Commit 6c676d2d authored by Jaikrishnan Menon's avatar Jaikrishnan Menon

CPU: Merge fixes

parent 2659d5be
...@@ -226,20 +226,13 @@ void runtime::cpu::CPU_ExternalFunction::compile() ...@@ -226,20 +226,13 @@ void runtime::cpu::CPU_ExternalFunction::compile()
string function_name = m_function->get_name(); string function_name = m_function->get_name();
<<<<<<< HEAD
ngraph::pass::Manager pass_manager; ngraph::pass::Manager pass_manager;
pass_manager.register_pass<runtime::cpu::pass::CPUFusion>();
pass_manager.register_pass<runtime::cpu::pass::CPULayout>(); pass_manager.register_pass<runtime::cpu::pass::CPULayout>();
pass_manager.register_pass<ngraph::pass::Liveness>(); pass_manager.register_pass<ngraph::pass::Liveness>();
pass_manager.register_pass<ngraph::pass::MemoryLayout>(MemoryPoolAlignment); pass_manager.register_pass<ngraph::pass::MemoryLayout>(MemoryPoolAlignment);
=======
pass::Manager pass_manager;
// For now, just make everyone row-major.
pass_manager.register_pass<pass::CPUFusion>();
pass_manager.register_pass<pass::AssignLayout<descriptor::layout::DenseTensorViewLayout>>();
pass_manager.register_pass<pass::Liveness>();
pass_manager.register_pass<pass::MemoryLayout>(64);
>>>>>>> master
pass_manager.run_passes(m_function); pass_manager.run_passes(m_function);
codegen::CodeWriter writer; codegen::CodeWriter writer;
......
// ---------------------------------------------------------------------------- // ----------------------------------------------------------------------------
// Copyright 2018 Nervana Systems Inc. // Copyright 2018 Nervana Systems Inc.
// Licensed under the Apache License, Version 2.0 (the "License"); // Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License. // you may not use this file except in compliance with the License.
// You may obtain a copy of the License at // You may obtain a copy of the License at
// //
// http://www.apache.org/licenses/LICENSE-2.0 // http://www.apache.org/licenses/LICENSE-2.0
// //
// Unless required by applicable law or agreed to in writing, software // Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, // distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and // See the License for the specific language governing permissions and
// ---------------------------------------------------------------------------- // ----------------------------------------------------------------------------
#include "cpu_fusion.hpp" #include "cpu_fusion.hpp"
#include <algorithm> #include <algorithm>
#include <iostream> #include <iostream>
#include <unordered_set> #include <unordered_set>
#include "ngraph/graph_util.hpp" #include "ngraph/graph_util.hpp"
#include "ngraph/log.hpp" #include "ngraph/log.hpp"
#include "ngraph/ops/add.hpp" #include "ngraph/ops/add.hpp"
#include "ngraph/ops/broadcast.hpp" #include "ngraph/ops/broadcast.hpp"
#include "ngraph/ops/broadcast.hpp" #include "ngraph/ops/broadcast.hpp"
#include "ngraph/ops/dot.hpp" #include "ngraph/ops/dot.hpp"
#include "ngraph/ops/parameter.hpp" #include "ngraph/ops/parameter.hpp"
#include "ngraph/ops/reshape.hpp" #include "ngraph/ops/reshape.hpp"
#include "ngraph/pattern/matcher.hpp" #include "ngraph/pattern/matcher.hpp"
#include "ngraph/pattern/op/any.hpp" #include "ngraph/pattern/op/any.hpp"
#include "ngraph/pattern/op/label.hpp" #include "ngraph/pattern/op/label.hpp"
#include "ngraph/runtime/cpu/ops/matmul_bias.hpp" #include "ngraph/runtime/cpu/ops/matmul_bias.hpp"
static bool init_cblas_arg(std::shared_ptr<ngraph::Node> reshape, static bool init_cblas_arg(std::shared_ptr<ngraph::Node> reshape,
std::shared_ptr<ngraph::Node> arg, std::shared_ptr<ngraph::Node> arg,
bool& transpose_w, bool& transpose_w,
ngraph::Shape& shape_w) ngraph::Shape& shape_w)
{ {
auto r_w = std::dynamic_pointer_cast<ngraph::op::Reshape>(reshape); auto r_w = std::dynamic_pointer_cast<ngraph::op::Reshape>(reshape);
if (!r_w) if (!r_w)
{ {
return true; //nth to do; reshape isn't a reshape return true; //nth to do; reshape isn't a reshape
} }
if (r_w->get_shape().size() != 2) if (r_w->get_shape().size() != 2)
{ {
NGRAPH_DEBUG << "Reshape for " << reshape->get_name() << " doesn't reshape into matrix" NGRAPH_DEBUG << "Reshape for " << reshape->get_name() << " doesn't reshape into matrix"
<< ngraph::vector_to_string(r_w->get_shape()); << ngraph::vector_to_string(r_w->get_shape());
return false; return false;
} }
auto io = r_w->get_input_order(); auto io = r_w->get_input_order();
if (r_w->get_shape().size() != arg->get_shape().size()) //reshape if (r_w->get_shape().size() != arg->get_shape().size()) //reshape
{ {
ngraph::AxisVector dio(io.size()); ngraph::AxisVector dio(io.size());
std::iota(begin(dio), end(dio), 0); std::iota(begin(dio), end(dio), 0);
if (io != dio) //we can't reshape and transpose at the same time if (io != dio) //we can't reshape and transpose at the same time
{ {
NGRAPH_DEBUG << "Reshape for " << reshape->get_name() << " is not in default order " NGRAPH_DEBUG << "Reshape for " << reshape->get_name() << " is not in default order "
<< ngraph::vector_to_string(io); << ngraph::vector_to_string(io);
NGRAPH_DEBUG << "r_w shape = " << ngraph::vector_to_string(r_w->get_shape()); NGRAPH_DEBUG << "r_w shape = " << ngraph::vector_to_string(r_w->get_shape());
NGRAPH_DEBUG << "arg shape = " << ngraph::vector_to_string(arg->get_shape()); NGRAPH_DEBUG << "arg shape = " << ngraph::vector_to_string(arg->get_shape());
return false; return false;
} }
shape_w = r_w->get_shape(); shape_w = r_w->get_shape();
} }
else else
{ {
if (io == ngraph::AxisVector{1, 0}) if (io == ngraph::AxisVector{1, 0})
{ {
transpose_w = true; transpose_w = true;
} }
//otherwise no-op reshape //otherwise no-op reshape
} }
return true; return true;
} }
template <typename T> template <typename T>
static std::vector<T> apply_permutation(std::vector<T> input, ngraph::AxisVector order) static std::vector<T> apply_permutation(std::vector<T> input, ngraph::AxisVector order)
{ {
if (input.size() != order.size()) if (input.size() != order.size())
{ {
throw "input and order sizes don't match!"; throw "input and order sizes don't match!";
} }
std::vector<T> output(input.size()); std::vector<T> output(input.size());
for (size_t i = 0; i < order.size(); i++) for (size_t i = 0; i < order.size(); i++)
{ {
output[i] = input.at(order.at(i)); output[i] = input.at(order.at(i));
} }
return output; return output;
} }
void ngraph::pass::CPUFusion::construct_gemm_pattern() void ngraph::runtime::cpu::pass::CPUFusion::construct_gemm_pattern()
{ {
auto shape_w = Shape{2, 4}; auto shape_w = Shape{2, 4};
auto shape_x = Shape{4, 1}; auto shape_x = Shape{4, 1};
auto shape_b = Shape{1}; auto shape_b = Shape{1};
auto shape_dot = Shape{2, 1}; auto shape_dot = Shape{2, 1};
auto W = std::make_shared<pattern::op::Label>(element::f32, shape_w); auto W = std::make_shared<pattern::op::Label>(element::f32, shape_w);
auto x = std::make_shared<pattern::op::Label>(element::f32, shape_x); auto x = std::make_shared<pattern::op::Label>(element::f32, shape_x);
auto reshape_pred = [](std::shared_ptr<Node> n) { auto reshape_pred = [](std::shared_ptr<Node> n) {
return static_cast<bool>(std::dynamic_pointer_cast<op::Reshape>(n)); return static_cast<bool>(std::dynamic_pointer_cast<op::Reshape>(n));
}; };
auto skip_w = std::make_shared<pattern::op::Any>(W, reshape_pred); auto skip_w = std::make_shared<pattern::op::Any>(W, reshape_pred);
auto skip_x = std::make_shared<pattern::op::Any>(x, reshape_pred); auto skip_x = std::make_shared<pattern::op::Any>(x, reshape_pred);
auto pdot = std::make_shared<op::Dot>(skip_w, skip_x); auto pdot = std::make_shared<op::Dot>(skip_w, skip_x);
auto b = std::make_shared<pattern::op::Label>(element::f32, shape_b); auto b = std::make_shared<pattern::op::Label>(element::f32, shape_b);
auto pbroadcast = std::make_shared<op::Broadcast>(b, shape_dot, AxisSet{0}); auto pbroadcast = std::make_shared<op::Broadcast>(b, shape_dot, AxisSet{0});
auto padd = pdot + pbroadcast; auto padd = pdot + pbroadcast;
ngraph::pattern::gr_callback_fn callback = [W, x, b](pattern::Matcher& m) { ngraph::pattern::gr_callback_fn callback = [W, x, b](pattern::Matcher& m) {
NGRAPH_DEBUG << "In callback for construct_gemm_pattern against node = " NGRAPH_DEBUG << "In callback for construct_gemm_pattern against node = "
<< m.match_root()->get_name(); << m.match_root()->get_name();
auto pattern_map = m.get_pattern_map(); auto pattern_map = m.get_pattern_map();
std::shared_ptr<Node> nn = nullptr; std::shared_ptr<Node> nn = nullptr;
auto mpattern = m.match_root(); auto mpattern = m.match_root();
if (mpattern->get_element_type() != element::f32) if (mpattern->get_element_type() != element::f32)
{ {
NGRAPH_DEBUG << "mpattern = " << mpattern->get_name() << " type is not float!"; NGRAPH_DEBUG << "mpattern = " << mpattern->get_name() << " type is not float!";
return nn; return nn;
} }
auto dot = mpattern->get_input_op(0); auto dot = mpattern->get_input_op(0);
if (dot->get_shape().size() != 2) if (dot->get_shape().size() != 2)
{ {
NGRAPH_DEBUG << "dot = " << dot->get_name() << " shape is not equal to 2!"; NGRAPH_DEBUG << "dot = " << dot->get_name() << " shape is not equal to 2!";
return nn; return nn;
} }
bool transpose_w = false; bool transpose_w = false;
Shape shape_arg0{pattern_map[W]->get_shape()}; Shape shape_arg0{pattern_map[W]->get_shape()};
if (!init_cblas_arg(dot->get_input_op(0), pattern_map[W], transpose_w, shape_arg0)) if (!init_cblas_arg(dot->get_input_op(0), pattern_map[W], transpose_w, shape_arg0))
{ {
return nn; return nn;
} }
bool transpose_x = false; bool transpose_x = false;
Shape shape_arg1{pattern_map[x]->get_shape()}; Shape shape_arg1{pattern_map[x]->get_shape()};
if (!init_cblas_arg(dot->get_input_op(1), pattern_map[x], transpose_x, shape_arg1)) if (!init_cblas_arg(dot->get_input_op(1), pattern_map[x], transpose_x, shape_arg1))
{ {
return nn; return nn;
} }
auto cg = std::shared_ptr<Node>(new op::MatmulBias(pattern_map[W], auto cg = std::shared_ptr<Node>(new op::MatmulBias(pattern_map[W],
pattern_map[x], pattern_map[x],
mpattern->get_input_op(1), mpattern->get_input_op(1),
shape_arg0, shape_arg0,
shape_arg1, shape_arg1,
transpose_w, transpose_w,
transpose_x)); transpose_x));
return cg; return cg;
}; };
auto m = std::make_shared<ngraph::pattern::Matcher>(padd, callback); auto m = std::make_shared<ngraph::pattern::Matcher>(padd, callback);
this->add_matcher(m); this->add_matcher(m);
} }
// ---------------------------------------------------------------------------- // ----------------------------------------------------------------------------
// Copyright 2018 Nervana Systems Inc. // Copyright 2018 Nervana Systems Inc.
// Licensed under the Apache License, Version 2.0 (the "License"); // Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License. // you may not use this file except in compliance with the License.
// You may obtain a copy of the License at // You may obtain a copy of the License at
// //
// http://www.apache.org/licenses/LICENSE-2.0 // http://www.apache.org/licenses/LICENSE-2.0
// //
// Unless required by applicable law or agreed to in writing, software // Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, // distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and // See the License for the specific language governing permissions and
// ---------------------------------------------------------------------------- // ----------------------------------------------------------------------------
#pragma once #pragma once
#include "ngraph/pass/graph_rewrite.hpp" #include "ngraph/pass/graph_rewrite.hpp"
namespace ngraph namespace ngraph
{ {
namespace pass namespace runtime
{ {
class CPUFusion; namespace cpu
} {
} namespace pass
{
class ngraph::pass::CPUFusion : public ngraph::pass::GraphRewrite class CPUFusion;
{ }
public: }
CPUFusion() }
: GraphRewrite() }
{
construct_gemm_pattern(); class ngraph::runtime::cpu::pass::CPUFusion : public ngraph::pass::GraphRewrite
} {
public:
private: CPUFusion()
void construct_gemm_pattern(); : GraphRewrite()
}; {
construct_gemm_pattern();
}
private:
void construct_gemm_pattern();
};
// ---------------------------------------------------------------------------- // ----------------------------------------------------------------------------
// Copyright 2018 Nervana Systems Inc. // Copyright 2018 Nervana Systems Inc.
// Licensed under the Apache License, Version 2.0 (the "License"); // Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License. // you may not use this file except in compliance with the License.
// You may obtain a copy of the License at // You may obtain a copy of the License at
// //
// http://www.apache.org/licenses/LICENSE-2.0 // http://www.apache.org/licenses/LICENSE-2.0
// //
// Unless required by applicable law or agreed to in writing, software // Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, // distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and // See the License for the specific language governing permissions and
// ---------------------------------------------------------------------------- // ----------------------------------------------------------------------------
#include <algorithm> #include <algorithm>
#include <cstdio> #include <cstdio>
#include <iostream> #include <iostream>
#include <list> #include <list>
#include <memory> #include <memory>
#include "gtest/gtest.h" #include "gtest/gtest.h"
#include "ngraph/graph_util.hpp" #include "ngraph/graph_util.hpp"
#include "ngraph/log.hpp" #include "ngraph/log.hpp"
#include "ngraph/ngraph.hpp" #include "ngraph/ngraph.hpp"
#include "ngraph/ops/sum.hpp" #include "ngraph/ops/sum.hpp"
#include "ngraph/pass/graph_rewrite.hpp" #include "ngraph/pass/graph_rewrite.hpp"
#include "ngraph/pass/manager.hpp" #include "ngraph/pass/manager.hpp"
#include "ngraph/pattern/matcher.hpp" #include "ngraph/pattern/matcher.hpp"
#include "ngraph/pattern/op/any.hpp" #include "ngraph/pattern/op/any.hpp"
#include "ngraph/pattern/op/label.hpp" #include "ngraph/pattern/op/label.hpp"
// //
#include "ngraph/file_util.hpp" #include "ngraph/file_util.hpp"
#include "ngraph/json.hpp" #include "ngraph/json.hpp"
#include "ngraph/runtime/cpu/ops/matmul_bias.hpp" #include "ngraph/runtime/cpu/ops/matmul_bias.hpp"
#include "ngraph/runtime/cpu/pass/cpu_fusion.hpp" #include "ngraph/runtime/cpu/pass/cpu_fusion.hpp"
#include "ngraph/serializer.hpp" #include "ngraph/serializer.hpp"
#include "ngraph/util.hpp" #include "ngraph/util.hpp"
#include "util/matcher.hpp" #include "util/matcher.hpp"
#include "util/test_tools.hpp" #include "util/test_tools.hpp"
using namespace ngraph; using namespace ngraph;
using namespace std; using namespace std;
TEST(cpu_fusion, gemm_pattern) TEST(cpu_fusion, gemm_pattern)
{ {
auto shape_w = Shape{2, 4}; auto shape_w = Shape{2, 4};
auto shape_x = Shape{4, 1}; auto shape_x = Shape{4, 1};
auto shape_b = Shape{1}; auto shape_b = Shape{1};
auto A = make_shared<op::Parameter>(element::f32, shape_w); auto A = make_shared<op::Parameter>(element::f32, shape_w);
auto B = make_shared<op::Parameter>(element::f32, shape_x); auto B = make_shared<op::Parameter>(element::f32, shape_x);
auto C = make_shared<op::Parameter>(element::f32, shape_b); auto C = make_shared<op::Parameter>(element::f32, shape_b);
auto dot = make_shared<op::Dot>(A, B); auto dot = make_shared<op::Dot>(A, B);
auto broadcast = make_shared<op::Broadcast>(C, dot->get_shape(), AxisSet{0}); auto broadcast = make_shared<op::Broadcast>(C, dot->get_shape(), AxisSet{0});
auto add = dot + broadcast; auto add = dot + broadcast;
auto W = std::make_shared<pattern::op::Label>(A); auto W = std::make_shared<pattern::op::Label>(A);
auto x = std::make_shared<pattern::op::Label>(B); auto x = std::make_shared<pattern::op::Label>(B);
auto reshape_pred = [](std::shared_ptr<Node> n) { auto reshape_pred = [](std::shared_ptr<Node> n) {
return static_cast<bool>(std::dynamic_pointer_cast<op::Reshape>(n)); return static_cast<bool>(std::dynamic_pointer_cast<op::Reshape>(n));
}; };
auto skip_w = std::make_shared<pattern::op::Any>(W, reshape_pred); auto skip_w = std::make_shared<pattern::op::Any>(W, reshape_pred);
auto skip_x = std::make_shared<pattern::op::Any>(x, reshape_pred); auto skip_x = std::make_shared<pattern::op::Any>(x, reshape_pred);
auto pdot = make_shared<op::Dot>(skip_w, skip_x); auto pdot = make_shared<op::Dot>(skip_w, skip_x);
auto b = std::make_shared<pattern::op::Label>(C); auto b = std::make_shared<pattern::op::Label>(C);
auto pbroadcast = make_shared<op::Broadcast>(b, dot->get_shape(), AxisSet{0}); auto pbroadcast = make_shared<op::Broadcast>(b, dot->get_shape(), AxisSet{0});
auto padd = pdot + pbroadcast; auto padd = pdot + pbroadcast;
TestMatcher n(nullptr); TestMatcher n(nullptr);
ASSERT_TRUE(n.match(padd, add)); ASSERT_TRUE(n.match(padd, add));
ASSERT_EQ(n.get_pattern_map()[W], A); ASSERT_EQ(n.get_pattern_map()[W], A);
ASSERT_EQ(n.get_pattern_map()[x], B); ASSERT_EQ(n.get_pattern_map()[x], B);
ASSERT_EQ(n.get_pattern_map()[b], C); ASSERT_EQ(n.get_pattern_map()[b], C);
auto reshape_w = make_shared<op::Reshape>(A, AxisVector{1, 0}, W->get_shape()); auto reshape_w = make_shared<op::Reshape>(A, AxisVector{1, 0}, W->get_shape());
auto reshape_x = make_shared<op::Reshape>(B, AxisVector{1, 0}, x->get_shape()); auto reshape_x = make_shared<op::Reshape>(B, AxisVector{1, 0}, x->get_shape());
auto re_dot = make_shared<op::Dot>(reshape_w, reshape_x); auto re_dot = make_shared<op::Dot>(reshape_w, reshape_x);
auto re_add = re_dot + broadcast; auto re_add = re_dot + broadcast;
ASSERT_TRUE(n.match(padd, re_add)); ASSERT_TRUE(n.match(padd, re_add));
ASSERT_EQ(n.get_pattern_map()[W], A); ASSERT_EQ(n.get_pattern_map()[W], A);
ASSERT_EQ(n.get_pattern_map()[x], B); ASSERT_EQ(n.get_pattern_map()[x], B);
ASSERT_EQ(n.get_pattern_map()[b], C); ASSERT_EQ(n.get_pattern_map()[b], C);
auto cg = auto cg =
make_shared<op::MatmulBias>(W, x, broadcast, W->get_shape(), x->get_shape(), false, false); make_shared<op::MatmulBias>(W, x, broadcast, W->get_shape(), x->get_shape(), false, false);
} }
TEST(cpu_fusion, gemm_cpu) TEST(cpu_fusion, gemm_cpu)
{ {
auto shapeA = Shape{3, 2}; auto shapeA = Shape{3, 2};
auto shapeB = Shape{2, 3}; auto shapeB = Shape{2, 3};
auto shapeC = Shape{2, 2}; auto shapeC = Shape{2, 2};
auto A = make_shared<op::Parameter>(element::f32, shapeA); auto A = make_shared<op::Parameter>(element::f32, shapeA);
auto B = make_shared<op::Parameter>(element::f32, shapeB); auto B = make_shared<op::Parameter>(element::f32, shapeB);
auto reshape_w = make_shared<op::Reshape>(A, AxisVector{1, 0}, Shape{2, 3}); auto reshape_w = make_shared<op::Reshape>(A, AxisVector{1, 0}, Shape{2, 3});
auto reshape_x = make_shared<op::Reshape>(B, AxisVector{1, 0}, Shape{3, 2}); auto reshape_x = make_shared<op::Reshape>(B, AxisVector{1, 0}, Shape{3, 2});
auto one = op::Constant::create<float>(element::f32, Shape{}, std::vector<float>{1.0f}); auto one = op::Constant::create<float>(element::f32, Shape{}, std::vector<float>{1.0f});
auto broadcast = make_shared<op::Broadcast>(one, shapeC, AxisSet{0, 1}); auto broadcast = make_shared<op::Broadcast>(one, shapeC, AxisSet{0, 1});
auto cg = auto cg =
make_shared<op::MatmulBias>(A, B, broadcast, A->get_shape(), B->get_shape(), true, true); make_shared<op::MatmulBias>(A, B, broadcast, A->get_shape(), B->get_shape(), true, true);
auto f = make_shared<Function>(cg, op::Parameters{A, B}); auto f = make_shared<Function>(cg, op::Parameters{A, B});
auto manager = runtime::Manager::get("CPU"); auto manager = runtime::Manager::get("CPU");
auto external = manager->compile(f); auto external = manager->compile(f);
auto backend = manager->allocate_backend(); auto backend = manager->allocate_backend();
auto cf = backend->make_call_frame(external); auto cf = backend->make_call_frame(external);
shared_ptr<runtime::TensorView> a = backend->make_primary_tensor_view(element::f32, shapeA); shared_ptr<runtime::TensorView> a = backend->make_primary_tensor_view(element::f32, shapeA);
shared_ptr<runtime::TensorView> b = backend->make_primary_tensor_view(element::f32, shapeB); shared_ptr<runtime::TensorView> b = backend->make_primary_tensor_view(element::f32, shapeB);
shared_ptr<runtime::TensorView> result = shared_ptr<runtime::TensorView> result =
backend->make_primary_tensor_view(element::f32, shapeC); backend->make_primary_tensor_view(element::f32, shapeC);
vector<float> dataA{1.0f, 4.0f, 1.0f, 4.0f, 1.0f, 4.0f}; vector<float> dataA{1.0f, 4.0f, 1.0f, 4.0f, 1.0f, 4.0f};
vector<float> dataB{3.0f, 3.0f, 3.0f, 9.0f, 9.0f, 9.0f}; vector<float> dataB{3.0f, 3.0f, 3.0f, 9.0f, 9.0f, 9.0f};
copy_data(a, dataA); copy_data(a, dataA);
copy_data(b, dataB); copy_data(b, dataB);
cf->call({a, b}, {result}); cf->call({a, b}, {result});
vector<float> expected{10, 28, 37, 109}; vector<float> expected{10, 28, 37, 109};
ASSERT_TRUE(read_vector<float>(result) == expected); ASSERT_TRUE(read_vector<float>(result) == expected);
} }
TEST(cpu_fusion, cpu_fusion_pass_basic) TEST(cpu_fusion, cpu_fusion_pass_basic)
{ {
auto shape = Shape{}; auto shape = Shape{};
auto shape_w = Shape{2, 4}; auto shape_w = Shape{2, 4};
auto shape_x = Shape{4, 1}; auto shape_x = Shape{4, 1};
auto shape_b = Shape{1}; auto shape_b = Shape{1};
auto A = make_shared<op::Parameter>(element::f32, shape_w); auto A = make_shared<op::Parameter>(element::f32, shape_w);
auto B = make_shared<op::Parameter>(element::f32, shape_x); auto B = make_shared<op::Parameter>(element::f32, shape_x);
auto C = make_shared<op::Parameter>(element::f32, shape_b); auto C = make_shared<op::Parameter>(element::f32, shape_b);
auto dot = make_shared<op::Dot>(A, B); auto dot = make_shared<op::Dot>(A, B);
auto broadcast = make_shared<op::Broadcast>(C, dot->get_shape(), AxisSet{0}); auto broadcast = make_shared<op::Broadcast>(C, dot->get_shape(), AxisSet{0});
auto add = dot + broadcast; auto add = dot + broadcast;
auto graph = make_shared<op::Abs>(add); auto graph = make_shared<op::Abs>(add);
pass::Manager pass_manager; pass::Manager pass_manager;
pass_manager.register_pass<pass::CPUFusion>(); pass_manager.register_pass<runtime::cpu::pass::CPUFusion>();
auto func = make_shared<Function>(graph, op::Parameters{A, B, C}); auto func = make_shared<Function>(graph, op::Parameters{A, B, C});
pass_manager.run_passes(func); pass_manager.run_passes(func);
ASSERT_NE(std::dynamic_pointer_cast<op::MatmulBias>(graph->get_input_op(0)), nullptr); ASSERT_NE(std::dynamic_pointer_cast<op::MatmulBias>(graph->get_input_op(0)), nullptr);
} }
TEST(cpu_fusion, gemm_mlp) TEST(cpu_fusion, gemm_mlp)
{ {
const string json_path = file_util::path_join(SERIALIZED_ZOO, "mxnet/mnist_mlp_forward.json"); const string json_path = file_util::path_join(SERIALIZED_ZOO, "mxnet/mnist_mlp_forward.json");
const string json_string = file_util::read_file_to_string(json_path); const string json_string = file_util::read_file_to_string(json_path);
stringstream ss(json_string); stringstream ss(json_string);
shared_ptr<Function> func = ngraph::deserialize(ss); shared_ptr<Function> func = ngraph::deserialize(ss);
pass::Manager pass_manager; pass::Manager pass_manager;
pass_manager.register_pass<pass::CPUFusion>(); pass_manager.register_pass<runtime::cpu::pass::CPUFusion>();
pass_manager.run_passes(func); pass_manager.run_passes(func);
size_t ccg = count_ops_of_type<op::MatmulBias>(func); size_t ccg = count_ops_of_type<op::MatmulBias>(func);
ASSERT_EQ(ccg, 3); ASSERT_EQ(ccg, 3);
} }
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment