Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
N
ngraph
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
ngraph
Commits
5b405c16
Commit
5b405c16
authored
Oct 12, 2017
by
Adam Procter
Browse files
Options
Browse Files
Download
Plain Diff
Merge remote-tracking branch 'origin' into bob/pass_ptr
parents
cc98a99c
96ae6fdb
Show whitespace changes
Inline
Side-by-side
Showing
15 changed files
with
345 additions
and
89 deletions
+345
-89
constant.cpp
src/ngraph/ops/constant.cpp
+27
-2
constant.hpp
src/ngraph/ops/constant.hpp
+37
-53
acos.hpp
src/ngraph/runtime/ngvm/eigen/acos.hpp
+0
-0
asin.hpp
src/ngraph/runtime/ngvm/eigen/asin.hpp
+0
-0
atan.hpp
src/ngraph/runtime/ngvm/eigen/atan.hpp
+0
-0
cos.hpp
src/ngraph/runtime/ngvm/eigen/cos.hpp
+0
-0
cosh.hpp
src/ngraph/runtime/ngvm/eigen/cosh.hpp
+0
-0
sinh.hpp
src/ngraph/runtime/ngvm/eigen/sinh.hpp
+0
-0
tan.hpp
src/ngraph/runtime/ngvm/eigen/tan.hpp
+0
-0
tanh.hpp
src/ngraph/runtime/ngvm/eigen/tanh.hpp
+0
-0
external_function.cpp
src/ngraph/runtime/ngvm/external_function.cpp
+19
-7
element_type.hpp
src/ngraph/types/element_type.hpp
+49
-0
build_graph.cpp
test/build_graph.cpp
+14
-13
execute.cpp
test/execute.cpp
+104
-14
type_prop.cpp
test/type_prop.cpp
+95
-0
No files found.
src/ngraph/ops/constant.cpp
View file @
5b405c16
...
...
@@ -16,10 +16,35 @@
using
namespace
ngraph
::
op
;
void
Scalar
ConstantBase
::
propagate_types
()
void
ConstantBase
::
propagate_types
()
{
}
void
TensorConstantBase
::
propagate_types
()
template
<
typename
ET
>
void
check_value_strings
(
const
std
::
vector
<
std
::
string
>&
value_strings
)
{
auto
result
=
ET
::
read
(
value_strings
);
}
void
Constant
::
propagate_types
()
{
// No actual type propagation is done here; however, we check the number of value strings and
// also call check_value_strings just to make sure the result will be parseable at compile
// time. (It will throw an exception if not.)
auto
tvt
=
std
::
dynamic_pointer_cast
<
const
TensorViewType
>
(
get_value_type
());
if
(
nullptr
==
tvt
)
{
throw
ngraph_error
(
"Constant does not have tensor view type"
);
}
auto
shape
=
tvt
->
get_shape
();
if
(
ngraph
::
shape_size
(
shape
)
!=
m_value_strings
.
size
())
{
throw
ngraph_error
(
"Constant does not have the expected number of literals"
);
}
auto
&
et
=
tvt
->
get_element_type
();
FUNCTION_ON_ELEMENT_TYPE
(
et
,
"Constant has unhandled element type"
,
check_value_strings
,
m_value_strings
);
}
src/ngraph/ops/constant.hpp
View file @
5b405c16
...
...
@@ -24,11 +24,11 @@ namespace ngraph
{
namespace
op
{
// Defines methods to all constant
scalar
s
class
Scalar
ConstantBase
:
public
Node
// Defines methods to all constants
class
ConstantBase
:
public
Node
{
protected
:
Scalar
ConstantBase
(
const
std
::
shared_ptr
<
TensorViewType
>&
type
)
ConstantBase
(
const
std
::
shared_ptr
<
TensorViewType
>&
type
)
:
Node
({},
type
)
{
}
...
...
@@ -36,10 +36,9 @@ namespace ngraph
virtual
void
propagate_types
()
override
;
};
// Implement a constant scalar for each element type.
// The static make method takes a
// Implement a constant tensor for each element type.
template
<
typename
T
>
class
ScalarConstant
:
public
Scalar
ConstantBase
class
ParameterizedConstant
:
public
ConstantBase
{
public
:
// The ngraph element type
...
...
@@ -47,13 +46,15 @@ namespace ngraph
// The C++ type that holds the element type
using
type
=
typename
T
::
type
;
ScalarConstant
(
typename
T
::
type
value
)
:
ScalarConstantBase
(
std
::
make_shared
<
TensorViewType
>
(
T
::
element_type
(),
Shape
{}))
ParameterizedConstant
(
const
Shape
&
shape
,
typename
std
::
shared_ptr
<
ngraph
::
runtime
::
ParameterizedTensorView
<
T
>>&
value
)
:
ConstantBase
(
std
::
make_shared
<
TensorViewType
>
(
T
::
element_type
(),
shape
))
,
m_value
(
value
)
{
}
virtual
std
::
string
description
()
const
override
{
return
"
Scalar
Constant"
;
}
virtual
std
::
string
description
()
const
override
{
return
"
Parameterized
Constant"
;
}
virtual
std
::
string
get_node_id
()
const
override
{
std
::
stringstream
ss
;
...
...
@@ -61,48 +62,41 @@ namespace ngraph
return
ss
.
str
();
}
type
get_value
()
const
{
return
m_value
;
}
protected
:
typename
T
::
type
m_value
;
};
using
Float32ScalarConstant
=
ScalarConstant
<
element
::
Float32
>
;
using
Int8ScalarConstant
=
ScalarConstant
<
element
::
Int8
>
;
using
Int32ScalarConstant
=
ScalarConstant
<
element
::
Int32
>
;
using
Int64ScalarConstant
=
ScalarConstant
<
element
::
Int64
>
;
using
UInt8ScalarConstant
=
ScalarConstant
<
element
::
UInt8
>
;
using
UInt32ScalarConstant
=
ScalarConstant
<
element
::
UInt32
>
;
using
UInt64ScalarConstant
=
ScalarConstant
<
element
::
UInt64
>
;
// Defines methods to all constant tensors
class
TensorConstantBase
:
public
Node
{
protected
:
TensorConstantBase
(
const
std
::
shared_ptr
<
TensorViewType
>&
type
)
:
Node
({},
type
)
typename
std
::
shared_ptr
<
ngraph
::
runtime
::
ParameterizedTensorView
<
T
>>
get_value
()
const
{
return
m_value
;
}
virtual
void
propagate_types
()
override
;
protected
:
std
::
shared_ptr
<
ngraph
::
runtime
::
ParameterizedTensorView
<
T
>>
m_value
;
};
// Implement a constant tensor for each element type.
template
<
typename
T
>
class
TensorConstant
:
public
TensorConstantBase
using
Float32Constant
=
ParameterizedConstant
<
element
::
Float32
>
;
using
Int8Constant
=
ParameterizedConstant
<
element
::
Int8
>
;
using
Int32Constant
=
ParameterizedConstant
<
element
::
Int32
>
;
using
Int64Constant
=
ParameterizedConstant
<
element
::
Int64
>
;
using
UInt8Constant
=
ParameterizedConstant
<
element
::
UInt8
>
;
using
UInt32Constant
=
ParameterizedConstant
<
element
::
UInt32
>
;
using
UInt64Constant
=
ParameterizedConstant
<
element
::
UInt64
>
;
class
Constant
:
public
ConstantBase
{
public
:
// The ngraph element type
using
element_type
=
T
;
// The C++ type that holds the element type
using
type
=
typename
T
::
type
;
Constant
(
const
element
::
Type
&
et
,
const
Shape
&
shape
,
const
std
::
vector
<
std
::
string
>&
value_strings
)
:
ConstantBase
(
std
::
make_shared
<
TensorViewType
>
(
et
,
shape
))
,
m_value_strings
(
value_strings
)
{
}
TensorConstant
(
const
Shape
&
shape
)
:
TensorConstantBase
(
std
::
make_shared
<
TensorViewType
>
(
T
::
element_type
()
,
shape
))
,
m_value
(
ngraph
::
runtime
::
make_tensor
<
T
>
(
shape
)
)
Constant
(
const
element
::
Type
&
et
,
const
Shape
&
shape
,
const
std
::
string
&
value_string
)
:
ConstantBase
(
std
::
make_shared
<
TensorViewType
>
(
et
,
shape
))
,
m_value
_strings
(
ngraph
::
shape_size
(
shape
),
value_string
)
{
}
virtual
std
::
string
description
()
const
override
{
return
"
Tensor
Constant"
;
}
virtual
std
::
string
description
()
const
override
{
return
"Constant"
;
}
virtual
std
::
string
get_node_id
()
const
override
{
std
::
stringstream
ss
;
...
...
@@ -110,21 +104,11 @@ namespace ngraph
return
ss
.
str
();
}
typename
std
::
shared_ptr
<
ngraph
::
runtime
::
ParameterizedTensorView
<
T
>>
get_value
()
const
{
return
m_value
;
}
const
std
::
vector
<
std
::
string
>&
get_value_strings
()
const
{
return
m_value_strings
;
}
virtual
void
propagate_types
()
override
;
protected
:
std
::
shared_ptr
<
ngraph
::
runtime
::
ParameterizedTensorView
<
T
>>
m_value
;
const
std
::
vector
<
std
::
string
>
m_value_strings
;
};
using
Float32TensorConstant
=
TensorConstant
<
element
::
Float32
>
;
using
Int8TensorConstant
=
TensorConstant
<
element
::
Int8
>
;
using
Int32TensorConstant
=
TensorConstant
<
element
::
Int32
>
;
using
Int64TensorConstant
=
TensorConstant
<
element
::
Int64
>
;
using
UInt8TensorConstant
=
TensorConstant
<
element
::
UInt8
>
;
using
UInt32TensorConstant
=
TensorConstant
<
element
::
UInt32
>
;
using
UInt64TensorConstant
=
TensorConstant
<
element
::
UInt64
>
;
}
}
src/ngraph/runtime/ngvm/eigen/acos.hpp
View file @
5b405c16
src/ngraph/runtime/ngvm/eigen/asin.hpp
View file @
5b405c16
src/ngraph/runtime/ngvm/eigen/atan.hpp
View file @
5b405c16
src/ngraph/runtime/ngvm/eigen/cos.hpp
View file @
5b405c16
src/ngraph/runtime/ngvm/eigen/cosh.hpp
View file @
5b405c16
src/ngraph/runtime/ngvm/eigen/sinh.hpp
View file @
5b405c16
src/ngraph/runtime/ngvm/eigen/tan.hpp
View file @
5b405c16
src/ngraph/runtime/ngvm/eigen/tanh.hpp
View file @
5b405c16
src/ngraph/runtime/ngvm/external_function.cpp
View file @
5b405c16
...
...
@@ -315,15 +315,10 @@ ExternalFunction::ExternalFunction(const std::shared_ptr<ngraph::Function>& func
#define REGISTER_CONSTANT_INSTRUCTIONS(T) \
{ \
REGISTER_INSTRUCTION( \
op::ScalarConstant<T>, \
eigen::ConstantInstruction<T>, \
std::vector<T::type>{dynamic_cast<const op::ScalarConstant<T>*>(n)->get_value()}, \
out[0]); \
REGISTER_INSTRUCTION( \
op::TensorConstant<T>, \
op::ParameterizedConstant<T>, \
eigen::ConstantInstruction<T>, \
std::vector<T::type>{ \
dynamic_cast<const op::
TensorConstant<T>*>(n)->get_value()->get_vector()},
\
dynamic_cast<const op::
ParameterizedConstant<T>*>(n)->get_value()->get_vector()},
\
out[0]); \
}
...
...
@@ -371,6 +366,23 @@ ExternalFunction::OpMap& ExternalFunction::get_op_map()
REGISTER_NUMERIC_BINOP
(
op
::
Multiply
,
eigen
::
MultiplyInstruction
);
REGISTER_NUMERIC_BINOP
(
op
::
Subtract
,
eigen
::
SubtractInstruction
);
REGISTER_TO_OP_MAP
(
op
::
Constant
)
{
auto
c
=
static_cast
<
const
op
::
Constant
*>
(
n
);
auto
c_tensor_type
=
dynamic_pointer_cast
<
const
TensorViewType
>
(
c
->
get_value_type
());
assert
(
nullptr
!=
c_tensor_type
);
auto
&
c_element_type
=
c_tensor_type
->
get_element_type
();
auto
c_value_strings
=
c
->
get_value_strings
();
#define M_REGISTER_POLYMORPHIC_CONSTANT(ET) \
ef->get_instructions()->push_back( \
make_shared<eigen::ConstantInstruction<ET>>(ET::read(c_value_strings), out[0]));
DO_ON_ELEMENT_TYPE
(
c_element_type
,
"Constant has unhandled element type"
,
M_REGISTER_POLYMORPHIC_CONSTANT
);
};
REGISTER_POLYMORPHIC_BINOP
(
op
::
Equal
,
eigen
::
EqualInstruction
);
REGISTER_POLYMORPHIC_BINOP
(
op
::
NotEqual
,
eigen
::
NotEqualInstruction
);
...
...
src/ngraph/types/element_type.hpp
View file @
5b405c16
...
...
@@ -116,6 +116,35 @@ namespace ngraph
{
return
std
::
make_shared
<
runtime
::
ParameterizedTensorView
<
TraitedType
<
T
>>>
(
shape
);
}
static
T
read
(
const
std
::
string
&
s
)
{
T
result
;
std
::
stringstream
ss
;
ss
<<
s
;
ss
>>
result
;
// Check that (1) parsing succeeded and (2) the entire string was used.
if
(
ss
.
fail
()
||
ss
.
rdbuf
()
->
in_avail
()
!=
0
)
{
throw
ngraph_error
(
"Could not parse literal"
);
}
return
result
;
}
static
std
::
vector
<
T
>
read
(
const
std
::
vector
<
std
::
string
>&
ss
)
{
std
::
vector
<
T
>
result
;
for
(
auto
s
:
ss
)
{
result
.
push_back
(
read
(
s
));
}
return
result
;
}
};
NGRAPH_DEFINE_TRAITED_TYPE_NAME
(
char
)
...
...
@@ -143,3 +172,23 @@ namespace ngraph
using
UInt64
=
TraitedType
<
uint64_t
>
;
}
}
//
// Utility macro for dispatching an element type-templated function at runtime.
//
// clang-format off
// Sorry, but you really don't want to see what clang-format does to this thing. :)
#define FUNCTION_ON_ELEMENT_TYPE(et, err_msg, f, ...) \
( \
((et) == element::Bool::element_type()) ? (f<element::Bool>(__VA_ARGS__)) : \
((et) == element::Float32::element_type()) ? (f<element::Float32>(__VA_ARGS__)) : \
((et) == element::Int8::element_type()) ? (f<element::Int8>(__VA_ARGS__)) : \
((et) == element::Int32::element_type()) ? (f<element::Int32>(__VA_ARGS__)) : \
((et) == element::Int64::element_type()) ? (f<element::Int64>(__VA_ARGS__)) : \
((et) == element::UInt8::element_type()) ? (f<element::UInt8>(__VA_ARGS__)) : \
((et) == element::UInt32::element_type()) ? (f<element::UInt32>(__VA_ARGS__)) : \
((et) == element::UInt64::element_type()) ? (f<element::UInt64>(__VA_ARGS__)) : \
(throw ngraph_error(err_msg)) \
)
// clang-format on
test/build_graph.cpp
View file @
5b405c16
...
...
@@ -80,23 +80,22 @@ TEST(build_graph, node_comparison)
TEST
(
build_graph
,
literal
)
{
// float scalar from a float
//auto float0 = FloatScalarConstant::make(3.0);
auto
float0
=
make_shared
<
op
::
Float32ScalarConstant
>
(
3.0
);
//auto float0 = FloatConstant::make(3.0);
auto
float_t
=
ngraph
::
runtime
::
make_tensor
<
element
::
Float32
>
(
Shape
{});
(
*
float_t
)
=
std
::
vector
<
float
>
{
3.0
};
auto
float0
=
make_shared
<
op
::
Float32Constant
>
(
Shape
{},
float_t
);
auto
float_scalar_type
=
make_shared
<
TensorViewType
>
(
element
::
Float32
::
element_type
(),
Shape
{});
ASSERT_EQ
(
float0
->
get_value
()
,
3.0
);
ASSERT_EQ
(
float0
->
get_value
()
->
get_vector
(),
std
::
vector
<
float
>
{
3.0
}
);
ASSERT_EQ
(
*
float0
->
get_value_type
(),
*
float_scalar_type
);
auto
d
=
make_shared
<
op
::
Dot
>
(
float0
,
float0
);
ASSERT_EQ
(
d
->
get_arguments
().
at
(
0
),
float0
);
ASSERT_EQ
(
d
->
get_arguments
().
at
(
1
),
float0
);
// float scalar from an int
auto
float1
=
make_shared
<
op
::
Float32ScalarConstant
>
(
3
);
ASSERT_EQ
(
float1
->
get_value
(),
3
);
ASSERT_EQ
(
*
float1
->
get_value_type
(),
*
float_scalar_type
);
auto
int32_0
=
make_shared
<
op
::
Int32ScalarConstant
>
(
3.0
);
auto
int32_t
=
ngraph
::
runtime
::
make_tensor
<
element
::
Int32
>
(
Shape
{});
(
*
int32_t
)
=
std
::
vector
<
int
>
{
3
};
auto
int32_0
=
make_shared
<
op
::
Int32Constant
>
(
Shape
{},
int32_t
);
auto
int32_scalar_type
=
make_shared
<
TensorViewType
>
(
element
::
Int32
::
element_type
(),
Shape
{});
ASSERT_EQ
(
int32_0
->
get_value
()
,
3
);
ASSERT_EQ
(
int32_0
->
get_value
()
->
get_vector
(),
std
::
vector
<
int
>
{
3
}
);
ASSERT_EQ
(
*
int32_0
->
get_value_type
(),
*
int32_scalar_type
);
ASSERT_NE
(
*
int32_0
->
get_value_type
(),
*
float_scalar_type
);
}
...
...
@@ -104,8 +103,9 @@ TEST(build_graph, literal)
TEST
(
build_graph
,
tensor
)
{
// float scalar from a float
//auto float0 = FloatScalarConstant::make(3.0);
auto
float0
=
make_shared
<
op
::
Float32TensorConstant
>
(
Shape
{
2
,
3
});
//auto float0 = FloatConstant::make(3.0);
auto
float_t
=
ngraph
::
runtime
::
make_tensor
<
element
::
Float32
>
(
Shape
{
2
,
3
});
auto
float0
=
make_shared
<
op
::
Float32Constant
>
(
Shape
{
2
,
3
},
float_t
);
auto
float_tensor_type
=
make_shared
<
TensorViewType
>
(
element
::
Float32
::
element_type
(),
Shape
{
2
,
3
});
ASSERT_EQ
(
*
float0
->
get_value_type
(),
*
float_tensor_type
);
...
...
@@ -113,7 +113,8 @@ TEST(build_graph, tensor)
ASSERT_EQ
(
d
->
get_arguments
().
at
(
0
),
float0
);
ASSERT_EQ
(
d
->
get_arguments
().
at
(
1
),
float0
);
auto
int32_0
=
make_shared
<
op
::
Int32TensorConstant
>
(
Shape
{
3
,
5
});
auto
int32_t
=
ngraph
::
runtime
::
make_tensor
<
element
::
Int32
>
(
Shape
{
3
,
5
});
auto
int32_0
=
make_shared
<
op
::
Int32Constant
>
(
Shape
{
3
,
5
},
int32_t
);
auto
int32_tensor_type
=
make_shared
<
TensorViewType
>
(
element
::
Int32
::
element_type
(),
Shape
{
3
,
5
});
ASSERT_EQ
(
*
int32_0
->
get_value_type
(),
*
int32_tensor_type
);
...
...
test/execute.cpp
View file @
5b405c16
...
...
@@ -997,7 +997,9 @@ TEST(execute, subtract)
TEST
(
execute
,
scalar_constant
)
{
auto
shape
=
Shape
{};
auto
A
=
make_shared
<
op
::
ScalarConstant
<
element
::
Float32
>>
(
-
3.0
f
);
auto
t
=
ngraph
::
runtime
::
make_tensor
<
element
::
Float32
>
(
shape
);
(
*
t
)
=
std
::
vector
<
float
>
{
-
3.0
f
};
auto
A
=
make_shared
<
op
::
ParameterizedConstant
<
element
::
Float32
>>
(
shape
,
t
);
auto
rt
=
make_shared
<
TensorViewType
>
(
element
::
Float32
::
element_type
(),
shape
);
auto
f
=
make_shared
<
Function
>
(
A
,
rt
,
op
::
Parameters
{});
...
...
@@ -1016,8 +1018,9 @@ TEST(execute, scalar_constant)
TEST
(
execute
,
tensor_constant
)
{
auto
shape
=
Shape
{
2
,
2
,
2
};
auto
A
=
make_shared
<
op
::
TensorConstant
<
element
::
Float32
>>
(
shape
);
A
->
get_value
()
->
get_vector
()
=
{
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
};
auto
t
=
ngraph
::
runtime
::
make_tensor
<
element
::
Float32
>
(
shape
);
(
*
t
)
=
std
::
vector
<
float
>
{
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
};
auto
A
=
make_shared
<
op
::
ParameterizedConstant
<
element
::
Float32
>>
(
shape
,
t
);
auto
rt
=
make_shared
<
TensorViewType
>
(
element
::
Float32
::
element_type
(),
shape
);
auto
f
=
make_shared
<
Function
>
(
A
,
rt
,
op
::
Parameters
{});
...
...
@@ -1036,8 +1039,9 @@ TEST(execute, tensor_constant)
TEST
(
execute
,
tensor_constant_with_op
)
{
auto
shape
=
Shape
{
2
,
2
,
2
};
auto
A
=
make_shared
<
op
::
TensorConstant
<
element
::
Float32
>>
(
shape
);
A
->
get_value
()
->
get_vector
()
=
{
-
1
,
2
,
3
,
-
4
,
5
,
-
6
,
-
7
,
8
};
auto
t
=
ngraph
::
runtime
::
make_tensor
<
element
::
Float32
>
(
shape
);
(
*
t
)
=
std
::
vector
<
float
>
{
-
1
,
2
,
3
,
-
4
,
5
,
-
6
,
-
7
,
8
};
auto
A
=
make_shared
<
op
::
ParameterizedConstant
<
element
::
Float32
>>
(
shape
,
t
);
auto
rt
=
make_shared
<
TensorViewType
>
(
element
::
Float32
::
element_type
(),
shape
);
auto
f
=
make_shared
<
Function
>
(
make_shared
<
op
::
Abs
>
(
A
),
rt
,
op
::
Parameters
{});
...
...
@@ -1882,7 +1886,7 @@ TEST(execute, sin)
auto
result
=
backend
->
make_parameterized_tensor_view
<
element
::
Float32
>
(
shape
);
std
::
transform
(
input
.
begin
(),
input
.
end
(),
input
.
begin
(),
[](
float
f
)
->
float
{
return
sinf
(
f
);
});
input
.
begin
(),
input
.
end
(),
input
.
begin
(),
[](
float
x
)
->
float
{
return
sinf
(
x
);
});
(
*
cf
)({
a
},
{
result
});
ASSERT_EQ
(
input
,
result
->
get_vector
());
...
...
@@ -1908,7 +1912,7 @@ TEST(execute, cos)
auto
result
=
backend
->
make_parameterized_tensor_view
<
element
::
Float32
>
(
shape
);
std
::
transform
(
input
.
begin
(),
input
.
end
(),
input
.
begin
(),
[](
float
f
)
->
float
{
return
cosf
(
f
);
});
input
.
begin
(),
input
.
end
(),
input
.
begin
(),
[](
float
x
)
->
float
{
return
cosf
(
x
);
});
(
*
cf
)({
a
},
{
result
});
ASSERT_EQ
(
input
,
result
->
get_vector
());
...
...
@@ -1934,7 +1938,7 @@ TEST(execute, tan)
auto
result
=
backend
->
make_parameterized_tensor_view
<
element
::
Float32
>
(
shape
);
std
::
transform
(
input
.
begin
(),
input
.
end
(),
input
.
begin
(),
[](
float
f
)
->
float
{
return
tanf
(
f
);
});
input
.
begin
(),
input
.
end
(),
input
.
begin
(),
[](
float
x
)
->
float
{
return
tanf
(
x
);
});
(
*
cf
)({
a
},
{
result
});
ASSERT_EQ
(
input
,
result
->
get_vector
());
...
...
@@ -1959,7 +1963,7 @@ TEST(execute, asin)
auto
result
=
backend
->
make_parameterized_tensor_view
<
element
::
Float32
>
(
shape
);
std
::
transform
(
input
.
begin
(),
input
.
end
(),
input
.
begin
(),
[](
float
f
)
->
float
{
return
asinf
(
f
);
});
input
.
begin
(),
input
.
end
(),
input
.
begin
(),
[](
float
x
)
->
float
{
return
asinf
(
x
);
});
(
*
cf
)({
a
},
{
result
});
ASSERT_EQ
(
input
,
result
->
get_vector
());
...
...
@@ -1984,7 +1988,7 @@ TEST(execute, acos)
auto
result
=
backend
->
make_parameterized_tensor_view
<
element
::
Float32
>
(
shape
);
std
::
transform
(
input
.
begin
(),
input
.
end
(),
input
.
begin
(),
[](
float
f
)
->
float
{
return
acosf
(
f
);
});
input
.
begin
(),
input
.
end
(),
input
.
begin
(),
[](
float
x
)
->
float
{
return
acosf
(
x
);
});
(
*
cf
)({
a
},
{
result
});
ASSERT_EQ
(
input
,
result
->
get_vector
());
...
...
@@ -2009,7 +2013,7 @@ TEST(execute, atan)
auto
result
=
backend
->
make_parameterized_tensor_view
<
element
::
Float32
>
(
shape
);
std
::
transform
(
input
.
begin
(),
input
.
end
(),
input
.
begin
(),
[](
float
f
)
->
float
{
return
atanf
(
f
);
});
input
.
begin
(),
input
.
end
(),
input
.
begin
(),
[](
float
x
)
->
float
{
return
atanf
(
x
);
});
(
*
cf
)({
a
},
{
result
});
ASSERT_EQ
(
input
,
result
->
get_vector
());
...
...
@@ -2034,7 +2038,7 @@ TEST(execute, sinh)
auto
result
=
backend
->
make_parameterized_tensor_view
<
element
::
Float32
>
(
shape
);
std
::
transform
(
input
.
begin
(),
input
.
end
(),
input
.
begin
(),
[](
float
f
)
->
float
{
return
sinhf
(
f
);
});
input
.
begin
(),
input
.
end
(),
input
.
begin
(),
[](
float
x
)
->
float
{
return
sinhf
(
x
);
});
(
*
cf
)({
a
},
{
result
});
ASSERT_EQ
(
input
,
result
->
get_vector
());
...
...
@@ -2059,7 +2063,7 @@ TEST(execute, cosh)
auto
result
=
backend
->
make_parameterized_tensor_view
<
element
::
Float32
>
(
shape
);
std
::
transform
(
input
.
begin
(),
input
.
end
(),
input
.
begin
(),
[](
float
f
)
->
float
{
return
coshf
(
f
);
});
input
.
begin
(),
input
.
end
(),
input
.
begin
(),
[](
float
x
)
->
float
{
return
coshf
(
x
);
});
(
*
cf
)({
a
},
{
result
});
ASSERT_EQ
(
input
,
result
->
get_vector
());
...
...
@@ -2084,7 +2088,7 @@ TEST(execute, tanh)
auto
result
=
backend
->
make_parameterized_tensor_view
<
element
::
Float32
>
(
shape
);
std
::
transform
(
input
.
begin
(),
input
.
end
(),
input
.
begin
(),
[](
float
f
)
->
float
{
return
tanhf
(
f
);
});
input
.
begin
(),
input
.
end
(),
input
.
begin
(),
[](
float
x
)
->
float
{
return
tanhf
(
x
);
});
(
*
cf
)({
a
},
{
result
});
ASSERT_EQ
(
input
,
result
->
get_vector
());
...
...
@@ -2184,3 +2188,89 @@ TEST(execute, slice_vector)
(
*
cf
)({
a
},
{
result
});
ASSERT_EQ
((
vector
<
float
>
{
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
,
11
,
12
,
13
}),
result
->
get_vector
());
}
TEST
(
execute
,
scalar_constant_float32
)
{
auto
rt
=
make_shared
<
TensorViewType
>
(
element
::
Float32
::
element_type
(),
Shape
{});
auto
r
=
make_shared
<
op
::
Constant
>
(
element
::
Float32
::
element_type
(),
Shape
{},
"4.8"
);
auto
f
=
make_shared
<
Function
>
(
r
,
rt
,
op
::
Parameters
{});
auto
manager
=
runtime
::
Manager
::
get
(
"NGVM"
);
auto
external
=
manager
->
compile
(
f
);
auto
backend
=
manager
->
allocate_backend
();
auto
cf
=
backend
->
make_call_frame
(
external
);
// Create some tensors for input/output
auto
result
=
ngraph
::
runtime
::
make_tensor
<
element
::
Float32
>
(
Shape
{});
(
*
cf
)({},
{
result
});
ASSERT_EQ
(
vector
<
float
>
{
std
::
strtof
(
"4.8"
,
NULL
)},
result
->
get_vector
());
}
TEST
(
execute
,
scalar_constant_int64
)
{
auto
rt
=
make_shared
<
TensorViewType
>
(
element
::
Int64
::
element_type
(),
Shape
{});
auto
r
=
make_shared
<
op
::
Constant
>
(
element
::
Int64
::
element_type
(),
Shape
{},
"2112"
);
auto
f
=
make_shared
<
Function
>
(
r
,
rt
,
op
::
Parameters
{});
auto
manager
=
runtime
::
Manager
::
get
(
"NGVM"
);
auto
external
=
manager
->
compile
(
f
);
auto
backend
=
manager
->
allocate_backend
();
auto
cf
=
backend
->
make_call_frame
(
external
);
// Create some tensors for input/output
auto
result
=
ngraph
::
runtime
::
make_tensor
<
element
::
Int64
>
(
Shape
{});
(
*
cf
)({},
{
result
});
ASSERT_EQ
(
vector
<
element
::
Int64
::
type
>
{
std
::
strtol
(
"2112"
,
NULL
,
10
)},
result
->
get_vector
());
}
TEST
(
execute
,
tensor_constant_float32
)
{
auto
shape
=
Shape
{
2
,
2
};
auto
rt
=
make_shared
<
TensorViewType
>
(
element
::
Float32
::
element_type
(),
shape
);
auto
r
=
make_shared
<
op
::
Constant
>
(
element
::
Float32
::
element_type
(),
shape
,
std
::
vector
<
std
::
string
>
{
"4.8"
,
"4.7"
,
"-5.3"
,
"0"
});
auto
f
=
make_shared
<
Function
>
(
r
,
rt
,
op
::
Parameters
{});
auto
manager
=
runtime
::
Manager
::
get
(
"NGVM"
);
auto
external
=
manager
->
compile
(
f
);
auto
backend
=
manager
->
allocate_backend
();
auto
cf
=
backend
->
make_call_frame
(
external
);
// Create some tensors for input/output
auto
result
=
ngraph
::
runtime
::
make_tensor
<
element
::
Float32
>
(
shape
);
(
*
cf
)({},
{
result
});
ASSERT_EQ
((
vector
<
float
>
{
std
::
strtof
(
"4.8"
,
NULL
),
std
::
strtof
(
"4.7"
,
NULL
),
std
::
strtof
(
"-5.3"
,
NULL
),
std
::
strtof
(
"0"
,
NULL
)}),
result
->
get_vector
());
}
TEST
(
execute
,
tensor_constant_int64
)
{
auto
shape
=
Shape
{
2
,
2
};
auto
rt
=
make_shared
<
TensorViewType
>
(
element
::
Int64
::
element_type
(),
shape
);
auto
r
=
make_shared
<
op
::
Constant
>
(
element
::
Int64
::
element_type
(),
shape
,
std
::
vector
<
std
::
string
>
{
"2112"
,
"1848"
,
"1776"
,
"1964"
});
auto
f
=
make_shared
<
Function
>
(
r
,
rt
,
op
::
Parameters
{});
auto
manager
=
runtime
::
Manager
::
get
(
"NGVM"
);
auto
external
=
manager
->
compile
(
f
);
auto
backend
=
manager
->
allocate_backend
();
auto
cf
=
backend
->
make_call_frame
(
external
);
// Create some tensors for input/output
auto
result
=
ngraph
::
runtime
::
make_tensor
<
element
::
Int64
>
(
shape
);
(
*
cf
)({},
{
result
});
ASSERT_EQ
((
vector
<
element
::
Int64
::
type
>
{
std
::
strtol
(
"2112"
,
NULL
,
10
),
std
::
strtol
(
"1848"
,
NULL
,
10
),
std
::
strtol
(
"1776"
,
NULL
,
10
),
std
::
strtol
(
"1964"
,
NULL
,
10
)}),
result
->
get_vector
());
}
test/type_prop.cpp
View file @
5b405c16
...
...
@@ -1517,3 +1517,98 @@ TEST(type_prop, slice_deduce_matrix_upper_extra)
FAIL
()
<<
"Deduced type check failed for unexpected reason"
;
}
}
TEST
(
type_prop
,
scalar_constant_deduce_float32
)
{
auto
c
=
make_shared
<
op
::
Constant
>
(
element
::
Float32
::
element_type
(),
Shape
{},
"208"
);
c
->
propagate_types
();
ASSERT_EQ
(
*
(
c
->
get_value_type
()),
TensorViewType
(
element
::
Float32
::
element_type
(),
Shape
{}));
}
TEST
(
type_prop
,
scalar_constant_deduce_bool
)
{
auto
c
=
make_shared
<
op
::
Constant
>
(
element
::
Bool
::
element_type
(),
Shape
{},
"1"
);
c
->
propagate_types
();
ASSERT_EQ
(
*
(
c
->
get_value_type
()),
TensorViewType
(
element
::
Bool
::
element_type
(),
Shape
{}));
}
TEST
(
type_prop
,
tensor_constant_deduce_float32
)
{
auto
c
=
make_shared
<
op
::
Constant
>
(
element
::
Float32
::
element_type
(),
Shape
{
2
,
2
},
std
::
vector
<
std
::
string
>
{
"208"
,
"208"
,
"208"
,
"208"
});
c
->
propagate_types
();
ASSERT_EQ
(
*
(
c
->
get_value_type
()),
TensorViewType
(
element
::
Float32
::
element_type
(),
Shape
{
2
,
2
}));
}
TEST
(
type_prop
,
tensor_constant_deduce_bool
)
{
auto
c
=
make_shared
<
op
::
Constant
>
(
element
::
Bool
::
element_type
(),
Shape
{
2
,
2
},
std
::
vector
<
std
::
string
>
{
"1"
,
"1"
,
"1"
,
"1"
});
c
->
propagate_types
();
ASSERT_EQ
(
*
(
c
->
get_value_type
()),
TensorViewType
(
element
::
Bool
::
element_type
(),
Shape
{
2
,
2
}));
}
TEST
(
type_prop
,
tensor_constant_bad_parse
)
{
auto
c
=
make_shared
<
op
::
Constant
>
(
element
::
Bool
::
element_type
(),
Shape
{
2
,
2
},
std
::
vector
<
std
::
string
>
{
"1"
,
"grunk"
,
"1"
,
"1"
});
try
{
c
->
propagate_types
();
// Should have thrown, so fail if it didn't
FAIL
()
<<
"Bad literal parse not detected"
;
}
catch
(
const
ngraph_error
&
error
)
{
EXPECT_EQ
(
error
.
what
(),
std
::
string
(
"Could not parse literal"
));
}
catch
(...)
{
FAIL
()
<<
"Deduced type check failed for unexpected reason"
;
}
}
TEST
(
type_prop
,
tensor_constant_bad_parse_float_for_int
)
{
auto
c
=
make_shared
<
op
::
Constant
>
(
element
::
Int32
::
element_type
(),
Shape
{
2
,
2
},
std
::
vector
<
std
::
string
>
{
"1"
,
"2.7"
,
"1"
,
"1"
});
try
{
c
->
propagate_types
();
// Should have thrown, so fail if it didn't
FAIL
()
<<
"Bad literal parse not detected"
;
}
catch
(
const
ngraph_error
&
error
)
{
EXPECT_EQ
(
error
.
what
(),
std
::
string
(
"Could not parse literal"
));
}
catch
(...)
{
FAIL
()
<<
"Deduced type check failed for unexpected reason"
;
}
}
TEST
(
type_prop
,
tensor_constant_bad_count
)
{
auto
c
=
make_shared
<
op
::
Constant
>
(
element
::
Bool
::
element_type
(),
Shape
{
2
,
2
},
std
::
vector
<
std
::
string
>
{
"1"
,
"1"
,
"1"
});
try
{
c
->
propagate_types
();
// Should have thrown, so fail if it didn't
FAIL
()
<<
"Incorrect number of literals not detected"
;
}
catch
(
const
ngraph_error
&
error
)
{
EXPECT_EQ
(
error
.
what
(),
std
::
string
(
"Constant does not have the expected number of literals"
));
}
catch
(...)
{
FAIL
()
<<
"Deduced type check failed for unexpected reason"
;
}
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment