_ptr
<
HybridCallFrame
>
compile
(
const
shared_ptr
<
Function
>&
main_function
)
{
{
// Store main_functions parameter and results, since main_function will be split
if
(
m_cached_backends
.
find
(
placement
)
==
m_cached_backends
.
end
())
auto
main_function_parameters
=
main_function
->
get_parameters
();
auto
main_function_results
=
main_function
->
get_results
();
// Split to functions
vector
<
shared_ptr
<
Function
>>
sub_functions
;
unordered_map
<
shared_ptr
<
op
::
Parameter
>
,
shared_ptr
<
op
::
Result
>>
map_parameter_to_result
;
tie
(
sub_functions
,
map_parameter_to_result
)
=
split_function_by_placement
(
main_function
);
// Make call frames
vector
<
shared_ptr
<
runtime
::
CallFrame
>>
call_frames
;
for
(
auto
sub_function
:
sub_functions
)
{
{
Placement
placement
=
get_colocated_function_placement
(
sub_function
);
m_cached_backends
[
placement
]
=
runtime
::
Backend
::
create
(
placement_to_string
(
placement
));
auto
manager
=
get_cached_manager
(
placement_to_string
(
placement
));
auto
backend
=
get_cached_backend
(
placement_to_string
(
placement
));
auto
external
=
manager
->
compile
(
sub_function
);
auto
call_frame
=
backend
->
make_call_frame
(
external
);
call_frames
.
push_back
(
call_frame
);
}
}
return
m_cached_backends
.
at
(
placement
);
return
make_shared
<
HybridCallFrame
>
(
sub_functions
,
call_frames
,
map_parameter_to_result
,
main_function_parameters
,
main_function_results
);
}
}
};
// Perform all operations on INTERPRETER and fallback Multiply to CPU
map
<
Placement
,
shared_ptr
<
runtime
::
Backend
>>
m_cached_backends
;
static
function
<
Placement
(
shared_ptr
<
Node
>
)
>
int_with_cpu_mul_policy
=
[](
shared_ptr
<
Node
>
node
)
{
map
<
shared_ptr
<
Function
>
,
FunctionInstance
>
m_function_map
;
Placement
placement
;
function
<
Placement
(
shared_ptr
<
Node
>
)
>
m_placement_policy
;
string
node_op
=
node
->
description
();
if
(
node_op
==
"Multiply"
)
{
placement
=
Placement
::
CPU
;
}
else
{
placement
=
Placement
::
INTERPRETER
;
}
return
placement
;
};
};
TEST
(
graph_partition
,
placement_all_cpu_policy
)
TEST
(
graph_partition
,
placement_all_cpu_policy
)
...
@@ -318,47 +304,42 @@ TEST(graph_partition, hybrid_abc_manual)
...
@@ -318,47 +304,42 @@ TEST(graph_partition, hybrid_abc_manual)
shared_ptr
<
op
::
Parameter
>
P2
=
RP2
.
second
;
shared_ptr
<
op
::
Parameter
>
P2
=
RP2
.
second
;
// Backends
// Backends
auto
int_manager
=
runtime
::
Manager
::
get
(
placement_to_string
(
Placement
::
INTERPRETER
));
auto
int_backend
=
runtime
::
Backend
::
create
(
placement_to_string
(
Placement
::
INTERPRETER
));
auto
int_backend
=
int_manager
->
allocate_backend
();
auto
cpu_backend
=
runtime
::
Backend
::
create
(
placement_to_string
(
Placement
::
CPU
));
auto
cpu_manager
=
runtime
::
Manager
::
get
(
placement_to_string
(
Placement
::
CPU
));
auto
cpu_backend
=
cpu_manager
->
allocate_backend
();
// f0 on INT
// f0 on INT
auto
a
=
int_backend
->
make_primary_tensor_view
(
element
::
f32
,
shape
);
auto
a
=
int_backend
->
create_tensor
(
element
::
f32
,
shape
);
auto
b
=
int_backend
->
make_primary_tensor_view
(
element
::
f32
,
shape
);
auto
b
=
int_backend
->
create_tensor
(
element
::
f32
,
shape
);
auto
c
=
int_backend
->
make_primary_tensor_view
(
element
::
f32
,
shape
);
auto
c
=
int_backend
->
create_tensor
(
element
::
f32
,
shape
);
auto
r0
=
int_backend
->
make_primary_tensor_view
(
element
::
f32
,
shape
);
auto
r0
=
int_backend
->
create_tensor
(
element
::
f32
,
shape
);
auto
r1
=
int_backend
->
make_primary_tensor_view
(
element
::
f32
,
shape
);
auto
r1
=
int_backend
->
create_tensor
(
element
::
f32
,
shape
);
copy_data
(
a
,
test
::
NDArray
<
float
,
2
>
({{
1
,
2
},
{
3
,
4
}}).
get_vector
());
copy_data
(
a
,
test
::
NDArray
<
float
,
2
>
({{
1
,
2
},
{
3
,
4
}}).
get_vector
());
copy_data
(
b
,
test
::
NDArray
<
float
,
2
>
({{
5
,
6
},
{
7
,
8
}}).
get_vector
());
copy_data
(
b
,
test
::
NDArray
<
float
,
2
>
({{
5
,
6
},
{
7
,
8
}}).
get_vector
());
copy_data
(
c
,
test
::
NDArray
<
float
,
2
>
({{
9
,
10
},
{
11
,
12
}}).
get_vector
());
copy_data
(
c
,
test
::
NDArray
<
float
,
2
>
({{
9
,
10
},
{
11
,
12
}}).
get_vector
());
auto
f0
=
make_shared
<
Function
>
(
ResultVector
{
R0
,
R1
},
op
::
ParameterVector
{
A
,
B
,
C
});
auto
f0
=
make_shared
<
Function
>
(
ResultVector
{
R0
,
R1
},
op
::
ParameterVector
{
A
,
B
,
C
});
auto
f0_external
=
int_manager
->
compile
(
f0
);
int_backend
->
compile
(
f0
);
auto
f0_call_frame
=
int_backend
->
make_call_frame
(
f0_external
);
int_backend
->
call
(
f0
,
{
r0
,
r1
},
{
a
,
b
,
c
});
f0_call_frame
->
call
({
r0
,
r1
},
{
a
,
b
,
c
});
// f1 on CPU
// f1 on CPU
auto
p0
=
cpu_backend
->
make_primary_tensor_view
(
element
::
f32
,
shape
);
auto
p0
=
cpu_backend
->
create_tensor
(
element
::
f32
,
shape
);
auto
p1
=
cpu_backend
->
make_primary_tensor_view
(
element
::
f32
,
shape
);
auto
p1
=
cpu_backend
->
create_tensor
(
element
::
f32
,
shape
);
auto
r2
=
cpu_backend
->
make_primary_tensor_view
(
element
::
f32
,
shape
);
auto
r2
=
cpu_backend
->
create_tensor
(
element
::
f32
,
shape
);
copy_data
(
p0
,
read_vector
<
float
>
(
r0
));
copy_data
(
p0
,
read_vector
<
float
>
(
r0
));
copy_data
(
p1
,
read_vector
<
float
>
(
r1
));
copy_data
(
p1
,
read_vector
<
float
>
(
r1
));
auto
f1
=
make_shared
<
Function
>
(
ResultVector
{
R2
},
op
::
ParameterVector
{
P0
,
P1
});
auto
f1
=
make_shared
<
Function
>
(
ResultVector
{
R2
},
op
::
ParameterVector
{
P0
,
P1
});
auto
f1_external
=
cpu_manager
->
compile
(
f1
);
cpu_backend
->
compile
(
f1
);
auto
f1_call_frame
=
cpu_backend
->
make_call_frame
(
f1_external
);
cpu_backend
->
call
(
f1
,
{
r2
},
{
p0
,
p1
});
f1_call_frame
->
call
({
r2
},
{
p0
,
p1
});
// f2 on INT
// f2 on INT
auto
p2
=
int_backend
->
make_primary_tensor_view
(
element
::
f32
,
shape
);
auto
p2
=
int_backend
->
create_tensor
(
element
::
f32
,
shape
);
auto
r
=
int_backend
->
make_primary_tensor_view
(
element
::
f32
,
shape
);
auto
r
=
int_backend
->
create_tensor
(
element
::
f32
,
shape
);
copy_data
(
p2
,
read_vector
<
float
>
(
r2
));
copy_data
(
p2
,
read_vector
<
float
>
(
r2
));
auto
f2
=
make_shared
<
Function
>
(
ResultVector
{
R
},
op
::
ParameterVector
{
P2
});
auto
f2
=
make_shared
<
Function
>
(
ResultVector
{
R
},
op
::
ParameterVector
{
P2
});
auto
f2_external
=
int_manager
->
compile
(
f2
);
int_backend
->
compile
(
f2
);
auto
f2_call_frame
=
int_backend
->
make_call_frame
(
f2_external
);
int_backend
->
call
(
f2
,
{
r
},
{
p2
});
f2_call_frame
->
call
({
r
},
{
p2
});
// Check final result on INT
// Check final result on INT
EXPECT_EQ
(
read_vector
<
float
>
(
r
),
EXPECT_EQ
(
read_vector
<
float
>
(
r
),
...
@@ -394,23 +375,17 @@ TEST(graph_partition, hybrid_abc)
...
@@ -394,23 +375,17 @@ TEST(graph_partition, hybrid_abc)
auto
R
=
make_shared
<
op
::
Result
>
(
E
);
auto
R
=
make_shared
<
op
::
Result
>
(
E
);
auto
f
=
make_shared
<
Function
>
(
ResultVector
{
R
},
op
::
ParameterVector
{
A
,
B
,
C
});
auto
f
=
make_shared
<
Function
>
(
ResultVector
{
R
},
op
::
ParameterVector
{
A
,
B
,
C
});
pass
::
Manager
pass_manager
;
auto
backend
=
make_shared
<
HybridBackend
>
(
int_with_cpu_mul_policy
);
pass_manager
.
register_pass
<
pass
::
AssignPlacement
>
(
int_with_cpu_mul_policy
);
shared_ptr
<
runtime
::
TensorView
>
a
=
backend
->
create_tensor
(
element
::
f32
,
shape
);
pass_manager
.
run_passes
(
f
);
shared_ptr
<
runtime
::
TensorView
>
b
=
backend
->
create_tensor
(
element
::
f32
,
shape
);
shared_ptr
<
runtime
::
TensorView
>
c
=
backend
->
create_tensor
(
element
::
f32
,
shape
);
auto
backend
=
make_shared
<
HybridBackend
>
();
shared_ptr
<
runtime
::
TensorView
>
r
=
backend
->
create_tensor
(
element
::
f32
,
shape
);
auto
cf
=
backend
->
compile
(
f
);
shared_ptr
<
runtime
::
TensorView
>
a
=
backend
->
make_primary_tensor_view
(
element
::
f32
,
shape
);
shared_ptr
<
runtime
::
TensorView
>
b
=
backend
->
make_primary_tensor_view
(
element
::
f32
,
shape
);
shared_ptr
<
runtime
::
TensorView
>
c
=
backend
->
make_primary_tensor_view
(
element
::
f32
,
shape
);
shared_ptr
<
runtime
::
TensorView
>
r
=
backend
->
make_primary_tensor_view
(
element
::
f32
,
shape
);
copy_data
(
a
,
test
::
NDArray
<
float
,
2
>
({{
1
,
2
},
{
3
,
4
}}).
get_vector
());
copy_data
(
a
,
test
::
NDArray
<
float
,
2
>
({{
1
,
2
},
{
3
,
4
}}).
get_vector
());
copy_data
(
b
,
test
::
NDArray
<
float
,
2
>
({{
5
,
6
},
{
7
,
8
}}).
get_vector
());
copy_data
(
b
,
test
::
NDArray
<
float
,
2
>
({{
5
,
6
},
{
7
,
8
}}).
get_vector
());
copy_data
(
c
,
test
::
NDArray
<
float
,
2
>
({{
9
,
10
},
{
11
,
12
}}).
get_vector
());
copy_data
(
c
,
test
::
NDArray
<
float
,
2
>
({{
9
,
10
},
{
11
,
12
}}).
get_vector
());
cf
->
call
(
{
r
},
{
a
,
b
,
c
});
backend
->
call
(
f
,
{
r
},
{
a
,
b
,
c
});
EXPECT_EQ
(
read_vector
<
float
>
(
r
),
EXPECT_EQ
(
read_vector
<
float
>
(
r
),
(
test
::
NDArray
<
float
,
2
>
({{
54
,
80
},
{
110
,
144
}})).
get_vector
());
(
test
::
NDArray
<
float
,
2
>
({{
54
,
80
},
{
110
,
144
}})).
get_vector
());
}
}
...
@@ -435,25 +410,21 @@ TEST(graph_partition, hybrid_abcd)
...
@@ -435,25 +410,21 @@ TEST(graph_partition, hybrid_abcd)
shared_ptr
<
Node
>
H
=
F
+
G
;
shared_ptr
<
Node
>
H
=
F
+
G
;
shared_ptr
<
Function
>
f
=
make_shared
<
Function
>
(
H
,
op
::
ParameterVector
{
A
,
B
,
C
,
D
});
shared_ptr
<
Function
>
f
=
make_shared
<
Function
>
(
H
,
op
::
ParameterVector
{
A
,
B
,
C
,
D
});
pass
::
Manager
pass_manager
;
auto
backend
=
make_shared
<
HybridBackend
>
(
int_with_cpu_mul_policy
);
pass_manager
.
register_pass
<
pass
::
AssignPlacement
>
(
int_with_cpu_mul_policy
);
backend
->
compile
(
f
);
pass_manager
.
run_passes
(
f
);
auto
backend
=
make_shared
<
HybridBackend
>
();
auto
cf
=
backend
->
compile
(
f
);
shared_ptr
<
runtime
::
TensorView
>
a
=
backend
->
make_primary_tensor_view
(
element
::
f32
,
shape
);
shared_ptr
<
runtime
::
TensorView
>
a
=
backend
->
create_tensor
(
element
::
f32
,
shape
);
shared_ptr
<
runtime
::
TensorView
>
b
=
backend
->
make_primary_tensor_view
(
element
::
f32
,
shape
);
shared_ptr
<
runtime
::
TensorView
>
b
=
backend
->
create_tensor
(
element
::
f32
,
shape
);
shared_ptr
<
runtime
::
TensorView
>
c
=
backend
->
make_primary_tensor_view
(
element
::
f32
,
shape
);
shared_ptr
<
runtime
::
TensorView
>
c
=
backend
->
create_tensor
(
element
::
f32
,
shape
);
shared_ptr
<
runtime
::
TensorView
>
d
=
backend
->
make_primary_tensor_view
(
element
::
f32
,
shape
);
shared_ptr
<
runtime
::
TensorView
>
d
=
backend
->
create_tensor
(
element
::
f32
,
shape
);
shared_ptr
<
runtime
::
TensorView
>
r
=
backend
->
make_primary_tensor_view
(
element
::
f32
,
shape
);
shared_ptr
<
runtime
::
TensorView
>
r
=
backend
->
create_tensor
(
element
::
f32
,
shape
);
copy_data
(
a
,
test
::
NDArray
<
float
,
2
>
({{
1
,
2
},
{
3
,
4
}}).
get_vector
());
copy_data
(
a
,
test
::
NDArray
<
float
,
2
>
({{
1
,
2
},
{
3
,
4
}}).
get_vector
());
copy_data
(
b
,
test
::
NDArray
<
float
,
2
>
({{
5
,
6
},
{
7
,
8
}}).
get_vector
());
copy_data
(
b
,
test
::
NDArray
<
float
,
2
>
({{
5
,
6
},
{
7
,
8
}}).
get_vector
());
copy_data
(
c
,
test
::
NDArray
<
float
,
2
>
({{
9
,
10
},
{
11
,
12
}}).
get_vector
());
copy_data
(
c
,
test
::
NDArray
<
float
,
2
>
({{
9
,
10
},
{
11
,
12
}}).
get_vector
());
copy_data
(
d
,
test
::
NDArray
<
float
,
2
>
({{
13
,
14
},
{
15
,
16
}}).
get_vector
());
copy_data
(
d
,
test
::
NDArray
<
float
,
2
>
({{
13
,
14
},
{
15
,
16
}}).
get_vector
());
cf
->
call
(
{
r
},
{
a
,
b
,
c
,
d
});
backend
->
call
(
f
,
{
r
},
{
a
,
b
,
c
,
d
});
EXPECT_EQ
(
read_vector
<
float
>
(
r
),
(
test
::
NDArray
<
float
,
2
>
({{
32
,
48
},
{
68
,
92
}})).
get_vector
());
EXPECT_EQ
(
read_vector
<
float
>
(
r
),
(
test
::
NDArray
<
float
,
2
>
({{
32
,
48
},
{
68
,
92
}})).
get_vector
());
}
}
...
@@ -475,23 +446,19 @@ TEST(graph_partition, hybrid_back_and_forth)
...
@@ -475,23 +446,19 @@ TEST(graph_partition, hybrid_back_and_forth)
shared_ptr
<
Node
>
F
=
E
*
C
;
shared_ptr
<
Node
>
F
=
E
*
C
;
shared_ptr
<
Function
>
f
=
make_shared
<
Function
>
(
F
,
op
::
ParameterVector
{
A
,
B
,
C
});
shared_ptr
<
Function
>
f
=
make_shared
<
Function
>
(
F
,
op
::
ParameterVector
{
A
,
B
,
C
});
pass
::
Manager
pass_manager
;
auto
backend
=
make_shared
<
HybridBackend
>
(
int_with_cpu_mul_policy
);
pass_manager
.
register_pass
<
pass
::
AssignPlacement
>
(
int_with_cpu_mul_policy
);
backend
->
compile
(
f
);
pass_manager
.
run_passes
(
f
);
auto
backend
=
make_shared
<
HybridBackend
>
();
shared_ptr
<
runtime
::
TensorView
>
a
=
backend
->
create_tensor
(
element
::
f32
,
shape
);
auto
cf
=
backend
->
compile
(
f
);
shared_ptr
<
runtime
::
TensorView
>
b
=
backend
->
create_tensor
(
element
::
f32
,
shape
);
shared_ptr
<
runtime
::
TensorView
>
c
=
backend
->
create_tensor
(
element
::
f32
,
shape
);
shared_ptr
<
runtime
::
TensorView
>
a
=
backend
->
make_primary_tensor_view
(
element
::
f32
,
shape
);
shared_ptr
<
runtime
::
TensorView
>
r
=
backend
->
create_tensor
(
element
::
f32
,
shape
);
shared_ptr
<
runtime
::
TensorView
>
b
=
backend
->
make_primary_tensor_view
(
element
::
f32
,
shape
);
shared_ptr
<
runtime
::
TensorView
>
c
=
backend
->
make_primary_tensor_view
(
element
::
f32
,
shape
);
shared_ptr
<
runtime
::
TensorView
>
r
=
backend
->
make_primary_tensor_view
(
element
::
f32
,
shape
);
copy_data
(
a
,
test
::
NDArray
<
float
,
2
>
({{
1
,
2
},
{
3
,
4
}}).
get_vector
());
copy_data
(
a
,
test
::
NDArray
<
float
,
2
>
({{
1
,
2
},
{
3
,
4
}}).
get_vector
());
copy_data
(
b
,
test
::
NDArray
<
float
,
2
>
({{
5
,
6
},
{
7
,
8
}}).
get_vector
());
copy_data
(
b
,
test
::
NDArray
<
float
,
2
>
({{
5
,
6
},
{
7
,
8
}}).
get_vector
());
copy_data
(
c
,
test
::
NDArray
<
float
,
2
>
({{
9
,
10
},
{
11
,
12
}}).
get_vector
());
copy_data
(
c
,
test
::
NDArray
<
float
,
2
>
({{
9
,
10
},
{
11
,
12
}}).
get_vector
());
cf
->
call
(
{
r
},
{
a
,
b
,
c
});
backend
->
call
(
f
,
{
r
},
{
a
,
b
,
c
});
EXPECT_EQ
(
read_vector
<
float
>
(
r
),
EXPECT_EQ
(
read_vector
<
float
>
(
r
),
(
test
::
NDArray
<
float
,
2
>
({{
90
,
180
},
{
308
,
480
}})).
get_vector
());
(
test
::
NDArray
<
float
,
2
>
({{
90
,
180
},
{
308
,
480
}})).
get_vector
());
}
}
...
@@ -516,23 +483,19 @@ TEST(graph_partition, hybrid_multi_middle_nodes)
...
@@ -516,23 +483,19 @@ TEST(graph_partition, hybrid_multi_middle_nodes)
shared_ptr
<
Node
>
H
=
F
+
G
;
shared_ptr
<
Node
>
H
=
F
+
G
;
shared_ptr
<
Function
>
f
=
make_shared
<
Function
>
(
H
,
op
::
ParameterVector
{
A
,
B
,
C
});
shared_ptr
<
Function
>
f
=
make_shared
<
Function
>
(
H
,
op
::
ParameterVector
{
A
,
B
,
C
});
pass
::
Manager
pass_manager
;
auto
backend
=
make_shared
<
HybridBackend
>
(
int_with_cpu_mul_policy
);
pass_manager
.
register_pass
<
pass
::
AssignPlacement
>
(
int_with_cpu_mul_policy
);
backend
->
compile
(
f
);
pass_manager
.
run_passes
(
f
);
auto
backend
=
make_shared
<
HybridBackend
>
();
auto
cf
=
backend
->
compile
(
f
);
shared_ptr
<
runtime
::
TensorView
>
a
=
backend
->
make_primary_tensor_view
(
element
::
f32
,
shape
);
shared_ptr
<
runtime
::
TensorView
>
a
=
backend
->
create_tensor
(
element
::
f32
,
shape
);
shared_ptr
<
runtime
::
TensorView
>
b
=
backend
->
make_primary_tensor_view
(
element
::
f32
,
shape
);
shared_ptr
<
runtime
::
TensorView
>
b
=
backend
->
create_tensor
(
element
::
f32
,
shape
);
shared_ptr
<
runtime
::
TensorView
>
c
=
backend
->
make_primary_tensor_view
(
element
::
f32
,
shape
);
shared_ptr
<
runtime
::
TensorView
>
c
=
backend
->
create_tensor
(
element
::
f32
,
shape
);
shared_ptr
<
runtime
::
TensorView
>
r
=
backend
->
make_primary_tensor_view
(
element
::
f32
,
shape
);
shared_ptr
<
runtime
::
TensorView
>
r
=
backend
->
create_tensor
(
element
::
f32
,
shape
);
copy_data
(
a
,
test
::
NDArray
<
float
,
2
>
({{
1
,
2
},
{
3
,
4
}}).
get_vector
());
copy_data
(
a
,
test
::
NDArray
<
float
,
2
>
({{
1
,
2
},
{
3
,
4
}}).
get_vector
());
copy_data
(
b
,
test
::
NDArray
<
float
,
2
>
({{
5
,
6
},
{
7
,
8
}}).
get_vector
());
copy_data
(
b
,
test
::
NDArray
<
float
,
2
>
({{
5
,
6
},
{
7
,
8
}}).
get_vector
());
copy_data
(
c
,
test
::
NDArray
<
float
,
2
>
({{
9
,
10
},
{
11
,
12
}}).
get_vector
());
copy_data
(
c
,
test
::
NDArray
<
float
,
2
>
({{
9
,
10
},
{
11
,
12
}}).
get_vector
());
cf
->
call
(
{
r
},
{
a
,
b
,
c
});
backend
->
call
(
f
,
{
r
},
{
a
,
b
,
c
});
EXPECT_EQ
(
read_vector
<
float
>
(
r
),
EXPECT_EQ
(
read_vector
<
float
>
(
r
),
(
test
::
NDArray
<
float
,
2
>
({{
210
,
288
},
{
378
,
480
}})).
get_vector
());
(
test
::
NDArray
<
float
,
2
>
({{
210
,
288
},
{
378
,
480
}})).
get_vector
());
}
}
...
@@ -548,20 +511,16 @@ TEST(graph_partition, hybrid_no_split)
...
@@ -548,20 +511,16 @@ TEST(graph_partition, hybrid_no_split)
shared_ptr
<
Node
>
C
=
A
+
B
;
shared_ptr
<
Node
>
C
=
A
+
B
;
shared_ptr
<
Function
>
f
=
make_shared
<
Function
>
(
C
,
op
::
ParameterVector
{
A
,
B
});
shared_ptr
<
Function
>
f
=
make_shared
<
Function
>
(
C
,
op
::
ParameterVector
{
A
,
B
});
pass
::
Manager
pass_manager
;
auto
backend
=
make_shared
<
HybridBackend
>
(
int_with_cpu_mul_policy
);
pass_manager
.
register_pass
<
pass
::
AssignPlacement
>
(
int_with_cpu_mul_policy
);
backend
->
compile
(
f
);
pass_manager
.
run_passes
(
f
);
auto
backend
=
make_shared
<
HybridBackend
>
();
auto
cf
=
backend
->
compile
(
f
);
shared_ptr
<
runtime
::
TensorView
>
a
=
backend
->
make_primary_tensor_view
(
element
::
f32
,
shape
);
shared_ptr
<
runtime
::
TensorView
>
a
=
backend
->
create_tensor
(
element
::
f32
,
shape
);
shared_ptr
<
runtime
::
TensorView
>
b
=
backend
->
make_primary_tensor_view
(
element
::
f32
,
shape
);
shared_ptr
<
runtime
::
TensorView
>
b
=
backend
->
create_tensor
(
element
::
f32
,
shape
);
shared_ptr
<
runtime
::
TensorView
>
c
=
backend
->
make_primary_tensor_view
(
element
::
f32
,
shape
);
shared_ptr
<
runtime
::
TensorView
>
c
=
backend
->
create_tensor
(
element
::
f32
,
shape
);
copy_data
(
a
,
test
::
NDArray
<
float
,
2
>
({{
1
,
2
},
{
3
,
4
}}).
get_vector
());
copy_data
(
a
,
test
::
NDArray
<
float
,
2
>
({{
1
,
2
},
{
3
,
4
}}).
get_vector
());
copy_data
(
b
,
test
::
NDArray
<
float
,
2
>
({{
5
,
6
},
{
7
,
8
}}).
get_vector
());
copy_data
(
b
,
test
::
NDArray
<
float
,
2
>
({{
5
,
6
},
{
7
,
8
}}).
get_vector
());
cf
->
call
(
{
c
},
{
a
,
b
});
backend
->
call
(
f
,
{
c
},
{
a
,
b
});
EXPECT_EQ
(
read_vector
<
float
>
(
c
),
(
test
::
NDArray
<
float
,
2
>
({{
6
,
8
},
{
10
,
12
}})).
get_vector
());
EXPECT_EQ
(
read_vector
<
float
>
(
c
),
(
test
::
NDArray
<
float
,
2
>
({{
6
,
8
},
{
10
,
12
}})).
get_vector
());
}
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment