Commit 5be2cca9 authored by Jayaram Bobba's avatar Jayaram Bobba Committed by Sang Ik Lee

Adds extra case for conv affine folding (#2656)

* Added extra case for conv bias affine folding

* Added unit test

* Check for fused ops in unit test
parent aad2f7e7
...@@ -1494,7 +1494,7 @@ void ngraph::runtime::cpu::pass::CPUFusion::construct_conv_bias_folded_batch_nor ...@@ -1494,7 +1494,7 @@ void ngraph::runtime::cpu::pass::CPUFusion::construct_conv_bias_folded_batch_nor
void ngraph::runtime::cpu::pass::CPUFusion::construct_conv_bias_affine_folding() void ngraph::runtime::cpu::pass::CPUFusion::construct_conv_bias_affine_folding()
{ {
// A * ConvBias (input, filters, bias) + B -> ConvBias (input, filters * A_c) // A * ConvBias (input, filters, bias) -> ConvBias (input, filters * A_c)
Shape shape{2, 2, 1, 1}; Shape shape{2, 2, 1, 1};
auto input = std::make_shared<pattern::op::Label>(element::f32, shape); auto input = std::make_shared<pattern::op::Label>(element::f32, shape);
auto filters = std::make_shared<pattern::op::Label>(element::f32, shape); auto filters = std::make_shared<pattern::op::Label>(element::f32, shape);
...@@ -1542,21 +1542,19 @@ void ngraph::runtime::cpu::pass::CPUFusion::construct_conv_bias_affine_folding() ...@@ -1542,21 +1542,19 @@ void ngraph::runtime::cpu::pass::CPUFusion::construct_conv_bias_affine_folding()
// Check if values are being broadcast along channel (2nd) dimension // Check if values are being broadcast along channel (2nd) dimension
auto is_channel_bcast = [](const std::shared_ptr<op::Broadcast>& bcast) { auto is_channel_bcast = [](const std::shared_ptr<op::Broadcast>& bcast) {
auto input_shape = bcast->get_argument(0)->get_shape();
if (bcast->get_argument(0)->get_shape().size() == 0) if (input_shape.size() == 0 || shape_size(input_shape) == 1)
{ {
return true; return true;
} }
if (bcast->get_argument(0)->get_shape().size() == 1 && if (input_shape.size() == 1 && bcast->get_broadcast_axes() == AxisSet{0, 2, 3})
bcast->get_broadcast_axes() == AxisSet{0, 2, 3})
{ {
return true; return true;
} }
if (bcast->get_argument(0)->get_shape().size() == 2) if (input_shape.size() == 2)
{ {
auto input_shape = bcast->get_argument(0)->get_shape();
if (input_shape[0] == 1 && bcast->get_broadcast_axes() == AxisSet{2, 3}) if (input_shape[0] == 1 && bcast->get_broadcast_axes() == AxisSet{2, 3})
return true; return true;
} }
...@@ -1569,19 +1567,29 @@ void ngraph::runtime::cpu::pass::CPUFusion::construct_conv_bias_affine_folding() ...@@ -1569,19 +1567,29 @@ void ngraph::runtime::cpu::pass::CPUFusion::construct_conv_bias_affine_folding()
} }
auto get_bcast_input = [](const std::shared_ptr<op::Broadcast>& bcast) { auto get_bcast_input = [](const std::shared_ptr<op::Broadcast>& bcast) {
if (bcast->get_argument(0)->get_shape().size() == 0) auto input_shape = bcast->get_argument(0)->get_shape();
if (input_shape.size() == 0)
{ {
Shape bshape{bcast->get_shape()[1]}; Shape bshape{bcast->get_shape()[1]};
return std::static_pointer_cast<ngraph::Node>( return std::static_pointer_cast<ngraph::Node>(
std::make_shared<op::Broadcast>(bcast->get_argument(0), bshape, AxisSet{0})); std::make_shared<op::Broadcast>(bcast->get_argument(0), bshape, AxisSet{0}));
} }
if (bcast->get_argument(0)->get_shape().size() == 1) if (shape_size(input_shape) == 1)
{
Shape bshape{bcast->get_shape()[1]};
return std::static_pointer_cast<ngraph::Node>(std::make_shared<op::Broadcast>(
std::make_shared<op::Reshape>(
bcast->get_argument(0), get_default_order(input_shape), Shape{}),
bshape,
AxisSet{0}));
}
if (input_shape.size() == 1)
{ {
return bcast->get_argument(0); return bcast->get_argument(0);
} }
if (bcast->get_argument(0)->get_shape().size() == 2) if (input_shape.size() == 2)
{ {
Shape bshape{bcast->get_argument(0)->get_shape()[1]}; Shape bshape{input_shape[1]};
return std::static_pointer_cast<ngraph::Node>(std::make_shared<op::Reshape>( return std::static_pointer_cast<ngraph::Node>(std::make_shared<op::Reshape>(
bcast->get_argument(0), AxisVector{0, 1}, bshape)); bcast->get_argument(0), AxisVector{0, 1}, bshape));
} }
......
...@@ -2009,7 +2009,7 @@ TEST(cpu_fusion, conv_affine_folding) ...@@ -2009,7 +2009,7 @@ TEST(cpu_fusion, conv_affine_folding)
EXPECT_TRUE(test::all_close(cpu_results.at(0), int_results.at(0))); EXPECT_TRUE(test::all_close(cpu_results.at(0), int_results.at(0)));
} }
TEST(cpu_fusion, convbias_affine_folding) TEST(cpu_fusion, convbias_affine_folding1)
{ {
Shape shape_input{1, 6, 3, 3}; Shape shape_input{1, 6, 3, 3};
Shape shape_weights{3, 6, 1, 1}; Shape shape_weights{3, 6, 1, 1};
...@@ -2034,6 +2034,60 @@ TEST(cpu_fusion, convbias_affine_folding) ...@@ -2034,6 +2034,60 @@ TEST(cpu_fusion, convbias_affine_folding)
return f; return f;
}; };
pass::Manager pass_manager;
pass_manager.register_pass<runtime::cpu::pass::CPUFusion>();
auto func = make_function();
pass_manager.run_passes(func);
ASSERT_EQ(count_ops_of_type<op::ConvolutionBiasAdd>(func), 1);
auto int_f = make_function();
auto cpu_f = make_function();
test::Uniform<float> rng(20.0f, 300.0f);
vector<vector<float>> args;
for (shared_ptr<op::Parameter> param : cpu_f->get_parameters())
{
vector<float> tensor_val(shape_size(param->get_shape()));
rng.initialize(tensor_val);
args.push_back(tensor_val);
}
auto int_results = execute(int_f, args, "INTERPRETER");
auto cpu_results = execute(cpu_f, args, "CPU");
EXPECT_TRUE(test::all_close(cpu_results.at(0), int_results.at(0)));
}
TEST(cpu_fusion, convbias_affine_folding2)
{
Shape shape_input{1, 6, 3, 3};
Shape shape_weights{3, 6, 1, 1};
Shape shape_norm{1};
auto make_function = [shape_input, shape_weights, shape_norm]() {
auto input = std::make_shared<op::Parameter>(element::f32, shape_input);
auto weights = std::make_shared<op::Parameter>(element::f32, shape_weights);
auto bias = std::make_shared<op::Parameter>(element::f32, Shape{3});
auto a = std::make_shared<op::Parameter>(element::f32, shape_norm);
auto b = std::make_shared<op::Parameter>(element::f32, shape_norm);
auto conv = std::make_shared<op::Convolution>(input, weights, Strides{1, 1}, Strides{1, 1});
auto convbias =
conv + std::make_shared<op::Broadcast>(bias, conv->get_shape(), AxisSet{0, 2, 3});
auto out = std::make_shared<op::Add>(
std::make_shared<op::Multiply>(
convbias, std::make_shared<op::Broadcast>(a, conv->get_shape(), AxisSet{1, 2, 3})),
std::make_shared<op::Broadcast>(b, conv->get_shape(), AxisSet{1, 2, 3}));
auto f =
make_shared<Function>(NodeVector{out}, ParameterVector{input, weights, bias, a, b});
return f;
};
pass::Manager pass_manager;
pass_manager.register_pass<runtime::cpu::pass::CPUFusion>();
auto func = make_function();
pass_manager.run_passes(func);
ASSERT_EQ(count_ops_of_type<op::ConvolutionBiasAdd>(func), 1);
auto int_f = make_function(); auto int_f = make_function();
auto cpu_f = make_function(); auto cpu_f = make_function();
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment