Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
N
ngraph
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
ngraph
Commits
6576932f
Commit
6576932f
authored
Jul 20, 2018
by
Jaikrishnan Menon
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
CPU Direct Execution: Refactor and implement builder auto-registration
This allows op builders to be self-contained changesets
parent
1df7602e
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
101 additions
and
222 deletions
+101
-222
cpu_builder.cpp
src/ngraph/runtime/cpu/cpu_builder.cpp
+57
-221
cpu_builder.hpp
src/ngraph/runtime/cpu/cpu_builder.hpp
+44
-1
No files found.
src/ngraph/runtime/cpu/cpu_builder.cpp
View file @
6576932f
...
...
@@ -31,32 +31,21 @@
#include "ngraph/op/and.hpp"
#include "ngraph/op/asin.hpp"
#include "ngraph/op/atan.hpp"
#include "ngraph/op/avg_pool.hpp"
#include "ngraph/op/batch_norm.hpp"
#include "ngraph/op/broadcast.hpp"
#include "ngraph/op/ceiling.hpp"
#include "ngraph/op/concat.hpp"
#include "ngraph/op/constant.hpp"
#include "ngraph/op/convert.hpp"
#include "ngraph/op/convolution.hpp"
#include "ngraph/op/cos.hpp"
#include "ngraph/op/cosh.hpp"
#include "ngraph/op/divide.hpp"
#include "ngraph/op/dot.hpp"
#include "ngraph/op/equal.hpp"
#include "ngraph/op/exp.hpp"
#include "ngraph/op/floor.hpp"
#include "ngraph/op/function_call.hpp"
#include "ngraph/op/get_output_element.hpp"
#include "ngraph/op/greater.hpp"
#include "ngraph/op/greater_eq.hpp"
#include "ngraph/op/less.hpp"
#include "ngraph/op/less_eq.hpp"
#include "ngraph/op/log.hpp"
#include "ngraph/op/max.hpp"
#include "ngraph/op/max_pool.hpp"
#include "ngraph/op/maximum.hpp"
#include "ngraph/op/min.hpp"
#include "ngraph/op/minimum.hpp"
#include "ngraph/op/multiply.hpp"
#include "ngraph/op/negative.hpp"
...
...
@@ -74,9 +63,7 @@
#include "ngraph/op/relu.hpp"
#include "ngraph/op/remainder.hpp"
#include "ngraph/op/replace_slice.hpp"
#include "ngraph/op/reshape.hpp"
#include "ngraph/op/result.hpp"
#include "ngraph/op/reverse.hpp"
#include "ngraph/op/reverse_sequence.hpp"
#include "ngraph/op/select.hpp"
#include "ngraph/op/select_and_scatter.hpp"
...
...
@@ -87,7 +74,6 @@
#include "ngraph/op/softmax.hpp"
#include "ngraph/op/sqrt.hpp"
#include "ngraph/op/subtract.hpp"
#include "ngraph/op/sum.hpp"
#include "ngraph/op/tan.hpp"
#include "ngraph/op/tanh.hpp"
#include "ngraph/runtime/cpu/cpu_kernels.hpp"
...
...
@@ -96,18 +82,27 @@
#include "ngraph/runtime/cpu/kernel/add.hpp"
#include "ngraph/runtime/cpu/kernel/broadcast.hpp"
#include "ngraph/runtime/cpu/kernel/ceil.hpp"
#include "ngraph/runtime/cpu/kernel/cwise_pow.hpp"
#include "ngraph/runtime/cpu/kernel/divide.hpp"
#include "ngraph/runtime/cpu/kernel/equal.hpp"
#include "ngraph/runtime/cpu/kernel/exp.hpp"
#include "ngraph/runtime/cpu/kernel/floor.hpp"
#include "ngraph/runtime/cpu/kernel/greater.hpp"
#include "ngraph/runtime/cpu/kernel/greater_eq.hpp"
#include "ngraph/runtime/cpu/kernel/less.hpp"
#include "ngraph/runtime/cpu/kernel/less_eq.hpp"
#include "ngraph/runtime/cpu/kernel/log.hpp"
#include "ngraph/runtime/cpu/kernel/maximum.hpp"
#include "ngraph/runtime/cpu/kernel/minimum.hpp"
#include "ngraph/runtime/cpu/kernel/multiply.hpp"
#include "ngraph/runtime/cpu/kernel/negative.hpp"
#include "ngraph/runtime/cpu/kernel/not.hpp"
#include "ngraph/runtime/cpu/kernel/not_equal.hpp"
#include "ngraph/runtime/cpu/kernel/relu.hpp"
#include "ngraph/runtime/cpu/kernel/result.hpp"
#include "ngraph/runtime/cpu/op/batch_norm_relu.hpp"
#include "ngraph/runtime/cpu/op/conv_bias.hpp"
#include "ngraph/runtime/cpu/op/conv_relu.hpp"
#include "ngraph/runtime/cpu/kernel/sqrt.hpp"
#include "ngraph/runtime/cpu/kernel/subtract.hpp"
#include "ngraph/runtime/cpu/op/convert_layout.hpp"
#include "ngraph/runtime/cpu/op/lstm.hpp"
#include "ngraph/runtime/cpu/op/matmul_bias.hpp"
#include "ngraph/runtime/cpu/op/max_pool_with_indices.hpp"
#include "ngraph/runtime/cpu/op/rnn.hpp"
#include "ngraph/runtime/cpu/op/sigmoid.hpp"
#include "ngraph/type/element_type.hpp"
#include "ngraph/util.hpp"
...
...
@@ -119,39 +114,6 @@
using
namespace
std
;
using
namespace
ngraph
;
#define BUILD_UNARY_ELEMWISE_FUNCTOR(OP) \
auto& functors = external_function->get_functors(); \
auto& tensor_data = external_function->get_tensor_data(); \
std::function<void(void*, void*, size_t)> kernel; \
\
SELECT_KERNEL(kernel, out[0].get_element_type(), OP); \
\
auto element_count = out[0].get_size(); \
auto& arg0_tensor = tensor_data[args[0].get_name()]; \
auto& out0_tensor = tensor_data[out[0].get_name()]; \
\
auto functor = [&, kernel, element_count](CPURuntimeContext* ctx) { \
kernel(arg0_tensor, out0_tensor, element_count); \
}; \
functors.emplace_back(functor);
#define BUILD_BINARY_ELEMWISE_FUNCTOR(OP) \
auto& functors = external_function->get_functors(); \
auto& tensor_data = external_function->get_tensor_data(); \
std::function<void(void*, void*, void*, size_t)> kernel; \
\
SELECT_KERNEL(kernel, out[0].get_element_type(), OP); \
\
auto element_count = out[0].get_size(); \
auto& arg0_tensor = tensor_data[args[0].get_name()]; \
auto& arg1_tensor = tensor_data[args[1].get_name()]; \
auto& out0_tensor = tensor_data[out[0].get_name()]; \
\
auto functor = [&, kernel, element_count](CPURuntimeContext* ctx) { \
kernel(arg0_tensor, arg1_tensor, out0_tensor, element_count); \
}; \
functors.emplace_back(functor);
namespace
ngraph
{
namespace
runtime
...
...
@@ -222,148 +184,21 @@ namespace ngraph
}
template
<>
void
Builder
::
BUILDER_DECL
(
ngraph
::
op
::
MatmulBias
)
void
Builder
::
BUILDER_DECL
(
ngraph
::
op
::
Exp
)
{
auto
&
functors
=
external_function
->
get_functors
();
auto
&
tensor_data
=
external_function
->
get_tensor_data
();
auto
&
arg0_tensor
=
tensor_data
[
args
[
0
].
get_name
()];
auto
&
arg1_tensor
=
tensor_data
[
args
[
1
].
get_name
()];
auto
&
out0_tensor
=
tensor_data
[
out
[
0
].
get_name
()];
const
ngraph
::
op
::
MatmulBias
*
mm
=
static_cast
<
const
ngraph
::
op
::
MatmulBias
*>
(
node
);
const
auto
&
arg0_shape
=
mm
->
get_arg0_shape
();
const
auto
&
arg1_shape
=
mm
->
get_arg1_shape
();
const
auto
&
arg2_shape
=
node
->
get_shape
();
auto
m
=
arg0_shape
[
0
];
auto
n
=
arg1_shape
[
1
];
auto
k
=
arg0_shape
[
1
];
bool
transpose_A
=
false
,
transpose_B
=
false
;
auto
lda
=
arg0_shape
[
1
];
auto
ldb
=
arg1_shape
[
1
];
if
(
mm
->
get_is_arg0_transposed
())
{
transpose_A
=
true
;
m
=
arg0_shape
[
1
];
k
=
arg0_shape
[
0
];
}
if
(
mm
->
get_is_arg1_transposed
())
{
transpose_B
=
true
;
n
=
arg1_shape
[
0
];
}
const
float
beta
=
0.0
f
;
auto
mm_functor
=
[
&
,
transpose_A
,
transpose_B
,
m
,
n
,
k
,
lda
,
ldb
,
beta
,
arg2_shape
](
CPURuntimeContext
*
ctx
)
{
cblas
::
cblas_sgemm
(
cblas
::
Layout
::
RowMajor
,
transpose_A
?
cblas
::
Transpose
::
Transpose
:
cblas
::
Transpose
::
None
,
transpose_B
?
cblas
::
Transpose
::
Transpose
:
cblas
::
Transpose
::
None
,
m
,
n
,
k
,
1.0
f
,
static_cast
<
float
*>
(
arg0_tensor
),
max
(
1UL
,
lda
),
static_cast
<
float
*>
(
arg1_tensor
),
max
(
1UL
,
ldb
),
beta
,
static_cast
<
float
*>
(
out0_tensor
),
max
(
1UL
,
arg2_shape
[
1
]));
};
function
<
void
(
CPURuntimeContext
*
)
>
bias_functor
=
[](
CPURuntimeContext
*
ctx
)
{};
if
(
args
.
size
()
>
2
)
{
auto
&
arg2_tensor
=
tensor_data
[
args
[
2
].
get_name
()];
auto
axes
=
mm
->
get_broadcast_axes
();
if
(
axes
.
size
()
==
1
)
{
if
(
*
(
axes
.
begin
())
==
0
)
{
vector
<
float
>
ones_row
(
arg2_shape
[
0
],
1.0
f
);
bias_functor
=
[
&
,
ones_row
,
arg2_shape
](
CPURuntimeContext
*
ctx
)
{
cblas
::
cblas_sgemm
(
cblas
::
Layout
::
RowMajor
,
cblas
::
Transpose
::
None
,
cblas
::
Transpose
::
None
,
arg2_shape
[
0
],
arg2_shape
[
1
],
1
,
1.0
f
,
ones_row
.
data
(),
1UL
,
static_cast
<
float
*>
(
arg2_tensor
),
max
(
1UL
,
arg2_shape
[
1
]),
1.0
f
,
static_cast
<
float
*>
(
out0_tensor
),
max
(
1UL
,
arg2_shape
[
1
]));
};
}
else
{
vector
<
float
>
ones_col
(
arg2_shape
[
1
],
1.0
f
);
bias_functor
=
[
&
,
ones_col
,
arg2_shape
](
CPURuntimeContext
*
ctx
)
{
cblas
::
cblas_sgemm
(
cblas
::
Layout
::
RowMajor
,
cblas
::
Transpose
::
None
,
cblas
::
Transpose
::
None
,
arg2_shape
[
0
],
arg2_shape
[
1
],
1
,
1.0
f
,
static_cast
<
float
*>
(
arg2_tensor
),
1UL
,
ones_col
.
data
(),
max
(
1UL
,
arg2_shape
[
1
]),
1.0
f
,
static_cast
<
float
*>
(
out0_tensor
),
max
(
1UL
,
arg2_shape
[
1
]));
};
}
}
else
{
if
(
axes
.
size
()
!=
2
)
{
throw
ngraph_error
(
"unexpected broadcast rank"
);
}
vector
<
float
>
ones_scalar
(
arg2_shape
[
0
],
1.0
f
);
BUILD_UNARY_ELEMWISE_FUNCTOR
(
runtime
::
cpu
::
kernel
::
exp
);
}
bias_functor
=
[
&
,
ones_scalar
,
arg2_shape
](
CPURuntimeContext
*
ctx
)
{
vector
<
float
>
bias
(
arg2_shape
[
1
],
*
static_cast
<
float
*>
(
arg2_tensor
));
cblas
::
cblas_sgemm
(
cblas
::
Layout
::
RowMajor
,
cblas
::
Transpose
::
None
,
cblas
::
Transpose
::
None
,
arg2_shape
[
0
],
arg2_shape
[
1
],
1
,
1.0
f
,
ones_scalar
.
data
(),
1UL
,
bias
.
data
(),
max
(
1UL
,
arg2_shape
[
1
]),
1.0
f
,
static_cast
<
float
*>
(
out0_tensor
),
max
(
1UL
,
arg2_shape
[
1
]));
};
}
}
template
<>
void
Builder
::
BUILDER_DECL
(
ngraph
::
op
::
Log
)
{
BUILD_UNARY_ELEMWISE_FUNCTOR
(
runtime
::
cpu
::
kernel
::
log
);
}
auto
functor
=
[
&
,
mm_functor
,
bias_functor
](
CPURuntimeContext
*
ctx
)
{
mm_functor
(
ctx
);
bias_functor
(
ctx
);
};
functors
.
emplace_back
(
functor
);
template
<>
void
Builder
::
BUILDER_DECL
(
ngraph
::
op
::
Not
)
{
BUILD_UNARY_ELEMWISE_FUNCTOR
(
runtime
::
cpu
::
kernel
::
logical_not
);
}
template
<>
...
...
@@ -393,35 +228,36 @@ namespace ngraph
#define TI(x) type_index(typeid(x))
const
BuildOpMap
build_dispatcher
{
{
TI
(
ngraph
::
op
::
Add
),
&
runtime
::
cpu
::
Builder
::
build
<
ngraph
::
op
::
Add
>
},
{
TI
(
ngraph
::
op
::
Multiply
),
&
runtime
::
cpu
::
Builder
::
build
<
ngraph
::
op
::
Multiply
>
},
BuildOpMap
build_dispatcher
{
{
TI
(
ngraph
::
op
::
Parameter
),
&
runtime
::
cpu
::
Builder
::
nop
},
{
TI
(
ngraph
::
op
::
Abs
),
&
runtime
::
cpu
::
Builder
::
build
<
ngraph
::
op
::
Abs
>
},
{
TI
(
ngraph
::
op
::
AvgPool
),
&
runtime
::
cpu
::
Builder
::
build
<
ngraph
::
op
::
AvgPool
>
},
{
TI
(
ngraph
::
op
::
Broadcast
),
&
runtime
::
cpu
::
Builder
::
build
<
ngraph
::
op
::
Broadcast
>
},
{
TI
(
ngraph
::
op
::
Ceiling
),
&
runtime
::
cpu
::
Builder
::
build
<
ngraph
::
op
::
Ceiling
>
},
{
TI
(
ngraph
::
runtime
::
cpu
::
op
::
ConvertLayout
),
&
runtime
::
cpu
::
Builder
::
build
<
ngraph
::
runtime
::
cpu
::
op
::
ConvertLayout
>
},
{
TI
(
ngraph
::
op
::
Convolution
),
&
runtime
::
cpu
::
Builder
::
build
<
ngraph
::
op
::
Convolution
>
},
{
TI
(
ngraph
::
op
::
ConvolutionRelu
),
&
runtime
::
cpu
::
Builder
::
build
<
ngraph
::
op
::
ConvolutionRelu
>
},
{
TI
(
ngraph
::
op
::
ConvolutionBias
),
&
runtime
::
cpu
::
Builder
::
build
<
ngraph
::
op
::
ConvolutionBias
>
},
{
TI
(
ngraph
::
op
::
ConvolutionBiasAdd
),
&
runtime
::
cpu
::
Builder
::
build
<
ngraph
::
op
::
ConvolutionBiasAdd
>
},
{
TI
(
ngraph
::
op
::
ConvolutionBackpropData
),
&
runtime
::
cpu
::
Builder
::
build
<
ngraph
::
op
::
ConvolutionBackpropData
>
},
{
TI
(
ngraph
::
op
::
ConvolutionBackpropFilters
),
&
runtime
::
cpu
::
Builder
::
build
<
ngraph
::
op
::
ConvolutionBackpropFilters
>
},
{
TI
(
ngraph
::
op
::
ConvolutionBiasBackpropFiltersBias
),
&
runtime
::
cpu
::
Builder
::
build
<
ngraph
::
op
::
ConvolutionBiasBackpropFiltersBias
>
},
{
TI
(
ngraph
::
op
::
Relu
),
&
runtime
::
cpu
::
Builder
::
build
<
ngraph
::
op
::
Relu
>
},
{
TI
(
ngraph
::
op
::
Reshape
),
&
runtime
::
cpu
::
Builder
::
build
<
ngraph
::
op
::
Reshape
>
},
{
TI
(
ngraph
::
op
::
Result
),
&
runtime
::
cpu
::
Builder
::
build
<
ngraph
::
op
::
Result
>
},
{
TI
(
ngraph
::
op
::
MatmulBias
),
&
runtime
::
cpu
::
Builder
::
build
<
ngraph
::
op
::
MatmulBias
>
},
{
TI
(
ngraph
::
op
::
Constant
),
&
runtime
::
cpu
::
Builder
::
build
<
ngraph
::
op
::
Constant
>
}};
&
runtime
::
cpu
::
Builder
::
build
<
ngraph
::
runtime
::
cpu
::
op
::
ConvertLayout
>
}};
REGISTER_OP_BUILDER
(
Constant
);
REGISTER_OP_BUILDER
(
Result
);
REGISTER_OP_BUILDER
(
Add
);
REGISTER_OP_BUILDER
(
Subtract
);
REGISTER_OP_BUILDER
(
Multiply
);
REGISTER_OP_BUILDER
(
Divide
);
REGISTER_OP_BUILDER
(
Power
);
REGISTER_OP_BUILDER
(
Abs
);
REGISTER_OP_BUILDER
(
Ceiling
);
REGISTER_OP_BUILDER
(
Floor
);
REGISTER_OP_BUILDER
(
Negative
);
REGISTER_OP_BUILDER
(
Relu
);
REGISTER_OP_BUILDER
(
Exp
);
REGISTER_OP_BUILDER
(
Log
);
REGISTER_OP_BUILDER
(
Sqrt
);
REGISTER_OP_BUILDER
(
Not
);
REGISTER_OP_BUILDER
(
Equal
);
REGISTER_OP_BUILDER
(
NotEqual
);
REGISTER_OP_BUILDER
(
Greater
);
REGISTER_OP_BUILDER
(
GreaterEq
);
REGISTER_OP_BUILDER
(
Less
);
REGISTER_OP_BUILDER
(
LessEq
);
REGISTER_OP_BUILDER
(
Maximum
);
REGISTER_OP_BUILDER
(
Minimum
);
}
}
}
src/ngraph/runtime/cpu/cpu_builder.hpp
View file @
6576932f
...
...
@@ -157,6 +157,49 @@
SELECT_RANK(KV, uint64_t, R, K); \
}
#define BUILD_UNARY_ELEMWISE_FUNCTOR(OP) \
auto& functors = external_function->get_functors(); \
auto& tensor_data = external_function->get_tensor_data(); \
std::function<void(void*, void*, size_t)> kernel; \
\
SELECT_KERNEL(kernel, args[0].get_element_type(), OP); \
\
auto element_count = out[0].get_size(); \
auto& arg0_tensor = tensor_data[args[0].get_name()]; \
auto& out0_tensor = tensor_data[out[0].get_name()]; \
\
auto functor = [&, kernel, element_count](CPURuntimeContext* ctx) { \
kernel(arg0_tensor, out0_tensor, element_count); \
}; \
functors.emplace_back(functor);
#define BUILD_BINARY_ELEMWISE_FUNCTOR(OP) \
auto& functors = external_function->get_functors(); \
auto& tensor_data = external_function->get_tensor_data(); \
std::function<void(void*, void*, void*, size_t)> kernel; \
\
SELECT_KERNEL(kernel, args[0].get_element_type(), OP); \
\
auto element_count = out[0].get_size(); \
auto& arg0_tensor = tensor_data[args[0].get_name()]; \
auto& arg1_tensor = tensor_data[args[1].get_name()]; \
auto& out0_tensor = tensor_data[out[0].get_name()]; \
\
auto functor = [&, kernel, element_count](CPURuntimeContext* ctx) { \
kernel(arg0_tensor, arg1_tensor, out0_tensor, element_count); \
}; \
functors.emplace_back(functor);
#define REGISTER_OP_BUILDER(OP) \
static struct __register_##OP##_builder \
{ \
__register_##OP##_builder() \
{ \
build_dispatcher.insert({type_index(typeid(ngraph::op::OP)), \
&runtime::cpu::Builder::build<ngraph::op::OP>}); \
} \
} __register_##OP##_builder_instance;
namespace
ngraph
{
namespace
runtime
...
...
@@ -171,7 +214,7 @@ namespace ngraph
using
BuildOpMap
=
std
::
unordered_map
<
std
::
type_index
,
BuildOpFunction
>
;
extern
const
BuildOpMap
build_dispatcher
;
extern
BuildOpMap
build_dispatcher
;
class
Builder
{
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment