Unverified Commit 5e607081 authored by Scott Cyphers's avatar Scott Cyphers Committed by GitHub

Unnused parameter cleanup (#3603)

parent 5dd1e07d
......@@ -133,8 +133,8 @@ namespace ngraph
const Shape& padding_below,
const Shape& padding_above,
bool include_padding_in_avg_computation,
const Output<Node>& min,
const Output<Node>& max)
const Output<Node>& /* min */,
const Output<Node>& /* max */)
{
return make_shared<op::QuantizedAvgPool>(input,
window_shape,
......@@ -222,8 +222,8 @@ namespace ngraph
const Strides& window_movement_strides,
const Shape& padding_below,
const Shape& padding_above,
const Output<Node>& min,
const Output<Node>& max)
const Output<Node>& /* min */,
const Output<Node>& /* max */)
{
return make_shared<op::QuantizedMaxPool>(
input, window_shape, window_movement_strides, padding_below, padding_above);
......
......@@ -35,32 +35,35 @@ namespace ngraph
{
std::printf("%s: %s\n", timestamp.c_str(), buf.data());
}
void all_reduce(void* in,
void* out,
element::Type_t element_type,
reduction::Type reduce_type,
size_t count) override
void all_reduce(void* /* in */,
void* /* out */,
element::Type_t /* element_type */,
reduction::Type /* reduce_type */,
size_t /* count */) override
{
throw ngraph_error("Distributed Library not supported/mentioned");
}
void broadcast(void* in,
element::Type_t element_type,
size_t count,
int root_id) override
void broadcast(void* /* in */,
element::Type_t /* element_type */,
size_t /* count */,
int /* root_id */) override
{
throw ngraph_error("Distributed Library not supported/mentioned");
}
void recv(void* in, element::Type_t element_type, size_t count, int src_id) override
void recv(void* /* in */,
element::Type_t /* element_type */,
size_t /* count */,
int /* src_id*/) override
{
throw ngraph_error("Distributed Library not supported/mentioned");
}
void send(const void* in,
element::Type_t element_type,
size_t count,
int dest_id) override
void send(const void* /* in */,
element::Type_t /* element_type */,
size_t /* count */,
int /* dest_id */) override
{
throw ngraph_error("Distributed Library not supported/mentioned");
}
......
......@@ -25,7 +25,7 @@ namespace ngraph
{
const std::string NullNode::type_name{"NullNode"};
std::shared_ptr<Node> NullNode::copy_with_new_args(const NodeVector& new_args) const
std::shared_ptr<Node> NullNode::copy_with_new_args(const NodeVector& /* new_args */) const
{
return std::make_shared<NullNode>();
}
......
......@@ -48,85 +48,93 @@ ONNXIFI_PUBLIC ONNXIFI_CHECK_RESULT onnxStatus ONNXIFI_ABI
}
}
ONNXIFI_PUBLIC ONNXIFI_CHECK_RESULT onnxStatus ONNXIFI_ABI
onnxReleaseBackendID(onnxBackendID backendID)
ONNXIFI_PUBLIC
ONNXIFI_CHECK_RESULT onnxStatus ONNXIFI_ABI onnxReleaseBackendID(onnxBackendID /* backendID */)
{
return ONNXIFI_STATUS_INTERNAL_ERROR;
}
ONNXIFI_PUBLIC ONNXIFI_CHECK_RESULT onnxStatus ONNXIFI_ABI onnxGetBackendInfo(
onnxBackendID backendID, onnxBackendInfo infoType, void* infoValue, std::size_t* infoValueSize)
ONNXIFI_PUBLIC ONNXIFI_CHECK_RESULT onnxStatus ONNXIFI_ABI
onnxGetBackendInfo(onnxBackendID /* backendID */,
onnxBackendInfo /* infoType */,
void* /* infoValue */,
std::size_t* /* infoValueSize */)
{
return ONNXIFI_STATUS_BACKEND_UNAVAILABLE;
}
ONNXIFI_PUBLIC ONNXIFI_CHECK_RESULT onnxStatus ONNXIFI_ABI onnxGetBackendCompatibility(
onnxBackendID backendID, std::size_t onnxModelSize, const void* onnxModel)
onnxBackendID /* backendID */, std::size_t /* onnxModelSize */, const void* /* onnxModel */)
{
return ONNXIFI_STATUS_BACKEND_UNAVAILABLE;
}
ONNXIFI_PUBLIC ONNXIFI_CHECK_RESULT onnxStatus ONNXIFI_ABI onnxInitBackend(
onnxBackendID backendID, const uint64_t* auxPropertiesList, onnxBackend* backend)
ONNXIFI_PUBLIC ONNXIFI_CHECK_RESULT onnxStatus ONNXIFI_ABI
onnxInitBackend(onnxBackendID /* backendID */,
const uint64_t* /* auxPropertiesList */,
onnxBackend* /* backend */)
{
return ONNXIFI_STATUS_BACKEND_UNAVAILABLE;
}
ONNXIFI_PUBLIC ONNXIFI_CHECK_RESULT onnxStatus ONNXIFI_ABI onnxReleaseBackend(onnxBackend backend)
ONNXIFI_PUBLIC
ONNXIFI_CHECK_RESULT onnxStatus ONNXIFI_ABI onnxReleaseBackend(onnxBackend /* backend */)
{
return ONNXIFI_STATUS_INTERNAL_ERROR;
}
ONNXIFI_PUBLIC ONNXIFI_CHECK_RESULT onnxStatus ONNXIFI_ABI onnxInitEvent(onnxBackend backend,
onnxEvent* event)
ONNXIFI_PUBLIC ONNXIFI_CHECK_RESULT onnxStatus ONNXIFI_ABI onnxInitEvent(onnxBackend /* backend */,
onnxEvent* /* event */)
{
return ONNXIFI_STATUS_BACKEND_UNAVAILABLE;
}
ONNXIFI_PUBLIC ONNXIFI_CHECK_RESULT onnxStatus ONNXIFI_ABI onnxSignalEvent(onnxEvent event)
ONNXIFI_PUBLIC ONNXIFI_CHECK_RESULT onnxStatus ONNXIFI_ABI onnxSignalEvent(onnxEvent /* event */)
{
return ONNXIFI_STATUS_BACKEND_UNAVAILABLE;
}
ONNXIFI_PUBLIC ONNXIFI_CHECK_RESULT onnxStatus ONNXIFI_ABI onnxWaitEvent(onnxEvent event)
ONNXIFI_PUBLIC ONNXIFI_CHECK_RESULT onnxStatus ONNXIFI_ABI onnxWaitEvent(onnxEvent /* event */)
{
return ONNXIFI_STATUS_BACKEND_UNAVAILABLE;
}
ONNXIFI_PUBLIC ONNXIFI_CHECK_RESULT onnxStatus ONNXIFI_ABI onnxReleaseEvent(onnxEvent event)
ONNXIFI_PUBLIC ONNXIFI_CHECK_RESULT onnxStatus ONNXIFI_ABI onnxReleaseEvent(onnxEvent /* event */)
{
return ONNXIFI_STATUS_INTERNAL_ERROR;
}
ONNXIFI_PUBLIC ONNXIFI_CHECK_RESULT onnxStatus ONNXIFI_ABI
onnxInitGraph(onnxBackend backend,
const uint64_t* auxPropertiesList,
std::size_t onnxModelSize,
const void* onnxModel,
uint32_t weightsCount,
const onnxTensorDescriptorV1* weightDescriptors,
onnxGraph* graph)
onnxInitGraph(onnxBackend /* backend */,
const uint64_t* /* auxPropertiesList */,
std::size_t /* onnxModelSize */,
const void* /* onnxModel */,
uint32_t /* weightsCount */,
const onnxTensorDescriptorV1* /* weightDescriptors */,
onnxGraph* /* graph */)
{
return ONNXIFI_STATUS_BACKEND_UNAVAILABLE;
}
ONNXIFI_PUBLIC ONNXIFI_CHECK_RESULT onnxStatus ONNXIFI_ABI
onnxSetGraphIO(onnxGraph graph,
std::uint32_t inputsCount,
const onnxTensorDescriptorV1* inputDescriptors,
std::uint32_t outputsCount,
const onnxTensorDescriptorV1* outputDescriptors)
onnxSetGraphIO(onnxGraph /* graph */,
std::uint32_t /* inputsCount */,
const onnxTensorDescriptorV1* /* inputDescriptors */,
std::uint32_t /* outputsCount */,
const onnxTensorDescriptorV1* /* outputDescriptors */)
{
return ONNXIFI_STATUS_BACKEND_UNAVAILABLE;
}
ONNXIFI_PUBLIC ONNXIFI_CHECK_RESULT onnxStatus ONNXIFI_ABI onnxRunGraph(
onnxGraph graph, const onnxMemoryFenceV1* inputFence, onnxMemoryFenceV1* outputFence)
ONNXIFI_PUBLIC ONNXIFI_CHECK_RESULT onnxStatus ONNXIFI_ABI
onnxRunGraph(onnxGraph /* graph */,
const onnxMemoryFenceV1* /* inputFence */,
onnxMemoryFenceV1* /* outputFence */)
{
return ONNXIFI_STATUS_BACKEND_UNAVAILABLE;
}
ONNXIFI_PUBLIC ONNXIFI_CHECK_RESULT onnxStatus ONNXIFI_ABI onnxReleaseGraph(onnxGraph graph)
ONNXIFI_PUBLIC ONNXIFI_CHECK_RESULT onnxStatus ONNXIFI_ABI onnxReleaseGraph(onnxGraph /* graph */)
{
return ONNXIFI_STATUS_INTERNAL_ERROR;
}
......
......@@ -130,7 +130,10 @@ namespace ngraph
/// \param output_size Number of outputs for this node
Node(const NodeVector& arguments, size_t output_size = 1);
virtual void generate_adjoints(autodiff::Adjoints& adjoints, const NodeVector& deltas) {}
virtual void generate_adjoints(autodiff::Adjoints& /* adjoints */,
const NodeVector& /* deltas */)
{
}
/// \brief Moves nodes that would be deleted from inputs to nodes to avoid stack overflows on deep networks.
void safe_delete(NodeVector& nodes, bool recurse);
......
......@@ -143,8 +143,8 @@ namespace ngraph
copy_with_new_args(const NodeVector& new_args) const override;
protected:
virtual void generate_adjoints(autodiff::Adjoints& adjoints,
const NodeVector& deltas) override
virtual void generate_adjoints(autodiff::Adjoints& /* adjoints */,
const NodeVector& /* deltas */) override
{
throw ngraph_error("Invalid operation");
}
......
......@@ -364,11 +364,11 @@ namespace ngraph
namespace op
{
template <>
void Constant::write_to_buffer<string>(const element::Type& target_type,
const Shape& target_shape,
const vector<string>& source,
void* target,
size_t target_element_count)
void Constant::write_to_buffer<string>(const element::Type& /* target_type */,
const Shape& /* target_shape */,
const vector<string>& /* source */,
void* /* target */,
size_t /* target_element_count */)
{
}
}
......
......@@ -275,7 +275,7 @@ namespace ngraph
template <typename T>
void write_to_buffer(const element::Type& target_type,
const Shape& target_shape,
const Shape& /* target_shape */,
const std::vector<T>& source,
void* target,
size_t target_element_count)
......
......@@ -157,7 +157,8 @@ shared_ptr<Node> op::Dequantize::copy_with_new_args(const NodeVector& new_args)
return make_shared<Dequantize>(new_args.at(0), new_args.at(1), new_args.at(2), m_type, m_axes);
}
void op::Dequantize::generate_adjoints(autodiff::Adjoints& adjoints, const NodeVector& deltas)
void op::Dequantize::generate_adjoints(autodiff::Adjoints& /* adjoints */,
const NodeVector& /* deltas */)
{
throw ngraph_error("Forward-propagation-only operation");
}
......@@ -49,7 +49,8 @@ namespace ngraph
void validate_and_infer_types() override;
void generate_adjoints(autodiff::Adjoints& adjoints, const NodeVector& deltas) override
void generate_adjoints(autodiff::Adjoints& /* adjoints */,
const NodeVector& /* deltas */) override
{
throw ngraph_error("Not yet implemented");
}
......
......@@ -133,7 +133,8 @@ shared_ptr<Node> op::DynBroadcast::copy_with_new_args(const NodeVector& new_args
}
// TODO: This function is not implemented!
void op::DynBroadcast::generate_adjoints(autodiff::Adjoints& adjoints, const NodeVector& deltas)
void op::DynBroadcast::generate_adjoints(autodiff::Adjoints& /* adjoints */,
const NodeVector& /* deltas */)
{
throw ngraph_error("generate_adjoints not implemented for DynBroadcast");
}
......@@ -25,7 +25,7 @@ op::DynPad::DynPad(const std::shared_ptr<Node>& arg,
const std::shared_ptr<Node>& padding_below,
const std::shared_ptr<Node>& padding_above,
const std::shared_ptr<Node>& padding_value,
op::PadMode pad_mode)
op::PadMode /* pad_mode */)
: Op(check_single_output_args({arg, padding_below, padding_above, padding_value}))
{
constructor_validate_and_infer_types();
......@@ -110,7 +110,8 @@ shared_ptr<Node> op::DynPad::copy_with_new_args(const NodeVector& new_args) cons
}
// TODO: This function is not implemented!
void op::DynPad::generate_adjoints(autodiff::Adjoints& adjoints, const NodeVector& deltas)
void op::DynPad::generate_adjoints(autodiff::Adjoints& /* adjoints */,
const NodeVector& /* deltas */)
{
throw ngraph_error("generate_adjoints not implemented for DynPad");
}
......@@ -154,7 +154,8 @@ shared_ptr<Node> op::DynReplaceSlice::copy_with_new_args(const NodeVector& new_a
m_ellipsis_mask);
}
void op::DynReplaceSlice::generate_adjoints(autodiff::Adjoints& adjoints, const NodeVector& deltas)
void op::DynReplaceSlice::generate_adjoints(autodiff::Adjoints& /* adjoints */,
const NodeVector& /* deltas */)
{
throw ngraph_error("generate_adjoints not implemented for DynReplaceSlice");
}
......@@ -156,7 +156,8 @@ shared_ptr<Node> op::DynReshape::copy_with_new_args(const NodeVector& new_args)
return make_shared<DynReshape>(new_args.at(0), new_args.at(1), m_zero_flag);
}
void op::DynReshape::generate_adjoints(autodiff::Adjoints& adjoints, const NodeVector& deltas)
void op::DynReshape::generate_adjoints(autodiff::Adjoints& /* adjoints */,
const NodeVector& /* deltas */)
{
throw ngraph_error("generate_adjoints not implemented for DynReshape");
}
......@@ -125,7 +125,8 @@ shared_ptr<Node> op::DynSlice::copy_with_new_args(const NodeVector& new_args) co
m_ellipsis_mask);
}
void op::DynSlice::generate_adjoints(autodiff::Adjoints& adjoints, const NodeVector& deltas)
void op::DynSlice::generate_adjoints(autodiff::Adjoints& /* adjoints */,
const NodeVector& /* deltas */)
{
throw ngraph_error("generate_adjoints not implemented for DynSlice");
}
......@@ -77,8 +77,8 @@ namespace ngraph
void validate_and_infer_types() override;
protected:
virtual void generate_adjoints(autodiff::Adjoints& adjoints,
const NodeVector& deltas) override
virtual void generate_adjoints(autodiff::Adjoints& /* adjoints */,
const NodeVector& /* deltas */) override
{
}
......
......@@ -36,14 +36,14 @@ op::Range::Range(const Output<Node>& start, const Output<Node>& stop, const Outp
template <typename T>
static typename std::enable_if<std::is_integral<T>::value, void>::type
check_start(const op::Range* node, T start)
check_start(const op::Range* /* node */, T /* start */)
{
// Nothing to check for integral types.
}
template <typename T>
static typename std::enable_if<std::is_integral<T>::value, void>::type
check_stop(const op::Range* node, T stop)
check_stop(const op::Range* /* node */, T /* stop */)
{
// Nothing to check for integral types.
}
......@@ -125,7 +125,7 @@ static
}
template <typename T>
static PartialShape infer_output_shape(const op::Range* node, const element::Type& et)
static PartialShape infer_output_shape(const op::Range* node, const element::Type& /* et */)
{
auto const_start = dynamic_pointer_cast<op::Constant>(node->get_argument(0));
auto const_stop = dynamic_pointer_cast<op::Constant>(node->get_argument(1));
......
......@@ -94,7 +94,7 @@ shared_ptr<Node> op::Tile::copy_with_new_args(const NodeVector& new_args) const
}
// TODO: This function is not implemented!
void op::Tile::generate_adjoints(autodiff::Adjoints& adjoints, const NodeVector& deltas)
void op::Tile::generate_adjoints(autodiff::Adjoints& /* adjoints */, const NodeVector& /* deltas */)
{
throw ngraph_error("generate_adjoints not implemented for Tile");
}
......@@ -73,7 +73,8 @@ shared_ptr<Node> op::Transpose::copy_with_new_args(const NodeVector& new_args) c
// TODO(amprocte): This will require some way of inverting the permutation in-graph. (TensorFlow,
// for example, has an InvertPermutation op, but that doesn't feel very nGraph-y somehow.)
void op::Transpose::generate_adjoints(autodiff::Adjoints& adjoints, const NodeVector& deltas)
void op::Transpose::generate_adjoints(autodiff::Adjoints& /* adjoints */,
const NodeVector& /* deltas */)
{
throw ngraph_error("generate_adjoints not implemented for Transpose");
}
......@@ -178,7 +178,8 @@ NodeVector op::GroupConvolution::decompose_op() const
return {std::make_shared<ngraph::op::Concat>(convolution_nodes, concatenation_axis)};
}
void op::GroupConvolution::generate_adjoints(autodiff::Adjoints& adjoints, const NodeVector& deltas)
void op::GroupConvolution::generate_adjoints(autodiff::Adjoints& /* adjoints */,
const NodeVector& /* deltas */)
{
throw ngraph_error("NYI");
}
......@@ -328,8 +328,8 @@ NodeVector op::GroupConvolutionTranspose::decompose_op() const
}
}
void op::GroupConvolutionTranspose::generate_adjoints(autodiff::Adjoints& adjoints,
const NodeVector& deltas)
void op::GroupConvolutionTranspose::generate_adjoints(autodiff::Adjoints& /* adjoints */,
const NodeVector& /* deltas */)
{
throw ngraph_error(
"Generating adjoints is not yet implemented for GroupConvolutionTranspose node.");
......
......@@ -42,7 +42,8 @@ namespace ngraph
void validate_and_infer_types() override;
void generate_adjoints(autodiff::Adjoints& adjoints, const NodeVector& deltas) override
void generate_adjoints(autodiff::Adjoints& /* adjoints */,
const NodeVector& /* deltas */) override
{
throw ngraph_error("Not yet implemented");
}
......
......@@ -40,7 +40,8 @@ namespace ngraph
void validate_and_infer_types() override;
void generate_adjoints(autodiff::Adjoints& adjoints, const NodeVector& deltas) override
void generate_adjoints(autodiff::Adjoints& /* adjoints */,
const NodeVector& /* deltas */) override
{
throw ngraph_error("Not yet implemented");
}
......
......@@ -52,7 +52,7 @@ shared_ptr<Node> op::LRN::copy_with_new_args(const NodeVector& new_args) const
return make_shared<op::LRN>(new_args.at(0), m_alpha, m_beta, m_bias, m_size);
}
void op::LRN::generate_adjoints(autodiff::Adjoints& adjoints, const NodeVector& deltas)
void op::LRN::generate_adjoints(autodiff::Adjoints& /* adjoints */, const NodeVector& /* deltas */)
{
throw ngraph_error("NYI");
}
......@@ -161,7 +161,7 @@ shared_ptr<Node> op::Pad::copy_with_new_args(const NodeVector& new_args) const
and push that back.
*/
void op::Pad::generate_adjoints(autodiff::Adjoints& adjoints, const NodeVector& deltas)
void op::Pad::generate_adjoints(autodiff::Adjoints& /* adjoints */, const NodeVector& /* deltas */)
{
throw invalid_argument("Autodiff is not yet implemented for Pad");
}
......
......@@ -47,7 +47,7 @@ shared_ptr<Node> op::Parameter::copy_with_new_args(const NodeVector& new_args) c
return make_shared<Parameter>(m_element_type, m_partial_shape);
}
void op::Parameter::generate_adjoints(autodiff::Adjoints& adjoints, const NodeVector& deltas)
void op::Parameter::generate_adjoints(autodiff::Adjoints& /* adjoints */, const NodeVector& deltas)
{
auto delta = deltas.at(0);
}
......
......@@ -160,7 +160,8 @@ shared_ptr<Node> op::Quantize::copy_with_new_args(const NodeVector& new_args) co
new_args.at(0), new_args.at(1), new_args.at(2), m_type, m_axes, m_round_mode);
}
void op::Quantize::generate_adjoints(autodiff::Adjoints& adjoints, const NodeVector& deltas)
void op::Quantize::generate_adjoints(autodiff::Adjoints& /* adjoints */,
const NodeVector& /* deltas */)
{
throw ngraph_error("Forward-propagation-only operation");
}
......@@ -196,8 +196,8 @@ shared_ptr<Node> op::QuantizedConvolution::copy_with_new_args(const NodeVector&
m_output_axes));
}
void op::QuantizedConvolution::generate_adjoints(autodiff::Adjoints& adjoints,
const NodeVector& deltas)
void op::QuantizedConvolution::generate_adjoints(autodiff::Adjoints& /* adjoints */,
const NodeVector& /* deltas */)
{
throw ngraph_error("Forward-propagation-only operation");
}
......@@ -42,7 +42,8 @@ namespace ngraph
void validate_and_infer_types() override;
void generate_adjoints(autodiff::Adjoints& adjoints, const NodeVector& deltas) override
void generate_adjoints(autodiff::Adjoints& /* adjoints */,
const NodeVector& /* deltas */) override
{
throw ngraph_error("Not yet implemented");
}
......
......@@ -42,7 +42,8 @@ namespace ngraph
void validate_and_infer_types() override;
void generate_adjoints(autodiff::Adjoints& adjoints, const NodeVector& deltas) override
void generate_adjoints(autodiff::Adjoints& /* adjoints */,
const NodeVector& /* deltas */) override
{
throw ngraph_error("Not yet implemented");
}
......
......@@ -137,7 +137,7 @@ shared_ptr<Node> op::TopK::copy_with_new_args(const NodeVector& new_args) const
new_args.at(0), new_args.at(1), m_top_k_axis, m_index_element_type, m_compute_max, m_sort);
}
void op::TopK::generate_adjoints(autodiff::Adjoints& adjoints, const NodeVector& deltas)
void op::TopK::generate_adjoints(autodiff::Adjoints& /* adjoints */, const NodeVector& /* deltas */)
{
throw ngraph_error("Forward-propagation-only operation");
}
......@@ -29,17 +29,17 @@
using namespace std;
using namespace ngraph;
static shared_ptr<Node> sigmoid(const shared_ptr<Node>& arg, float alpha, float beta)
static shared_ptr<Node> sigmoid(const shared_ptr<Node>& arg, float /* alpha */, float /* beta */)
{
return make_shared<op::Sigmoid>(arg);
}
static shared_ptr<Node> tanh(const shared_ptr<Node>& arg, float alpha, float beta)
static shared_ptr<Node> tanh(const shared_ptr<Node>& arg, float /* alpha */, float /* beta */)
{
return make_shared<op::Tanh>(arg);
}
static shared_ptr<Node> relu(const shared_ptr<Node>& arg, float alpha, float beta)
static shared_ptr<Node> relu(const shared_ptr<Node>& arg, float /* alpha */, float /* beta */)
{
return make_shared<op::Relu>(arg);
}
......
......@@ -65,7 +65,8 @@ void op::util::FusedOp::validate_and_infer_types()
post_validate_and_infer_types();
}
void op::util::FusedOp::generate_adjoints(autodiff::Adjoints& adjoints, const NodeVector& deltas)
void op::util::FusedOp::generate_adjoints(autodiff::Adjoints& /* adjoints */,
const NodeVector& /*deltas*/)
{
// TODO
throw ngraph_error("Autodiff on fused ops not supported yet");
......
......@@ -120,8 +120,8 @@ void op::util::IndexReduction::validate_and_infer_types()
set_output_type(0, m_index_element_type, output_shape);
}
void op::util::IndexReduction::generate_adjoints(autodiff::Adjoints& adjoints,
const NodeVector& deltas)
void op::util::IndexReduction::generate_adjoints(autodiff::Adjoints& /* adjoints */,
const NodeVector& /* deltas */)
{
throw ngraph_error("Forward-propagation-only operation");
}
......@@ -53,7 +53,7 @@ pass::Manager::~Manager()
{
}
void pass::Manager::run_passes(shared_ptr<Function> func, bool transitive)
void pass::Manager::run_passes(shared_ptr<Function> func, bool /* transitive */)
{
static bool profile_enabled = getenv("NGRAPH_PROFILE_PASS_ENABLE") != nullptr;
......
......@@ -250,17 +250,17 @@ int pass::MemoryVisualize::compute_op_weight(const shared_ptr<Node> exop)
return mass;
}
size_t pass::MemoryVisualize::memory_usage(shared_ptr<Node> node)
size_t pass::MemoryVisualize::memory_usage(shared_ptr<Node> /* node */)
{
return 0;
}
size_t pass::MemoryVisualize::memory_footprint(shared_ptr<Node> node)
size_t pass::MemoryVisualize::memory_footprint(shared_ptr<Node> /* node */)
{
return 0;
}
size_t pass::MemoryVisualize::memory_footprint(const std::list<shared_ptr<Node>>& nodes)
size_t pass::MemoryVisualize::memory_footprint(const std::list<shared_ptr<Node>>& /* nodes */)
{
return 0;
}
......@@ -326,7 +326,7 @@ static void sink_reshape(shared_ptr<op::Reshape> reshape,
static void sink_unary(shared_ptr<op::util::UnaryElementwiseArithmetic> n,
ReshapeMap& reorders,
set<shared_ptr<Node>>& reshapes_to_delete)
set<shared_ptr<Node>>& /* reshapes_to_delete */)
{
auto arg_reshape = read_reshapemap(reorders, n->get_argument(0));
NGRAPH_DEBUG << "Propagating " << describe_reshape(arg_reshape) << " for " << n->get_name();
......@@ -373,7 +373,7 @@ static void sink_binary(shared_ptr<op::util::BinaryElementwiseArithmetic> binary
static void sink_slice(shared_ptr<op::Slice> n,
ReshapeMap& reorders,
set<shared_ptr<Node>>& reshapes_to_delete)
set<shared_ptr<Node>>& /* reshapes_to_delete */)
{
auto arg_reshape = reorders.at(n->get_argument(0));
auto order = arg_reshape->get_input_order();
......@@ -399,8 +399,9 @@ static void sink_slice(shared_ptr<op::Slice> n,
write_reshapemap(reorders, new_slice, new_reshape);
}
static void
sink_pad(shared_ptr<op::Pad> n, ReshapeMap& reorders, set<shared_ptr<Node>>& reshapes_to_delete)
static void sink_pad(shared_ptr<op::Pad> n,
ReshapeMap& reorders,
set<shared_ptr<Node>>& /* reshapes_to_delete */)
{
auto arg_reshape = reorders.at(n->get_argument(0));
auto order = arg_reshape->get_input_order();
......@@ -425,7 +426,7 @@ static void
}
static void sink_quantize(shared_ptr<op::Quantize> quantize,
ReshapeMap& reorders,
set<shared_ptr<Node>>& reshapes_to_delete)
set<shared_ptr<Node>>& /* reshapes_to_delete */)
{
auto arg_reshape = reorders.at(quantize->get_argument(0));
AxisSet axes_in_def_order =
......@@ -492,7 +493,7 @@ static void sink_concat(shared_ptr<op::Concat> n,
static void sink_dequantize(shared_ptr<op::Dequantize> dequantize,
ReshapeMap& reorders,
set<shared_ptr<Node>>& reshapes_to_delete)
set<shared_ptr<Node>>& /* reshapes_to_delete */)
{
auto arg_reshape = reorders.at(dequantize->get_argument(0));
AxisSet axes_in_def_order =
......
......@@ -148,7 +148,7 @@ private:
std::unordered_map<Node*, int64_t> m_heights;
};
static std::string label_edge(const std::shared_ptr<Node>& src,
static std::string label_edge(const std::shared_ptr<Node>& /* src */,
const std::shared_ptr<Node>& dst,
size_t arg_index,
int64_t jump_distance)
......
......@@ -40,7 +40,7 @@ namespace ngraph
}
virtual std::shared_ptr<Node>
copy_with_new_args(const NodeVector& new_args) const override
copy_with_new_args(const NodeVector& /* new_args */) const override
{
throw ngraph_error("Uncopyable");
}
......
......@@ -23,7 +23,7 @@ ngraph::runtime::Allocator::~Allocator()
class ngraph::runtime::DefaultAllocator : public ngraph::runtime::Allocator
{
public:
void* malloc(size_t size, size_t alignment)
void* malloc(size_t size, size_t /* alignment */)
{
// If allocation succeeds, returns a pointer to the lowest (first) byte in the
// allocated memory block that is suitably aligned for any scalar type.
......
......@@ -62,7 +62,8 @@ runtime::Backend::~Backend()
{
}
std::shared_ptr<ngraph::Node> runtime::Backend::get_backend_op(const std::string& op_name, ...)
std::shared_ptr<ngraph::Node> runtime::Backend::get_backend_op(const std::string& /* op_name */,
...)
{
std::shared_ptr<ngraph::Node> dummy_node(nullptr);
return dummy_node;
......@@ -89,42 +90,42 @@ vector<string> runtime::Backend::get_registered_devices()
}
std::shared_ptr<ngraph::runtime::Tensor>
runtime::Backend::create_dynamic_tensor(const ngraph::element::Type& element_type,
const PartialShape& shape)
runtime::Backend::create_dynamic_tensor(const ngraph::element::Type& /* element_type */,
const PartialShape& /* shape */)
{
throw std::invalid_argument("This backend does not support dynamic tensors");
}
std::shared_ptr<runtime::Executable>
runtime::Backend::compile(std::shared_ptr<Function> func,
ngraph::pass::PassConfig& pass_config,
ngraph::pass::PassConfig& /* pass_config */,
bool enable_performance_data)
{
return compile(func, enable_performance_data);
}
bool runtime::Backend::is_supported(const Node& node) const
bool runtime::Backend::is_supported(const Node& /* node */) const
{
// The default behavior is that a backend does not support any ops. If this is not the case
// then override this method and enhance.
return false;
}
bool runtime::Backend::is_supported_property(const Property prop) const
bool runtime::Backend::is_supported_property(const Property /* prop */) const
{
return false;
}
void runtime::Backend::remove_compiled_function(std::shared_ptr<Executable> exec)
void runtime::Backend::remove_compiled_function(std::shared_ptr<Executable> /* exec */)
{
}
std::shared_ptr<runtime::Executable> runtime::Backend::load(istream& input_stream)
std::shared_ptr<runtime::Executable> runtime::Backend::load(istream& /* input_stream */)
{
throw runtime_error("load operation unimplemented.");
}
bool runtime::Backend::is_device_memory(void* ptr)
bool runtime::Backend::is_device_memory(void* /* ptr */)
{
// override this method for each supported backend to determine if the passed pointer is in
// device pinned memory or not
......@@ -146,7 +147,7 @@ const string& runtime::Backend::get_backend_shared_library_search_directory()
return s_backend_shared_library_search_directory;
}
bool runtime::Backend::set_config(const map<string, string>& config, string& error)
bool runtime::Backend::set_config(const map<string, string>& /* config */, string& error)
{
error = "set_config not supported";
return false;
......
......@@ -159,7 +159,7 @@ public:
virtual Allocator* get_host_memory_allocator() { return nullptr; }
/// \brief Set the host memory allocator to be used by the backend
/// \param allocator is pointer to host memory allocator object
virtual void set_host_memory_allocator(Allocator* allocator) {}
virtual void set_host_memory_allocator(Allocator* allocator) { (void)allocator; }
/// \brief Returns memory allocator used by backend for device allocations
virtual Allocator* get_device_memory_allocator()
{
......
......@@ -119,29 +119,30 @@ vector<runtime::PerformanceCounter> runtime::Executable::get_performance_data()
return vector<PerformanceCounter>();
}
void runtime::Executable::save(std::ostream& output_stream)
void runtime::Executable::save(std::ostream& /* output_stream */)
{
throw runtime_error("save opertion unimplemented.");
}
shared_ptr<runtime::Tensor> runtime::Executable::create_input_tensor(size_t input_index)
shared_ptr<runtime::Tensor> runtime::Executable::create_input_tensor(size_t /* input_index */)
{
throw runtime_error("create_input_tensor unimplemented");
}
shared_ptr<runtime::Tensor> runtime::Executable::create_output_tensor(size_t output_index)
shared_ptr<runtime::Tensor> runtime::Executable::create_output_tensor(size_t /* output_index */)
{
throw runtime_error("create_output_tensor unimplemented");
}
vector<shared_ptr<runtime::Tensor>> runtime::Executable::create_input_tensor(size_t input_index,
size_t pipeline_depth)
vector<shared_ptr<runtime::Tensor>>
runtime::Executable::create_input_tensor(size_t /* input_index */, size_t /* pipeline_depth */)
{
throw runtime_error("create_input_tensor unimplemented");
}
vector<shared_ptr<runtime::Tensor>> runtime::Executable::create_output_tensor(size_t output_index,
size_t pipeline_depth)
vector<shared_ptr<runtime::Tensor>>
runtime::Executable::create_output_tensor(size_t /* output_index */,
size_t /* pipeline_depth */)
{
throw runtime_error("create_output_tensor unimplemented");
}
......@@ -32,7 +32,7 @@ runtime::BackendConstructor* runtime::interpreter::get_backend_constructor_point
class INTBackendConstructor : public runtime::BackendConstructor
{
public:
std::shared_ptr<runtime::Backend> create(const std::string& config) override
std::shared_ptr<runtime::Backend> create(const std::string& /* config */) override
{
return std::make_shared<runtime::interpreter::INTBackend>();
}
......
......@@ -37,7 +37,7 @@ extern "C" runtime::BackendConstructor* get_backend_constructor_pointer()
class LocalBackendConstructor : public runtime::BackendConstructor
{
public:
std::shared_ptr<runtime::Backend> create(const std::string& config) override
std::shared_ptr<runtime::Backend> create(const std::string& /* config */) override
{
return std::make_shared<runtime::nop::NOPBackend>();
}
......@@ -69,7 +69,7 @@ shared_ptr<runtime::Executable>
}
runtime::nop::NOPExecutable::NOPExecutable(shared_ptr<Function> function,
bool enable_performance_collection)
bool /* enable_performance_collection */)
{
pass::Manager pass_manager;
pass_manager.register_pass<pass::AssignLayout<DenseTensorLayout>>();
......@@ -78,8 +78,8 @@ runtime::nop::NOPExecutable::NOPExecutable(shared_ptr<Function> function,
set_parameters_and_results(*function);
}
bool runtime::nop::NOPExecutable::call(const vector<shared_ptr<runtime::Tensor>>& outputs,
const vector<shared_ptr<runtime::Tensor>>& inputs)
bool runtime::nop::NOPExecutable::call(const vector<shared_ptr<runtime::Tensor>>& /* outputs */,
const vector<shared_ptr<runtime::Tensor>>& /* inputs */)
{
return true;
}
......@@ -53,7 +53,8 @@ bool ngraph::runtime::plaidml::PlaidML_Backend::is_supported(const Node& node) c
return m_compiler.is_supported(node);
}
bool ngraph::runtime::plaidml::PlaidML_Backend::is_supported_property(const Property prop) const
bool ngraph::runtime::plaidml::PlaidML_Backend::is_supported_property(
const Property /* prop */) const
{
return false;
}
......
......@@ -40,7 +40,6 @@ void ngraph::runtime::plaidml::ImplGroupConvolution::Apply()
const auto& image = op_input(0);
const auto& filter = op_input(1);
auto rank = op().get_input_shape(0).size() - 2;
const auto& groups = op().get_groups();
const auto& padding_above = op().get_padding_above();
const auto& padding_below = op().get_padding_below();
......
......@@ -127,7 +127,7 @@ namespace ngraph
template <typename T>
void batch_norm_backprop(double eps,
const T* gamma,
const T* beta,
const T* /* beta */,
const T* input,
const T* mean,
const T* variance,
......
......@@ -45,7 +45,7 @@ namespace ngraph
}
template <typename T>
typename std::enable_if<std::is_integral<T>::value, bool>::type is_finite(T x)
typename std::enable_if<std::is_integral<T>::value, bool>::type is_finite(T /* x */)
{
return true;
}
......
......@@ -115,6 +115,7 @@ namespace ngraph
void write(const void* p, size_t offset, size_t n)
NGRAPH_DEPRECATED("Use two-parameter write")
{
(void)offset;
write(p, n);
}
......@@ -126,6 +127,7 @@ namespace ngraph
void read(void* p, size_t offset, size_t n) const
NGRAPH_DEPRECATED("Use two-parameter read")
{
(void)offset;
read(p, n);
}
......
......@@ -107,8 +107,11 @@ std::vector<const element::Type*> element::Type::get_known_types()
return rc;
}
element::Type::Type(
size_t bitwidth, bool is_real, bool is_signed, bool is_quantized, const std::string& cname)
element::Type::Type(size_t bitwidth,
bool is_real,
bool is_signed,
bool is_quantized,
const std::string& /* cname */)
{
for (auto& t : get_type_info_map())
{
......
......@@ -20,7 +20,7 @@
using namespace std;
using namespace ngraph;
Strides ngraph::conv_default_strides(const Node* node,
Strides ngraph::conv_default_strides(const Node* /* node */,
const PartialShape& data_batch_shape,
const PartialShape& filters_shape)
{
......@@ -42,7 +42,7 @@ Strides ngraph::conv_default_strides(const Node* node,
return Strides(rank, 1);
}
CoordinateDiff ngraph::conv_default_padding(const Node* node,
CoordinateDiff ngraph::conv_default_padding(const Node* /* node */,
const PartialShape& data_batch_shape,
const PartialShape& filters_shape)
{
......
......@@ -109,7 +109,7 @@ vector<runtime::PerformanceCounter> run_benchmark_pipelined(shared_ptr<Function>
size_t iterations,
bool timing_detail,
int warmup_iterations,
bool copy_data)
bool /* copy_data */)
{
constexpr size_t pipeline_depth = 2;
s_iterations = iterations;
......
......@@ -308,7 +308,7 @@ TEST(tracer, basic)
ngraph::runtime::cpu::CPU_Debugger dbg(*cf);
int good_or_bad_value = -777;
auto add_tracer = [&good_or_bad_value](void** values, const std::string& name) {
auto add_tracer = [&good_or_bad_value](void** values, const std::string& /* name */) {
ASSERT_EQ(static_cast<int*>(values[0])[0], good_or_bad_value);
};
......@@ -344,7 +344,7 @@ TEST(tracer, count_tracepoint)
size_t offset = 5;
std::function<void(void**, const std::string&)> callback =
[&num_iterations, offset](void** values, const std::string& name) {
[&num_iterations, offset](void** values, const std::string& /* name */) {
ASSERT_EQ(static_cast<int*>(values[0])[0], num_iterations - 1 + offset);
};
......@@ -385,7 +385,8 @@ TEST(tracer, conditional_tracepoint)
size_t offset = 5;
int countdown = num_iterations;
auto add_tracer = [&countdown, num_iterations, offset](void** values, const std::string& name) {
auto add_tracer = [&countdown, num_iterations, offset](void** values,
const std::string& /* name */) {
if (countdown-- == 0)
{
ASSERT_EQ(static_cast<int*>(values[0])[0], num_iterations - 1 + offset);
......
......@@ -35,7 +35,7 @@ TEST(pass_manager, add)
auto graph = make_test_graph();
size_t node_count = 0;
traverse_nodes(graph, [&](shared_ptr<Node> node) { node_count++; });
traverse_nodes(graph, [&](shared_ptr<Node> /* node */) { node_count++; });
pass_manager.run_passes(graph);
auto sorted = graph->get_ordered_ops();
EXPECT_EQ(node_count, sorted.size());
......@@ -51,7 +51,7 @@ namespace
: FunctionPass()
{
}
bool run_on_function(std::shared_ptr<ngraph::Function> f) override { return false; }
bool run_on_function(std::shared_ptr<ngraph::Function> /* f */) override { return false; }
};
}
......
......@@ -305,7 +305,7 @@ TEST(pattern, matcher)
ASSERT_TRUE(n.match(any, abs));
ASSERT_EQ(n.get_matched_nodes(), (NodeVector{abs, a}));
auto false_pred = [](std::shared_ptr<Node> no) { return false; };
auto false_pred = [](std::shared_ptr<Node> /* no */) { return false; };
auto any_false = std::make_shared<pattern::op::Skip>(a, false_pred);
ASSERT_TRUE(n.match(any_false, a));
ASSERT_EQ(n.get_matched_nodes(), (NodeVector{a, a}));
......
......@@ -24,7 +24,7 @@ using namespace ngraph;
//
// Tests for binary elementwise ops.
//
void test_binary(std::string node_type,
void test_binary(std::string /* node_type */,
shared_ptr<Node>(f)(const shared_ptr<Node>& x, const shared_ptr<Node>& y))
{
// Check for bad arguments
......@@ -115,7 +115,7 @@ TEST(type_prop, subtract_bad_arguments)
//
// Tests for binary elementwise logical ops.
//
void test_binary_logical(std::string node_type,
void test_binary_logical(std::string /* node_type */,
shared_ptr<Node>(f)(const shared_ptr<Node>& x, const shared_ptr<Node>& y))
{
// Check for bad arguments
......
......@@ -67,14 +67,14 @@ namespace ngraph
// For a scalar, nothing to do.
template <typename T, size_t N>
typename std::enable_if<(N == 0), void>::type
fill_shape(Shape& shape, const NestedInitializerList<T, N>& inits)
fill_shape(Shape& /* shape */, const NestedInitializerList<T, N>& /* inits */)
{
}
// Check that the inits match the shape
template <typename T, size_t N>
typename std::enable_if<(N == 0), void>::type
check_shape(const Shape& shape, const NestedInitializerList<T, N>& inits)
check_shape(const Shape& shape, const NestedInitializerList<T, N>& /* inits */)
{
if (shape.size() != 0)
{
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment