Commit 55a25d41 authored by Chris Sullivan's avatar Chris Sullivan Committed by Robert Kimball

Refactored GPU backend state into BackendContext (#1186)

* Refactored GPU backend state into BackendContext and moved it to the highest level GPU_Backend.
Some bugs have appeared in so doing. Needs investigation.

* extra *block_size

* change grid_size to threads

* Bug fix in softmax cache parameters.

* Additional bug fix for maxpool1d cache parameters.

* Bug fix in softmax cache parameters.

* Additional bug fix for maxpool1d cache parameters.

* Remove temporary print statements.

* Use nthreads in primitive hash.

* Switched from using stack references for cudnn and cublas handles to heap pointers held only the c-struct GPURuntimeContext but managed by the GPU_Backend.

* Refactored the use of GPURuntimeContext* ctx throughout the emitters.

* Use std::prev instead of operator-- for memory iteratory capture

* bug fix from abaf1d7
parent 8bde818c
......@@ -62,13 +62,14 @@ std::ostream& operator<<(std::ostream& os, pooling_op_shape& shape)
<< shape.PAD_D << "_" << shape.PAD_H << "_" << shape.PAD_W;
}
runtime::gpu::CUDAEmitter::CUDAEmitter(runtime::gpu::GPUPrimitiveEmitter* emitter)
runtime::gpu::CUDAEmitter::CUDAEmitter(runtime::gpu::GPUPrimitiveEmitter* emitter,
runtime::gpu::GPURuntimeContext* ctx)
: m_primitive_emitter(emitter)
{
m_ctx = ctx;
}
size_t runtime::gpu::CUDAEmitter::build_pad(const runtime::gpu::GPURuntimeContext* ctx,
const std::array<std::string, 2>& dtypes,
size_t runtime::gpu::CUDAEmitter::build_pad(const std::array<std::string, 2>& dtypes,
GPUShape input_shape,
GPUShape output_shape,
GPUShape padding_below,
......@@ -103,7 +104,7 @@ size_t runtime::gpu::CUDAEmitter::build_pad(const runtime::gpu::GPURuntimeContex
uint32_t aligned_grid_size_x = align_to_block_size(nthreads, block_size_x);
// if the kernel has not been compiled, build it
auto compiled_kernel = ctx->compiled_kernel_pool->get(hash);
auto compiled_kernel = m_ctx->compiled_kernel_pool->get(hash);
if (compiled_kernel == nullptr)
{
// normalize pad dimensions to shape dimensions
......@@ -186,7 +187,7 @@ size_t runtime::gpu::CUDAEmitter::build_pad(const runtime::gpu::GPURuntimeContex
}
writer.block_end();
compiled_kernel = ctx->compiled_kernel_pool->set(hash, writer.get_code());
compiled_kernel = m_ctx->compiled_kernel_pool->set(hash, writer.get_code());
}
std::unique_ptr<gpu::primitive> pad;
......@@ -233,8 +234,7 @@ size_t runtime::gpu::CUDAEmitter::build_pad(const runtime::gpu::GPURuntimeContex
return primitive_index;
}
size_t runtime::gpu::CUDAEmitter::build_pad_dynamic(const runtime::gpu::GPURuntimeContext* ctx,
const std::array<std::string, 2>& dtypes,
size_t runtime::gpu::CUDAEmitter::build_pad_dynamic(const std::array<std::string, 2>& dtypes,
GPUShape input_shape,
GPUShape output_shape,
GPUShape padding_below,
......@@ -261,13 +261,13 @@ size_t runtime::gpu::CUDAEmitter::build_pad_dynamic(const runtime::gpu::GPURunti
// a launch primitive for it based on the input tensor shape
// but do not recompile the kernel. otherwise, do it all:
// recompile the kernel and then create the primitive
auto compiled_kernel = ctx->compiled_kernel_pool->get(kernel_name.str());
auto compiled_kernel = m_ctx->compiled_kernel_pool->get(kernel_name.str());
if (compiled_kernel == nullptr)
{
codegen::CodeWriter writer;
CudaKernelBuilder::add_pod_typedefs(writer);
CudaKernelBuilder::get_pad_dynamic_op(writer, kernel_name.str(), dtypes);
compiled_kernel = ctx->compiled_kernel_pool->set(kernel_name.str(), writer.get_code());
compiled_kernel = m_ctx->compiled_kernel_pool->set(kernel_name.str(), writer.get_code());
}
uint32_t rank = static_cast<uint32_t>(input_shape.size());
......@@ -300,11 +300,12 @@ size_t runtime::gpu::CUDAEmitter::build_pad_dynamic(const runtime::gpu::GPURunti
// create the launch primitive
std::unique_ptr<gpu::primitive> pad_dynamic(new gpu::primitive{[=](void** inputs,
void** outputs) mutable {
void* param_input_strides = runtime::gpu::invoke_memory_primitive(ctx, idx_input_strides);
void* param_output_strides = runtime::gpu::invoke_memory_primitive(ctx, idx_output_strides);
void* param_padding_below = runtime::gpu::invoke_memory_primitive(ctx, idx_padding_below);
void* param_input_strides = runtime::gpu::invoke_memory_primitive(m_ctx, idx_input_strides);
void* param_output_strides =
runtime::gpu::invoke_memory_primitive(m_ctx, idx_output_strides);
void* param_padding_below = runtime::gpu::invoke_memory_primitive(m_ctx, idx_padding_below);
void* param_padding_interior =
runtime::gpu::invoke_memory_primitive(ctx, idx_padding_interior);
runtime::gpu::invoke_memory_primitive(m_ctx, idx_padding_interior);
std::vector<void*> args_list{&inputs[0],
&outputs[0],
&param_input_strides,
......@@ -332,9 +333,7 @@ size_t runtime::gpu::CUDAEmitter::build_pad_dynamic(const runtime::gpu::GPURunti
m_primitive_emitter->cache(hash, primitive_index);
return primitive_index;
}
size_t runtime::gpu::CUDAEmitter::build_reshape(const runtime::gpu::GPURuntimeContext* ctx,
const std::array<std::string, 2>& dtypes,
size_t runtime::gpu::CUDAEmitter::build_reshape(const std::array<std::string, 2>& dtypes,
GPUShape input_shape,
GPUShape input_order)
{
......@@ -359,13 +358,13 @@ size_t runtime::gpu::CUDAEmitter::build_reshape(const runtime::gpu::GPURuntimeCo
// a launch primitive for it based on the input tensor shape
// but do not recompile the kernel. otherwise, do it all:
// recompile the kernel and then create the primitive
auto compiled_kernel = ctx->compiled_kernel_pool->get(kernel_name.str());
auto compiled_kernel = m_ctx->compiled_kernel_pool->get(kernel_name.str());
if (compiled_kernel == nullptr)
{
codegen::CodeWriter writer;
CudaKernelBuilder::add_pod_typedefs(writer);
CudaKernelBuilder::get_reshape_op(writer, kernel_name.str(), dtypes, rank);
compiled_kernel = ctx->compiled_kernel_pool->set(kernel_name.str(), writer.get_code());
compiled_kernel = m_ctx->compiled_kernel_pool->set(kernel_name.str(), writer.get_code());
}
uint32_t nthreads = static_cast<uint32_t>(shape_size(input_shape));
......@@ -396,8 +395,8 @@ size_t runtime::gpu::CUDAEmitter::build_reshape(const runtime::gpu::GPURuntimeCo
// create the launch primitive
std::unique_ptr<gpu::primitive> kernel_launch(new gpu::primitive{[=](void** inputs,
void** outputs) mutable {
void* param_input_strides = runtime::gpu::invoke_memory_primitive(ctx, idx_input_strides);
void* param_trans_strides = runtime::gpu::invoke_memory_primitive(ctx, idx_trans_strides);
void* param_input_strides = runtime::gpu::invoke_memory_primitive(m_ctx, idx_input_strides);
void* param_trans_strides = runtime::gpu::invoke_memory_primitive(m_ctx, idx_trans_strides);
std::vector<void*> args_list{
&inputs[0], &outputs[0], &param_input_strides, &param_trans_strides, &nthreads};
......@@ -420,8 +419,7 @@ size_t runtime::gpu::CUDAEmitter::build_reshape(const runtime::gpu::GPURuntimeCo
return primitive_index;
}
size_t runtime::gpu::CUDAEmitter::build_slice(const runtime::gpu::GPURuntimeContext* ctx,
const std::array<std::string, 2>& dtypes,
size_t runtime::gpu::CUDAEmitter::build_slice(const std::array<std::string, 2>& dtypes,
GPUShape input_shape,
GPUShape lower_bounds,
GPUShape slice_strides,
......@@ -448,13 +446,13 @@ size_t runtime::gpu::CUDAEmitter::build_slice(const runtime::gpu::GPURuntimeCont
// a launch primitive for it based on the input tensor shape
// but do not recompile the kernel. otherwise, do it all:
// recompile the kernel and then create the primitive
auto compiled_kernel = ctx->compiled_kernel_pool->get(kernel_name.str());
auto compiled_kernel = m_ctx->compiled_kernel_pool->get(kernel_name.str());
if (compiled_kernel == nullptr)
{
codegen::CodeWriter writer;
CudaKernelBuilder::add_pod_typedefs(writer);
CudaKernelBuilder::get_slice_op(writer, kernel_name.str(), dtypes, output_shape.size());
compiled_kernel = ctx->compiled_kernel_pool->set(kernel_name.str(), writer.get_code());
compiled_kernel = m_ctx->compiled_kernel_pool->set(kernel_name.str(), writer.get_code());
}
uint32_t nthreads = static_cast<uint32_t>(shape_size(output_shape));
......@@ -478,10 +476,11 @@ size_t runtime::gpu::CUDAEmitter::build_slice(const runtime::gpu::GPURuntimeCont
// create the launch primitive
std::unique_ptr<gpu::primitive> kernel_launch(new gpu::primitive{[=](void** inputs,
void** outputs) mutable {
void* param_input_strides = runtime::gpu::invoke_memory_primitive(ctx, idx_input_strides);
void* param_output_strides = runtime::gpu::invoke_memory_primitive(ctx, idx_output_strides);
void* param_lower_bounds = runtime::gpu::invoke_memory_primitive(ctx, idx_lower_bounds);
void* param_slice_strides = runtime::gpu::invoke_memory_primitive(ctx, idx_slice_strides);
void* param_input_strides = runtime::gpu::invoke_memory_primitive(m_ctx, idx_input_strides);
void* param_output_strides =
runtime::gpu::invoke_memory_primitive(m_ctx, idx_output_strides);
void* param_lower_bounds = runtime::gpu::invoke_memory_primitive(m_ctx, idx_lower_bounds);
void* param_slice_strides = runtime::gpu::invoke_memory_primitive(m_ctx, idx_slice_strides);
std::vector<void*> args_list{&inputs[0],
&outputs[0],
&param_input_strides,
......@@ -509,8 +508,7 @@ size_t runtime::gpu::CUDAEmitter::build_slice(const runtime::gpu::GPURuntimeCont
return primitive_index;
}
size_t runtime::gpu::CUDAEmitter::build_reverse_sequence(const runtime::gpu::GPURuntimeContext* ctx,
const std::array<std::string, 3>& dtypes,
size_t runtime::gpu::CUDAEmitter::build_reverse_sequence(const std::array<std::string, 3>& dtypes,
GPUShape input_shape0,
GPUShape input_shape1,
GPUShape output_shape,
......@@ -538,14 +536,14 @@ size_t runtime::gpu::CUDAEmitter::build_reverse_sequence(const runtime::gpu::GPU
// a launch primitive for it based on the input tensor shape
// but do not recompile the kernel. otherwise, do it all:
// recompile the kernel and then create the primitive
auto compiled_kernel = ctx->compiled_kernel_pool->get(kernel_name.str());
auto compiled_kernel = m_ctx->compiled_kernel_pool->get(kernel_name.str());
if (compiled_kernel == nullptr)
{
codegen::CodeWriter writer;
CudaKernelBuilder::add_pod_typedefs(writer);
CudaKernelBuilder::get_reverse_sequence_op(
writer, kernel_name.str(), dtypes, batch_axis, sequence_axis, output_shape.size());
compiled_kernel = ctx->compiled_kernel_pool->set(kernel_name.str(), writer.get_code());
compiled_kernel = m_ctx->compiled_kernel_pool->set(kernel_name.str(), writer.get_code());
}
uint32_t nthreads = static_cast<uint32_t>(shape_size(output_shape));
......@@ -564,8 +562,9 @@ size_t runtime::gpu::CUDAEmitter::build_reverse_sequence(const runtime::gpu::GPU
// create the launch primitive
std::unique_ptr<gpu::primitive> kernel_launch(new gpu::primitive{[=](void** inputs,
void** outputs) mutable {
void* param_output_shape = runtime::gpu::invoke_memory_primitive(ctx, idx_output_shape);
void* param_output_strides = runtime::gpu::invoke_memory_primitive(ctx, idx_output_strides);
void* param_output_shape = runtime::gpu::invoke_memory_primitive(m_ctx, idx_output_shape);
void* param_output_strides =
runtime::gpu::invoke_memory_primitive(m_ctx, idx_output_strides);
std::vector<void*> args_list{&inputs[0],
&inputs[1],
&outputs[0],
......@@ -592,8 +591,7 @@ size_t runtime::gpu::CUDAEmitter::build_reverse_sequence(const runtime::gpu::GPU
return primitive_index;
}
size_t runtime::gpu::CUDAEmitter::build_1d_max_pool(const GPURuntimeContext* ctx,
const std::array<std::string, 2>& dtypes,
size_t runtime::gpu::CUDAEmitter::build_1d_max_pool(const std::array<std::string, 2>& dtypes,
GPUShape input_shape,
GPUShape output_shape,
size_t window_width,
......@@ -617,13 +615,13 @@ size_t runtime::gpu::CUDAEmitter::build_1d_max_pool(const GPURuntimeContext* ctx
}
// if the kernel has not been compiled, build it
auto compiled_kernel = ctx->compiled_kernel_pool->get(hash);
auto compiled_kernel = m_ctx->compiled_kernel_pool->get(hash);
if (compiled_kernel == nullptr)
{
codegen::CodeWriter writer;
CudaKernelBuilder::get_max_pool_1d(
writer, kernel_name, dtypes, input_width, output_width, window_width, window_stride);
compiled_kernel = ctx->compiled_kernel_pool->set(kernel_name, writer.get_code());
compiled_kernel = m_ctx->compiled_kernel_pool->set(kernel_name, writer.get_code());
}
//TODO: currently we set it to 64, will add tuning method later
......@@ -722,8 +720,7 @@ pooling_op_shape
return shape;
}
size_t runtime::gpu::CUDAEmitter::build_avg_pool(const GPURuntimeContext* ctx,
const std::array<std::string, 2>& dtypes,
size_t runtime::gpu::CUDAEmitter::build_avg_pool(const std::array<std::string, 2>& dtypes,
GPUShape input_shape,
GPUShape output_shape,
GPUShape window_shape,
......@@ -750,13 +747,13 @@ size_t runtime::gpu::CUDAEmitter::build_avg_pool(const GPURuntimeContext* ctx,
// if the kernel has not been compiled, build it
kernel_name += "_ip" + std::to_string(int(include_pad));
auto compiled_kernel = ctx->compiled_kernel_pool->get(kernel_name);
auto compiled_kernel = m_ctx->compiled_kernel_pool->get(kernel_name);
if (compiled_kernel == nullptr)
{
codegen::CodeWriter writer;
writer << include_helpers();
CudaKernelBuilder::get_avg_pool(writer, kernel_name, dtypes, include_pad);
compiled_kernel = ctx->compiled_kernel_pool->set(kernel_name, writer.get_code());
compiled_kernel = m_ctx->compiled_kernel_pool->set(kernel_name, writer.get_code());
}
// precompute for fast constant memory access
......@@ -843,8 +840,7 @@ size_t runtime::gpu::CUDAEmitter::build_avg_pool(const GPURuntimeContext* ctx,
return primitive_index;
}
size_t runtime::gpu::CUDAEmitter::build_elementwise_n_to_1(const GPURuntimeContext* ctx,
const std::vector<std::string>& dtypes,
size_t runtime::gpu::CUDAEmitter::build_elementwise_n_to_1(const std::vector<std::string>& dtypes,
GPUShape tensor_shape,
const char* op,
const char* kernel)
......@@ -870,7 +866,7 @@ size_t runtime::gpu::CUDAEmitter::build_elementwise_n_to_1(const GPURuntimeConte
// a launch primitive for it based on the input tensor shape
// but do not recompile the kernel. otherwise, do it all:
// recompile the kernel and then create the primitive
auto compiled_kernel = ctx->compiled_kernel_pool->get(kernel_name.str());
auto compiled_kernel = m_ctx->compiled_kernel_pool->get(kernel_name.str());
if (compiled_kernel == nullptr)
{
codegen::CodeWriter writer;
......@@ -882,7 +878,7 @@ size_t runtime::gpu::CUDAEmitter::build_elementwise_n_to_1(const GPURuntimeConte
CudaKernelBuilder::get_elementwise_op(writer, kernel_name.str(), op, dtypes);
compiled_kernel = ctx->compiled_kernel_pool->set(kernel_name.str(), writer.get_code());
compiled_kernel = m_ctx->compiled_kernel_pool->set(kernel_name.str(), writer.get_code());
}
size_t nthreads = shape_size(tensor_shape);
//TODO: currently we set it to 64, will add tuning method later
......@@ -920,8 +916,7 @@ size_t runtime::gpu::CUDAEmitter::build_elementwise_n_to_1(const GPURuntimeConte
}
size_t
runtime::gpu::CUDAEmitter::build_fused_ew_to_collective(const GPURuntimeContext* ctx,
const std::vector<std::string>& dtypes,
runtime::gpu::CUDAEmitter::build_fused_ew_to_collective(const std::vector<std::string>& dtypes,
GPUShape tensor_shape,
const std::set<size_t>& reduced_tensors,
const std::set<size_t>& axes,
......@@ -954,7 +949,7 @@ size_t
// a launch primitive for it based on the input tensor shape
// but do not recompile the kernel. otherwise, do it all:
// recompile the kernel and then create the primitive
auto compiled_kernel = ctx->compiled_kernel_pool->get(kernel_name.str());
auto compiled_kernel = m_ctx->compiled_kernel_pool->get(kernel_name.str());
if (compiled_kernel == nullptr)
{
codegen::CodeWriter writer;
......@@ -972,7 +967,7 @@ size_t
reduced_tensors,
save_elementwise,
tensor_shape.size());
compiled_kernel = ctx->compiled_kernel_pool->set(kernel_name.str(), writer.get_code());
compiled_kernel = m_ctx->compiled_kernel_pool->set(kernel_name.str(), writer.get_code());
}
// calculate strides
......@@ -1016,10 +1011,10 @@ size_t
// TODO: check if mutable is necessary
std::unique_ptr<gpu::primitive> ew_collective(new gpu::primitive{[=](void** inputs,
void** outputs) mutable {
void* strides_d = runtime::gpu::invoke_memory_primitive(ctx, idx_strides);
void* stride_magic_d = runtime::gpu::invoke_memory_primitive(ctx, idx_stride_magic);
void* stride_shift_d = runtime::gpu::invoke_memory_primitive(ctx, idx_stride_shift);
void* reduced_strides_d = runtime::gpu::invoke_memory_primitive(ctx, idx_reduced_strides);
void* strides_d = runtime::gpu::invoke_memory_primitive(m_ctx, idx_strides);
void* stride_magic_d = runtime::gpu::invoke_memory_primitive(m_ctx, idx_stride_magic);
void* stride_shift_d = runtime::gpu::invoke_memory_primitive(m_ctx, idx_stride_shift);
void* reduced_strides_d = runtime::gpu::invoke_memory_primitive(m_ctx, idx_reduced_strides);
std::vector<void*> args_list;
for (auto i = 0u; i < dtypes.size() - 1; i++)
......@@ -1056,8 +1051,7 @@ size_t
return primitive_index;
}
size_t runtime::gpu::CUDAEmitter::build_reduce_window(const GPURuntimeContext* ctx,
const OpName op_name,
size_t runtime::gpu::CUDAEmitter::build_reduce_window(const OpName op_name,
const std::vector<std::string>& dtypes,
GPUShape input_shape,
GPUShape output_shape,
......@@ -1106,7 +1100,7 @@ size_t runtime::gpu::CUDAEmitter::build_reduce_window(const GPURuntimeContext* c
// a launch primitive for it based on the input tensor shape
// but do not recompile the kernel. otherwise, do it all:
// recompile the kernel and then create the primitive
auto compiled_kernel = ctx->compiled_kernel_pool->get(kernel_name.str());
auto compiled_kernel = m_ctx->compiled_kernel_pool->get(kernel_name.str());
if (compiled_kernel == nullptr)
{
codegen::CodeWriter writer;
......@@ -1116,7 +1110,7 @@ size_t runtime::gpu::CUDAEmitter::build_reduce_window(const GPURuntimeContext* c
CudaKernelBuilder::get_device_helper(writer, op, kernel, dtypes);
}
CudaKernelBuilder::get_reduce_window_op(writer, kernel_name.str(), op, dtypes, rank);
compiled_kernel = ctx->compiled_kernel_pool->set(kernel_name.str(), writer.get_code());
compiled_kernel = m_ctx->compiled_kernel_pool->set(kernel_name.str(), writer.get_code());
}
size_t nthreads = shape_size(output_shape);
......@@ -1136,12 +1130,12 @@ size_t runtime::gpu::CUDAEmitter::build_reduce_window(const GPURuntimeContext* c
// create the launch primitive
std::unique_ptr<gpu::primitive> f(new gpu::primitive{[=](void** inputs,
void** outputs) mutable {
void* param_input_strides = runtime::gpu::invoke_memory_primitive(ctx, idx_input_strides);
void* param_output_shape = runtime::gpu::invoke_memory_primitive(ctx, idx_output_shape);
void* param_input_strides = runtime::gpu::invoke_memory_primitive(m_ctx, idx_input_strides);
void* param_output_shape = runtime::gpu::invoke_memory_primitive(m_ctx, idx_output_shape);
void* param_reduce_window_shape =
runtime::gpu::invoke_memory_primitive(ctx, idx_reduce_window_shape);
runtime::gpu::invoke_memory_primitive(m_ctx, idx_reduce_window_shape);
void* param_reduce_window_strides =
runtime::gpu::invoke_memory_primitive(ctx, idx_reduce_window_strides);
runtime::gpu::invoke_memory_primitive(m_ctx, idx_reduce_window_strides);
std::vector<void*> args_list(7, NULL);
args_list[0] = &inputs[0];
......@@ -1172,8 +1166,7 @@ size_t runtime::gpu::CUDAEmitter::build_reduce_window(const GPURuntimeContext* c
return primitive_index;
}
size_t runtime::gpu::CUDAEmitter::build_replace_slice(const GPURuntimeContext* ctx,
const std::array<std::string, 3>& dtypes,
size_t runtime::gpu::CUDAEmitter::build_replace_slice(const std::array<std::string, 3>& dtypes,
GPUShape tensor_shape,
GPUShape source_shape,
GPUShape lower_bounds,
......@@ -1200,14 +1193,14 @@ size_t runtime::gpu::CUDAEmitter::build_replace_slice(const GPURuntimeContext* c
constexpr const int nthreads_per_block = 32;
// if the kernel has not been compiled, build it
auto compiled_kernel = ctx->compiled_kernel_pool->get(kernel_name);
auto compiled_kernel = m_ctx->compiled_kernel_pool->get(kernel_name);
if (compiled_kernel == nullptr)
{
codegen::CodeWriter writer;
writer << include_helpers();
runtime::gpu::CudaKernelBuilder::get_replace_slice_op(
writer, kernel_name, dtypes, nthreads_per_block);
compiled_kernel = ctx->compiled_kernel_pool->set(kernel_name, writer.get_code());
compiled_kernel = m_ctx->compiled_kernel_pool->set(kernel_name, writer.get_code());
}
// calculate strides
......@@ -1261,58 +1254,57 @@ size_t runtime::gpu::CUDAEmitter::build_replace_slice(const GPURuntimeContext* c
float alpha = 1.0f;
float beta = 0.0f;
std::unique_ptr<gpu::primitive> replace_slice(
new gpu::primitive{[=](void** inputs, void** outputs) mutable {
void* param_dstr = runtime::gpu::invoke_memory_primitive(ctx, idx_input_strides);
void* param_dmagic = runtime::gpu::invoke_memory_primitive(ctx, idx_dmagics);
void* param_dshift = runtime::gpu::invoke_memory_primitive(ctx, idx_dshifts);
void* param_lbound = runtime::gpu::invoke_memory_primitive(ctx, idx_lower_bounds);
void* param_ubound = runtime::gpu::invoke_memory_primitive(ctx, idx_upper_bounds);
void* param_slice_str = runtime::gpu::invoke_memory_primitive(ctx, idx_slice_strides);
void* param_slice_magic = runtime::gpu::invoke_memory_primitive(ctx, idx_smagics);
void* param_slice_shift = runtime::gpu::invoke_memory_primitive(ctx, idx_sshifts);
void* param_dsource = runtime::gpu::invoke_memory_primitive(ctx, idx_source_shape);
void* param_sourcestr = runtime::gpu::invoke_memory_primitive(ctx, idx_source_strides);
std::unique_ptr<gpu::primitive> replace_slice(new gpu::primitive{[=](void** inputs,
void** outputs) mutable {
void* param_dstr = runtime::gpu::invoke_memory_primitive(m_ctx, idx_input_strides);
void* param_dmagic = runtime::gpu::invoke_memory_primitive(m_ctx, idx_dmagics);
void* param_dshift = runtime::gpu::invoke_memory_primitive(m_ctx, idx_dshifts);
void* param_lbound = runtime::gpu::invoke_memory_primitive(m_ctx, idx_lower_bounds);
void* param_ubound = runtime::gpu::invoke_memory_primitive(m_ctx, idx_upper_bounds);
void* param_slice_str = runtime::gpu::invoke_memory_primitive(m_ctx, idx_slice_strides);
void* param_slice_magic = runtime::gpu::invoke_memory_primitive(m_ctx, idx_smagics);
void* param_slice_shift = runtime::gpu::invoke_memory_primitive(m_ctx, idx_sshifts);
void* param_dsource = runtime::gpu::invoke_memory_primitive(m_ctx, idx_source_shape);
void* param_sourcestr = runtime::gpu::invoke_memory_primitive(m_ctx, idx_source_strides);
void* args_list[] = {&inputs[0],
&inputs[1],
&outputs[0],
&alpha,
&beta,
&param_dstr,
&param_dmagic,
&param_dshift,
&param_lbound,
&param_ubound,
&param_slice_str,
&param_slice_magic,
&param_slice_shift,
&param_dsource,
&param_sourcestr,
&rank,
&nthreads};
void* args_list[] = {&inputs[0],
&inputs[1],
&outputs[0],
&alpha,
&beta,
&param_dstr,
&param_dmagic,
&param_dshift,
&param_lbound,
&param_ubound,
&param_slice_str,
&param_slice_magic,
&param_slice_shift,
&param_dsource,
&param_sourcestr,
&rank,
&nthreads};
CUDA_SAFE_CALL(cuLaunchKernel(*compiled_kernel.get(),
nblocks,
1,
1,
nthreads_per_block,
1,
1,
rank * nthreads_per_block * sizeof(int),
NULL,
args_list,
0));
CUDA_SAFE_CALL(cuCtxSynchronize());
}});
CUDA_SAFE_CALL(cuLaunchKernel(*compiled_kernel.get(),
nblocks,
1,
1,
nthreads_per_block,
1,
1,
rank * nthreads_per_block * sizeof(int),
NULL,
args_list,
0));
CUDA_SAFE_CALL(cuCtxSynchronize());
}});
primitive_index = this->m_primitive_emitter->insert(std::move(replace_slice));
m_primitive_emitter->cache(hash, primitive_index);
return primitive_index;
}
size_t runtime::gpu::CUDAEmitter::build_broadcast(const GPURuntimeContext* ctx,
const std::array<std::string, 2>& dtypes,
size_t runtime::gpu::CUDAEmitter::build_broadcast(const std::array<std::string, 2>& dtypes,
GPUShape result_shape,
const std::set<size_t>& reduce_axes)
{
......@@ -1333,14 +1325,14 @@ size_t runtime::gpu::CUDAEmitter::build_broadcast(const GPURuntimeContext* ctx,
}
// if the kernel has not been compiled, build it
auto compiled_kernel = ctx->compiled_kernel_pool->get(kernel_name);
auto compiled_kernel = m_ctx->compiled_kernel_pool->get(kernel_name);
if (compiled_kernel == nullptr)
{
codegen::CodeWriter writer;
writer << include_helpers();
runtime::gpu::CudaKernelBuilder::get_broadcast_op(
writer, kernel_name, dtypes, result_shape.size());
compiled_kernel = ctx->compiled_kernel_pool->set(kernel_name, writer.get_code());
compiled_kernel = m_ctx->compiled_kernel_pool->set(kernel_name, writer.get_code());
}
// calculate strides
......@@ -1389,10 +1381,10 @@ size_t runtime::gpu::CUDAEmitter::build_broadcast(const GPURuntimeContext* ctx,
std::unique_ptr<gpu::primitive> broadcast(new gpu::primitive{[=](void** inputs,
void** outputs) mutable {
void* strides_d = runtime::gpu::invoke_memory_primitive(ctx, idx_strides);
void* stride_magic_d = runtime::gpu::invoke_memory_primitive(ctx, idx_stride_magic);
void* stride_shift_d = runtime::gpu::invoke_memory_primitive(ctx, idx_stride_shift);
void* reduced_strides_d = runtime::gpu::invoke_memory_primitive(ctx, idx_reduced_strides);
void* strides_d = runtime::gpu::invoke_memory_primitive(m_ctx, idx_strides);
void* stride_magic_d = runtime::gpu::invoke_memory_primitive(m_ctx, idx_stride_magic);
void* stride_shift_d = runtime::gpu::invoke_memory_primitive(m_ctx, idx_stride_shift);
void* reduced_strides_d = runtime::gpu::invoke_memory_primitive(m_ctx, idx_reduced_strides);
void* args_list[] = {&inputs[0],
&outputs[0],
......@@ -1423,8 +1415,7 @@ size_t runtime::gpu::CUDAEmitter::build_broadcast(const GPURuntimeContext* ctx,
return primitive_index;
}
size_t runtime::gpu::CUDAEmitter::build_convolution(const GPURuntimeContext* ctx,
const std::array<std::string, 3>& dtypes,
size_t runtime::gpu::CUDAEmitter::build_convolution(const std::array<std::string, 3>& dtypes,
GPUShape input_shape,
GPUShape input_pad_below,
GPUShape input_dilation,
......@@ -1489,14 +1480,14 @@ size_t runtime::gpu::CUDAEmitter::build_convolution(const GPURuntimeContext* ctx
}
// if the kernel has not been compiled, build it
auto compiled_kernel = ctx->compiled_kernel_pool->get(kernel_name);
auto compiled_kernel = m_ctx->compiled_kernel_pool->get(kernel_name);
if (compiled_kernel == nullptr)
{
codegen::CodeWriter writer;
writer << include_helpers();
CudaKernelBuilder::get_convolution_forward(
writer, kernel_name, dtypes, N, K, filter_size, rank, sm_tile_size, reg_tile_size);
compiled_kernel = ctx->compiled_kernel_pool->set(kernel_name, writer.get_code());
compiled_kernel = m_ctx->compiled_kernel_pool->set(kernel_name, writer.get_code());
}
// ----- build primitive arguments -----
......@@ -1609,24 +1600,28 @@ size_t runtime::gpu::CUDAEmitter::build_convolution(const GPURuntimeContext* ctx
std::unique_ptr<gpu::primitive> conv(new gpu::primitive{[=](void** inputs,
void** outputs) mutable {
void* pad_d = runtime::gpu::invoke_memory_primitive(ctx, idx_pad);
void* data_dilation_d = runtime::gpu::invoke_memory_primitive(ctx, idx_data_dilation);
void* pad_d = runtime::gpu::invoke_memory_primitive(m_ctx, idx_pad);
void* data_dilation_d = runtime::gpu::invoke_memory_primitive(m_ctx, idx_data_dilation);
void* data_dilation_magic_d =
runtime::gpu::invoke_memory_primitive(ctx, idx_data_dilation_magic);
runtime::gpu::invoke_memory_primitive(m_ctx, idx_data_dilation_magic);
void* data_dilation_shift_d =
runtime::gpu::invoke_memory_primitive(ctx, idx_data_dilation_shift);
void* filter_strides_d = runtime::gpu::invoke_memory_primitive(ctx, idx_filter_strides);
void* filter_dilation_d = runtime::gpu::invoke_memory_primitive(ctx, idx_filter_dilation);
void* input_shape_d = runtime::gpu::invoke_memory_primitive(ctx, idx_input_shape);
void* input_shape_str_d = runtime::gpu::invoke_memory_primitive(ctx, idx_input_shape_str);
runtime::gpu::invoke_memory_primitive(m_ctx, idx_data_dilation_shift);
void* filter_strides_d = runtime::gpu::invoke_memory_primitive(m_ctx, idx_filter_strides);
void* filter_dilation_d = runtime::gpu::invoke_memory_primitive(m_ctx, idx_filter_dilation);
void* input_shape_d = runtime::gpu::invoke_memory_primitive(m_ctx, idx_input_shape);
void* input_shape_str_d = runtime::gpu::invoke_memory_primitive(m_ctx, idx_input_shape_str);
void* output_dim_strides_d =
runtime::gpu::invoke_memory_primitive(ctx, idx_output_dim_strides);
void* output_str_magic_d = runtime::gpu::invoke_memory_primitive(ctx, idx_output_str_magic);
void* output_str_shift_d = runtime::gpu::invoke_memory_primitive(ctx, idx_output_str_shift);
runtime::gpu::invoke_memory_primitive(m_ctx, idx_output_dim_strides);
void* output_str_magic_d =
runtime::gpu::invoke_memory_primitive(m_ctx, idx_output_str_magic);
void* output_str_shift_d =
runtime::gpu::invoke_memory_primitive(m_ctx, idx_output_str_shift);
void* filter_dim_strides_d =
runtime::gpu::invoke_memory_primitive(ctx, idx_filter_dim_strides);
void* filter_str_magic_d = runtime::gpu::invoke_memory_primitive(ctx, idx_filter_str_magic);
void* filter_str_shift_d = runtime::gpu::invoke_memory_primitive(ctx, idx_filter_str_shift);
runtime::gpu::invoke_memory_primitive(m_ctx, idx_filter_dim_strides);
void* filter_str_magic_d =
runtime::gpu::invoke_memory_primitive(m_ctx, idx_filter_str_magic);
void* filter_str_shift_d =
runtime::gpu::invoke_memory_primitive(m_ctx, idx_filter_str_shift);
void* args_list[] = {&inputs[0],
&inputs[1],
......
......@@ -38,8 +38,7 @@ namespace ngraph
friend class GPUPrimitiveEmitter;
public:
size_t build_pad(const GPURuntimeContext* ctx,
const std::array<std::string, 2>& dtypes,
size_t build_pad(const std::array<std::string, 2>& dtypes,
GPUShape input_shape,
GPUShape output_shape,
GPUShape pad_below,
......@@ -47,22 +46,19 @@ namespace ngraph
GPUShape pad_interior,
const std::string& pad_value = "");
size_t build_pad_dynamic(const GPURuntimeContext* ctx,
const std::array<std::string, 2>& dtypes,
size_t build_pad_dynamic(const std::array<std::string, 2>& dtypes,
GPUShape input_shape,
GPUShape output_shape,
GPUShape padding_below,
GPUShape padding_interior);
size_t build_1d_max_pool(const GPURuntimeContext* ctx,
const std::array<std::string, 2>& dtypes,
size_t build_1d_max_pool(const std::array<std::string, 2>& dtypes,
GPUShape input_shape,
GPUShape output_shape,
size_t window_width,
size_t window_stride);
size_t build_avg_pool(const GPURuntimeContext* ctx,
const std::array<std::string, 2>& dtypes,
size_t build_avg_pool(const std::array<std::string, 2>& dtypes,
GPUShape input_shape,
GPUShape output_shape,
GPUShape window_shape,
......@@ -70,23 +66,20 @@ namespace ngraph
GPUShape padding_below,
bool include_pad = false);
size_t build_slice(const GPURuntimeContext* ctx,
const std::array<std::string, 2>& dtypes,
size_t build_slice(const std::array<std::string, 2>& dtypes,
GPUShape input_shape,
GPUShape lower_bounds,
GPUShape slice_strides,
GPUShape output_shape);
size_t build_reduce_window(const GPURuntimeContext* ctx,
const OpName op_name,
size_t build_reduce_window(const OpName op_name,
const std::vector<std::string>& dtypes,
GPUShape input_shape,
GPUShape output_shape,
GPUShape reduce_window_shape,
GPUShape reduce_window_strides);
size_t build_reverse_sequence(const runtime::gpu::GPURuntimeContext* ctx,
const std::array<std::string, 3>& dtypes,
size_t build_reverse_sequence(const std::array<std::string, 3>& dtypes,
GPUShape input_shape0,
GPUShape input_shape1,
GPUShape output_shape,
......@@ -94,24 +87,21 @@ namespace ngraph
size_t sequence_axis);
template <typename T>
size_t build_elementwise(const GPURuntimeContext* ctx,
const std::vector<std::string>& dtypes,
size_t build_elementwise(const std::vector<std::string>& dtypes,
GPUShape tensor_shape)
{
return build_elementwise_n_to_1(
ctx, dtypes, tensor_shape, CudaOpMap<T>::op, CudaOpMap<T>::math_kernel);
dtypes, tensor_shape, CudaOpMap<T>::op, CudaOpMap<T>::math_kernel);
}
template <typename ELEMENTWISE_OP_TYPE, typename REDUCE_OP_TYPE = ngraph::op::Nop>
size_t build_elementwise_collective(const GPURuntimeContext* ctx,
const std::vector<std::string>& dtypes,
size_t build_elementwise_collective(const std::vector<std::string>& dtypes,
GPUShape tensor_shape,
const std::set<size_t>& reduced_tensors = {},
const std::set<size_t>& axes = {},
bool save_elementwise = false)
{
return build_fused_ew_to_collective(ctx,
dtypes,
return build_fused_ew_to_collective(dtypes,
tensor_shape,
reduced_tensors,
axes,
......@@ -121,26 +111,22 @@ namespace ngraph
save_elementwise);
}
size_t build_replace_slice(const GPURuntimeContext* ctx,
const std::array<std::string, 3>& dtypes,
size_t build_replace_slice(const std::array<std::string, 3>& dtypes,
GPUShape tensor_shape,
GPUShape source_shape,
GPUShape lower_bounds,
GPUShape upper_bounds,
GPUShape slice_stride);
size_t build_broadcast(const GPURuntimeContext* ctx,
const std::array<std::string, 2>& dtypes,
size_t build_broadcast(const std::array<std::string, 2>& dtypes,
GPUShape result_shape,
const std::set<size_t>& bcast_axes);
size_t build_reshape(const GPURuntimeContext* ctx,
const std::array<std::string, 2>& dtypes,
size_t build_reshape(const std::array<std::string, 2>& dtypes,
GPUShape input_shape,
GPUShape input_order);
size_t build_convolution(const GPURuntimeContext* ctx,
const std::array<std::string, 3>& dtypes,
size_t build_convolution(const std::array<std::string, 3>& dtypes,
GPUShape input_shape,
GPUShape input_pad_below,
GPUShape input_dilation,
......@@ -150,19 +136,17 @@ namespace ngraph
GPUShape output_shape);
private:
CUDAEmitter(GPUPrimitiveEmitter* emitter);
CUDAEmitter(GPUPrimitiveEmitter* emitter, GPURuntimeContext* ctx);
uint32_t align_to_block_size(uint32_t threads, uint32_t block_size);
void print_tensor_from_gpu(codegen::CodeWriter& writer,
const std::string& tensor_name,
GPUShape shape);
std::string include_helpers();
size_t build_elementwise_n_to_1(const GPURuntimeContext* ctx,
const std::vector<std::string>& dtypes,
size_t build_elementwise_n_to_1(const std::vector<std::string>& dtypes,
GPUShape tensor_shape,
const char* op,
const char* kernel);
size_t build_fused_ew_to_collective(const GPURuntimeContext* ctx,
const std::vector<std::string>& dtypes,
size_t build_fused_ew_to_collective(const std::vector<std::string>& dtypes,
GPUShape tensor_shape,
const std::set<size_t>& reduced_tensors,
const std::set<size_t>& axes,
......@@ -172,6 +156,7 @@ namespace ngraph
bool save_elementwise);
GPUPrimitiveEmitter* m_primitive_emitter;
GPURuntimeContext* m_ctx;
};
}
}
......
......@@ -107,9 +107,10 @@ std::vector<int>
return low_vec;
}
runtime::gpu::CUDNNEmitter::CUDNNEmitter(GPUPrimitiveEmitter* emitter)
runtime::gpu::CUDNNEmitter::CUDNNEmitter(GPUPrimitiveEmitter* emitter, GPURuntimeContext* ctx)
: m_primitive_emitter(emitter)
{
m_ctx = ctx;
}
cudnnDataType_t runtime::gpu::CUDNNEmitter::get_cudnn_datatype(std::string dtype)
......@@ -128,8 +129,7 @@ cudnnDataType_t runtime::gpu::CUDNNEmitter::get_cudnn_datatype(std::string dtype
return p->second;
}
size_t runtime::gpu::CUDNNEmitter::build_reduce_forward(const runtime::gpu::GPURuntimeContext* ctx,
const cudnnReduceTensorOp_t& reduce_op,
size_t runtime::gpu::CUDNNEmitter::build_reduce_forward(const cudnnReduceTensorOp_t& reduce_op,
const std::string& dtype,
const Shape& input_shape,
const AxisSet& reduction_axes)
......@@ -162,7 +162,7 @@ size_t runtime::gpu::CUDNNEmitter::build_reduce_forward(const runtime::gpu::GPUR
GPUAllocator allocator = this->m_primitive_emitter->get_memory_allocator();
size_t workspace_size = 0;
CUDNN_SAFE_CALL(cudnnGetReductionWorkspaceSize(
*ctx->cudnn_handle, desc, input_desc, output_desc, &workspace_size));
*m_ctx->cudnn_handle, desc, input_desc, output_desc, &workspace_size));
size_t workspace_idx = allocator.reserve_workspace(workspace_size);
void* alpha = m_host_parameters.allocate_by_datatype(data_type, 1.0);
void* beta = m_host_parameters.allocate_by_datatype(data_type, 0);
......@@ -177,8 +177,8 @@ size_t runtime::gpu::CUDNNEmitter::build_reduce_forward(const runtime::gpu::GPUR
CUDNN_REDUCE_TENSOR_NO_INDICES,
CUDNN_32BIT_INDICES));
void* workspace_ptr = runtime::gpu::invoke_memory_primitive(ctx, workspace_idx);
CUDNN_SAFE_CALL(cudnnReduceTensor(*ctx->cudnn_handle,
void* workspace_ptr = runtime::gpu::invoke_memory_primitive(m_ctx, workspace_idx);
CUDNN_SAFE_CALL(cudnnReduceTensor(*m_ctx->cudnn_handle,
desc,
nullptr,
0,
......@@ -197,8 +197,7 @@ size_t runtime::gpu::CUDNNEmitter::build_reduce_forward(const runtime::gpu::GPUR
return primitive_index;
}
size_t runtime::gpu::CUDNNEmitter::build_tensor_op(const GPURuntimeContext* ctx,
const cudnnOpTensorOp_t& tensor_op,
size_t runtime::gpu::CUDNNEmitter::build_tensor_op(const cudnnOpTensorOp_t& tensor_op,
const std::string& dtype,
const Shape& input_shape,
const double alpha0,
......@@ -231,7 +230,7 @@ size_t runtime::gpu::CUDNNEmitter::build_tensor_op(const GPURuntimeContext* ctx,
CUDNN_SAFE_CALL(cudnnSetOpTensorDescriptor(
opTensorDesc, tensor_op, data_type, CUDNN_NOT_PROPAGATE_NAN));
CUDNN_SAFE_CALL(cudnnOpTensor(*ctx->cudnn_handle,
CUDNN_SAFE_CALL(cudnnOpTensor(*m_ctx->cudnn_handle,
opTensorDesc,
alpha_dt0,
descriptor,
......@@ -326,8 +325,7 @@ cudnnConvolutionDescriptor_t& runtime::gpu::CUDNNEmitter::get_cudnn_convolution_
return conv_descriptor;
}
size_t runtime::gpu::CUDNNEmitter::build_convolution(const runtime::gpu::GPURuntimeContext* ctx,
const std::string& dtype,
size_t runtime::gpu::CUDNNEmitter::build_convolution(const std::string& dtype,
const Shape& input_tensor_shape,
const Shape& input_filter_shape,
const Shape& output_tensor_shape,
......@@ -366,7 +364,7 @@ size_t runtime::gpu::CUDNNEmitter::build_convolution(const runtime::gpu::GPURunt
void* beta = m_host_parameters.allocate_by_datatype(data_type, 0);
size_t workspace_size_in_bytes = 0;
CUDNN_SAFE_CALL(cudnnGetConvolutionForwardWorkspaceSize(*ctx->cudnn_handle,
CUDNN_SAFE_CALL(cudnnGetConvolutionForwardWorkspaceSize(*m_ctx->cudnn_handle,
tensor_desc_0,
filter_desc,
conv_desc,
......@@ -382,8 +380,8 @@ size_t runtime::gpu::CUDNNEmitter::build_convolution(const runtime::gpu::GPURunt
std::unique_ptr<gpu::primitive> conv;
conv.reset(new gpu::primitive{[=, &conv_desc, &tensor_desc_0, &filter_desc, &tensor_desc_1](
void** inputs, void** outputs) {
void* workspace_ptr = runtime::gpu::invoke_memory_primitive(ctx, workspace_idx);
CUDNN_SAFE_CALL(cudnnConvolutionForward(*ctx->cudnn_handle,
void* workspace_ptr = runtime::gpu::invoke_memory_primitive(m_ctx, workspace_idx);
CUDNN_SAFE_CALL(cudnnConvolutionForward(*m_ctx->cudnn_handle,
alpha,
tensor_desc_0,
inputs[0],
......@@ -404,7 +402,6 @@ size_t runtime::gpu::CUDNNEmitter::build_convolution(const runtime::gpu::GPURunt
}
size_t runtime::gpu::CUDNNEmitter::build_convolution_backward_data(
const runtime::gpu::GPURuntimeContext* ctx,
const std::string& dtype,
const Shape& input_filter_shape,
const Shape& input_tensor_shape,
......@@ -443,7 +440,7 @@ size_t runtime::gpu::CUDNNEmitter::build_convolution_backward_data(
void* beta = m_host_parameters.allocate_by_datatype(data_type, 0);
size_t workspace_size_in_bytes = 0;
CUDNN_SAFE_CALL(cudnnGetConvolutionBackwardDataWorkspaceSize(*ctx->cudnn_handle,
CUDNN_SAFE_CALL(cudnnGetConvolutionBackwardDataWorkspaceSize(*m_ctx->cudnn_handle,
filter_desc,
tensor_desc_0,
conv_desc,
......@@ -459,8 +456,8 @@ size_t runtime::gpu::CUDNNEmitter::build_convolution_backward_data(
std::unique_ptr<gpu::primitive> conv;
conv.reset(new gpu::primitive{[=, &conv_desc, &tensor_desc_0, &filter_desc, &tensor_desc_1](
void** inputs, void** outputs) {
void* workspace_ptr = runtime::gpu::invoke_memory_primitive(ctx, workspace_idx);
CUDNN_SAFE_CALL(cudnnConvolutionBackwardData(*ctx->cudnn_handle,
void* workspace_ptr = runtime::gpu::invoke_memory_primitive(m_ctx, workspace_idx);
CUDNN_SAFE_CALL(cudnnConvolutionBackwardData(*m_ctx->cudnn_handle,
alpha,
filter_desc,
inputs[0],
......@@ -481,7 +478,6 @@ size_t runtime::gpu::CUDNNEmitter::build_convolution_backward_data(
}
size_t runtime::gpu::CUDNNEmitter::build_convolution_backward_filter(
const runtime::gpu::GPURuntimeContext* ctx,
const std::string& dtype,
const Shape& input_tensor_shape_0,
const Shape& input_tensor_shape_1,
......@@ -520,7 +516,7 @@ size_t runtime::gpu::CUDNNEmitter::build_convolution_backward_filter(
CUDNN_CONVOLUTION_BWD_FILTER_ALGO_0;
size_t workspace_size_in_bytes = 0;
CUDNN_SAFE_CALL(cudnnGetConvolutionBackwardFilterWorkspaceSize(*ctx->cudnn_handle,
CUDNN_SAFE_CALL(cudnnGetConvolutionBackwardFilterWorkspaceSize(*m_ctx->cudnn_handle,
tensor_desc_0,
tensor_desc_1,
conv_desc,
......@@ -538,8 +534,8 @@ size_t runtime::gpu::CUDNNEmitter::build_convolution_backward_filter(
std::unique_ptr<gpu::primitive> conv;
conv.reset(new gpu::primitive{[=, &conv_desc, &tensor_desc_0, &filter_desc, &tensor_desc_1](
void** inputs, void** outputs) {
void* workspace_ptr = runtime::gpu::invoke_memory_primitive(ctx, workspace_idx);
CUDNN_SAFE_CALL(cudnnConvolutionBackwardFilter(*ctx->cudnn_handle,
void* workspace_ptr = runtime::gpu::invoke_memory_primitive(m_ctx, workspace_idx);
CUDNN_SAFE_CALL(cudnnConvolutionBackwardFilter(*m_ctx->cudnn_handle,
alpha,
tensor_desc_0,
inputs[0],
......@@ -558,8 +554,7 @@ size_t runtime::gpu::CUDNNEmitter::build_convolution_backward_filter(
return primitive_index;
}
size_t runtime::gpu::CUDNNEmitter::build_pooling(const runtime::gpu::GPURuntimeContext* ctx,
const cudnnPoolingMode_t& pool_op,
size_t runtime::gpu::CUDNNEmitter::build_pooling(const cudnnPoolingMode_t& pool_op,
const std::string& dtype,
const Prop& direction,
const Shape& input_shape,
......@@ -638,7 +633,7 @@ size_t runtime::gpu::CUDNNEmitter::build_pooling(const runtime::gpu::GPURuntimeC
{
pool.reset(new gpu::primitive{
[=, &desc, &input_desc, &output_desc](void** inputs, void** outputs) {
CUDNN_SAFE_CALL(cudnnPoolingForward(*ctx->cudnn_handle,
CUDNN_SAFE_CALL(cudnnPoolingForward(*m_ctx->cudnn_handle,
desc,
alpha,
input_desc,
......@@ -660,7 +655,7 @@ size_t runtime::gpu::CUDNNEmitter::build_pooling(const runtime::gpu::GPURuntimeC
// cuDNN requires the output tensor of the maxpool fprop to be passed even though
// it is not mathematically necessary. It appears, however, that it is not actually
// used as the adjoints are passed in place and the correct result is achieved.
CUDNN_SAFE_CALL(cudnnPoolingBackward(*ctx->cudnn_handle,
CUDNN_SAFE_CALL(cudnnPoolingBackward(*m_ctx->cudnn_handle,
desc,
alpha,
// output (wrt maxpool) tensor
......@@ -686,8 +681,7 @@ size_t runtime::gpu::CUDNNEmitter::build_pooling(const runtime::gpu::GPURuntimeC
return primitive_index;
}
size_t runtime::gpu::CUDNNEmitter::build_batchnorm(const runtime::gpu::GPURuntimeContext* ctx,
const cudnnBatchNormMode_t& bn_op,
size_t runtime::gpu::CUDNNEmitter::build_batchnorm(const cudnnBatchNormMode_t& bn_op,
const std::string& dtype,
const Prop& direction,
const Shape& tensor_shape,
......@@ -728,7 +722,7 @@ size_t runtime::gpu::CUDNNEmitter::build_batchnorm(const runtime::gpu::GPURuntim
{
batchnorm.reset(new gpu::primitive{
[=, &tensor_desc, &derived_param_desc](void** inputs, void** outputs) {
CUDNN_SAFE_CALL(cudnnBatchNormalizationForwardInference(*ctx->cudnn_handle,
CUDNN_SAFE_CALL(cudnnBatchNormalizationForwardInference(*m_ctx->cudnn_handle,
bn_op,
alpha,
beta,
......@@ -762,7 +756,7 @@ size_t runtime::gpu::CUDNNEmitter::build_batchnorm(const runtime::gpu::GPURuntim
void* bias_factor = m_host_parameters.allocate_by_datatype(data_type, (m - 1) / m);
batchnorm.reset(new gpu::primitive{
[=, &op_desc, &tensor_desc, &derived_param_desc](void** inputs, void** outputs) {
CUDNN_SAFE_CALL(cudnnBatchNormalizationForwardTraining(*ctx->cudnn_handle,
CUDNN_SAFE_CALL(cudnnBatchNormalizationForwardTraining(*m_ctx->cudnn_handle,
bn_op,
alpha,
beta,
......@@ -781,7 +775,7 @@ size_t runtime::gpu::CUDNNEmitter::build_batchnorm(const runtime::gpu::GPURuntim
NULL));
// convert to biased variance
CUDNN_SAFE_CALL(cudnnOpTensor(*ctx->cudnn_handle,
CUDNN_SAFE_CALL(cudnnOpTensor(*m_ctx->cudnn_handle,
op_desc,
beta,
derived_param_desc,
......@@ -800,7 +794,7 @@ size_t runtime::gpu::CUDNNEmitter::build_batchnorm(const runtime::gpu::GPURuntim
batchnorm.reset(new gpu::primitive{
[=, &tensor_desc, &derived_param_desc](void** inputs, void** outputs) {
CUDNN_SAFE_CALL(cudnnBatchNormalizationBackward(
*ctx->cudnn_handle,
*m_ctx->cudnn_handle,
bn_op,
alpha,
beta,
......@@ -829,8 +823,7 @@ size_t runtime::gpu::CUDNNEmitter::build_batchnorm(const runtime::gpu::GPURuntim
return primitive_index;
}
size_t runtime::gpu::CUDNNEmitter::build_softmax(const runtime::gpu::GPURuntimeContext* ctx,
const cudnnSoftmaxAlgorithm_t& algorithm,
size_t runtime::gpu::CUDNNEmitter::build_softmax(const cudnnSoftmaxAlgorithm_t& algorithm,
const cudnnSoftmaxMode_t& mode,
const std::string& dtype,
const Prop& direction,
......@@ -862,7 +855,7 @@ size_t runtime::gpu::CUDNNEmitter::build_softmax(const runtime::gpu::GPURuntimeC
case Prop::Inference:
{
softmax.reset(new gpu::primitive{[=, &tensor_desc](void** inputs, void** outputs) {
CUDNN_SAFE_CALL(cudnnSoftmaxForward(*ctx->cudnn_handle,
CUDNN_SAFE_CALL(cudnnSoftmaxForward(*m_ctx->cudnn_handle,
algorithm,
mode,
alpha,
......@@ -877,7 +870,7 @@ size_t runtime::gpu::CUDNNEmitter::build_softmax(const runtime::gpu::GPURuntimeC
case Prop::Backward:
{
softmax.reset(new gpu::primitive{[=, &tensor_desc](void** inputs, void** outputs) {
CUDNN_SAFE_CALL(cudnnSoftmaxBackward(*ctx->cudnn_handle,
CUDNN_SAFE_CALL(cudnnSoftmaxBackward(*m_ctx->cudnn_handle,
algorithm,
mode,
alpha,
......
......@@ -56,8 +56,7 @@ namespace ngraph
Backward
};
size_t build_convolution(const runtime::gpu::GPURuntimeContext* ctx,
const std::string& dtype,
size_t build_convolution(const std::string& dtype,
const Shape& input_tensor_shape,
const Shape& input_filter_shape,
const Shape& output_tensor_shape,
......@@ -65,8 +64,7 @@ namespace ngraph
const Strides& window_dilation_strides,
const Shape& padding_below);
size_t build_convolution_backward_data(const runtime::gpu::GPURuntimeContext* ctx,
const std::string& dtype,
size_t build_convolution_backward_data(const std::string& dtype,
const Shape& input_filter_shape,
const Shape& input_tensor_shape,
const Shape& output_tensor_shape,
......@@ -74,8 +72,7 @@ namespace ngraph
const Strides& window_dilation_strides,
const Shape& padding_below);
size_t build_convolution_backward_filter(const runtime::gpu::GPURuntimeContext* ctx,
const std::string& dtype,
size_t build_convolution_backward_filter(const std::string& dtype,
const Shape& input_tensor_shape_0,
const Shape& input_tensor_shape_1,
const Shape& output_filter_shape,
......@@ -83,22 +80,19 @@ namespace ngraph
const Strides& window_dilation_strides,
const Shape& padding_below);
size_t build_reduce_forward(const GPURuntimeContext* ctx,
const cudnnReduceTensorOp_t& reduce_op,
size_t build_reduce_forward(const cudnnReduceTensorOp_t& reduce_op,
const std::string& dtype,
const Shape& input_shape,
const AxisSet& reduction_axes);
size_t build_tensor_op(const GPURuntimeContext* ctx,
const cudnnOpTensorOp_t& tensor_op,
size_t build_tensor_op(const cudnnOpTensorOp_t& tensor_op,
const std::string& dtype,
const Shape& input_shape,
const double alpha0,
const double alpha1,
const double beta);
size_t build_pooling(const GPURuntimeContext* ctx,
const cudnnPoolingMode_t& pool_op,
size_t build_pooling(const cudnnPoolingMode_t& pool_op,
const std::string& dtype,
const Prop& direction,
const ngraph::Shape& input_shape,
......@@ -108,23 +102,21 @@ namespace ngraph
const ngraph::Shape& padding_below,
const ngraph::Shape& padding_above);
size_t build_batchnorm(const runtime::gpu::GPURuntimeContext* ctx,
const cudnnBatchNormMode_t& bn_op,
size_t build_batchnorm(const cudnnBatchNormMode_t& bn_op,
const std::string& dtype,
const Prop& direction,
const Shape& tensor_shape,
const Shape& param_shape,
double epsilon);
size_t build_softmax(const runtime::gpu::GPURuntimeContext* ctx,
const cudnnSoftmaxAlgorithm_t& algorithm,
size_t build_softmax(const cudnnSoftmaxAlgorithm_t& algorithm,
const cudnnSoftmaxMode_t& mode,
const std::string& dtype,
const Prop& direction,
const Shape& tensor_shape);
private:
CUDNNEmitter(GPUPrimitiveEmitter* emitter);
CUDNNEmitter(GPUPrimitiveEmitter* emitter, GPURuntimeContext* ctx);
void* get_data_by_type(cudnnDataType_t data_type, double value);
......@@ -149,6 +141,7 @@ namespace ngraph
CUDNNHostParameters m_host_parameters;
GPUPrimitiveEmitter* m_primitive_emitter;
GPURuntimeContext* m_ctx;
};
}
}
......
......@@ -14,9 +14,15 @@
* limitations under the License.
*******************************************************************************/
#include "ngraph/runtime/gpu/gpu_backend.hpp"
#include <cublas_v2.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <cudnn.h>
#include "ngraph/graph_util.hpp"
#include "ngraph/runtime/gpu/gpu_backend.hpp"
#include "ngraph/runtime/gpu/gpu_external_function.hpp"
#include "ngraph/runtime/gpu/gpu_primitive_emitter.hpp"
#include "ngraph/runtime/gpu/gpu_tensor_view.hpp"
#include "ngraph/util.hpp"
......@@ -38,6 +44,57 @@ extern "C" void delete_backend(runtime::Backend* backend)
delete backend;
}
runtime::gpu::GPU_Backend::GPU_Backend()
: runtime::Backend()
, m_context(new BackendContext())
{
}
runtime::gpu::GPU_Backend::BackendContext::BackendContext()
: m_runtime_context(new GPURuntimeContext)
, m_primitive_emitter(new GPUPrimitiveEmitter(m_runtime_context))
{
// Create context use driver API and make it current, the runtime call will pickup the context
// http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
// #interoperability-between-runtime-and-driver-apis
ngraph::runtime::gpu::CudaContextManager::Instance().SetContextCurrent();
m_runtime_context->cublas_handle = new cublasHandle_t;
cublasStatus_t cublasStatus = cublasCreate(m_runtime_context->cublas_handle);
if (cublasStatus != CUBLAS_STATUS_SUCCESS)
{
throw runtime_error("cuBLAS create handle failed");
}
// Pass scalars as reference on the Device
cublasSetPointerMode(*m_runtime_context->cublas_handle, CUBLAS_POINTER_MODE_DEVICE);
m_runtime_context->cudnn_handle = new cudnnHandle_t;
cudnnStatus_t cudnnStatus = cudnnCreate(m_runtime_context->cudnn_handle);
if (cudnnStatus != CUDNN_STATUS_SUCCESS)
{
throw runtime_error("cuDNN create handle failed");
}
// register with c-api runtime context
m_runtime_context->compiled_kernel_pool = new CudaFunctionPool;
}
void runtime::gpu::GPU_Backend::BackendContext::prepare_runtime_context()
{
// add pointers to gpu primitives into the gpu runtime context
m_runtime_context->gpu_primitives = m_primitive_emitter->get_primitives().data();
m_runtime_context->gpu_memory_primitives = m_primitive_emitter->get_memory_primitives().data();
}
runtime::gpu::GPU_Backend::BackendContext::~BackendContext()
{
cublasDestroy(*m_runtime_context->cublas_handle);
delete m_runtime_context->cublas_handle;
cudnnDestroy(*m_runtime_context->cudnn_handle);
delete m_runtime_context->cudnn_handle;
delete m_runtime_context->compiled_kernel_pool;
}
shared_ptr<runtime::gpu::GPU_CallFrame> runtime::gpu::GPU_Backend::make_call_frame(
const shared_ptr<GPU_ExternalFunction>& external_function)
{
......@@ -61,7 +118,7 @@ bool runtime::gpu::GPU_Backend::compile(shared_ptr<Function> func)
FunctionInstance& instance = m_function_map[func];
if (instance.m_external_function == nullptr)
{
instance.m_external_function = make_shared<GPU_ExternalFunction>(func);
instance.m_external_function = make_shared<GPU_ExternalFunction>(func, m_context);
instance.m_external_function->m_emit_timing = instance.m_performance_counters_enabled;
auto cf = instance.m_external_function->make_call_frame();
instance.m_call_frame = dynamic_pointer_cast<GPU_CallFrame>(cf);
......@@ -83,7 +140,9 @@ bool runtime::gpu::GPU_Backend::call(shared_ptr<Function> func,
rc = compile(func);
}
instance.m_call_frame->call(outputs, inputs);
// ensure the GPURuntimeContext primitive pointers are valid
m_context->prepare_runtime_context();
instance.m_call_frame->call(outputs, inputs, m_context->m_runtime_context.get());
return rc;
}
......
......@@ -31,10 +31,13 @@ namespace ngraph
class GPU_ExternalFunction;
class GPU_CallFrame;
class GPUPrimitiveEmitter;
struct GPURuntimeContext;
class GPU_Backend : public Backend
{
public:
GPU_Backend();
std::shared_ptr<ngraph::runtime::gpu::GPU_CallFrame> make_call_frame(
const std::shared_ptr<ngraph::runtime::gpu::GPU_ExternalFunction>&
external_function);
......@@ -59,6 +62,17 @@ namespace ngraph
std::vector<PerformanceCounter>
get_performance_data(std::shared_ptr<Function> func) const override;
class BackendContext
{
public:
BackendContext();
~BackendContext();
void prepare_runtime_context();
std::unique_ptr<GPURuntimeContext> m_runtime_context;
std::unique_ptr<GPUPrimitiveEmitter> m_primitive_emitter;
};
private:
class FunctionInstance
{
......@@ -69,6 +83,7 @@ namespace ngraph
};
std::map<std::shared_ptr<Function>, FunctionInstance> m_function_map;
std::shared_ptr<BackendContext> m_context;
};
}
}
......
......@@ -32,17 +32,16 @@ runtime::gpu::GPU_CallFrame::GPU_CallFrame(std::shared_ptr<GPU_ExternalFunction>
: m_external_function(external_function)
, m_compiled_function(compiled_function)
{
setup_runtime_context();
}
runtime::gpu::GPU_CallFrame::~GPU_CallFrame()
{
cleanup_runtime_context();
}
void runtime::gpu::GPU_CallFrame::call(
const std::vector<std::shared_ptr<runtime::TensorView>>& output_tvs,
const std::vector<std::shared_ptr<runtime::TensorView>>& input_tvs)
const std::vector<std::shared_ptr<runtime::TensorView>>& input_tvs,
GPURuntimeContext* ctx)
{
//Device tensors
vector<void*> inputs;
......@@ -61,18 +60,5 @@ void runtime::gpu::GPU_CallFrame::call(
outputs.push_back(tv->m_allocated_buffer_pool);
}
m_compiled_function(inputs.data(), outputs.data(), m_external_function->m_ctx.get());
}
void runtime::gpu::GPU_CallFrame::setup_runtime_context()
{
// add pointers to gpu primitives into the gpu runtime context
const auto& primitive_emitter = m_external_function->get_primitive_emitter();
m_external_function->m_ctx->gpu_primitives = primitive_emitter->get_primitives().data();
m_external_function->m_ctx->gpu_memory_primitives =
primitive_emitter->get_memory_primitives().data();
}
void runtime::gpu::GPU_CallFrame::cleanup_runtime_context()
{
m_compiled_function(inputs.data(), outputs.data(), ctx);
}
......@@ -53,10 +53,8 @@ namespace ngraph
///
/// Tuples will be expanded into their tensor views to build the call frame.
void call(const std::vector<std::shared_ptr<runtime::TensorView>>& outputs,
const std::vector<std::shared_ptr<runtime::TensorView>>& inputs);
void setup_runtime_context();
void cleanup_runtime_context();
const std::vector<std::shared_ptr<runtime::TensorView>>& inputs,
GPURuntimeContext* ctx);
protected:
std::shared_ptr<GPU_ExternalFunction> m_external_function;
......
......@@ -123,13 +123,8 @@ namespace ngraph
{
auto& cudnn_emitter =
external_function->get_primitive_emitter()->get_cudnn_emitter();
auto index = cudnn_emitter->build_tensor_op(external_function->ctx().get(),
CUDNN_OP_TENSOR_ADD,
out[0].get_type(),
args[0].get_shape(),
1.0,
1.0,
0);
auto index = cudnn_emitter->build_tensor_op(
CUDNN_OP_TENSOR_ADD, out[0].get_type(), args[0].get_shape(), 1.0, 1.0, 0);
writer << "gpu::invoke_primitive(ctx, " << index << ", ";
writer << "std::vector<void*>{" << args[0].get_name() << ","
......@@ -187,22 +182,16 @@ namespace ngraph
auto& cuda_emitter =
external_function->get_primitive_emitter()->get_cuda_emitter();
size_t reshape_data_index =
cuda_emitter->build_reshape(external_function->ctx().get(),
{{args[0].get_type(), args[0].get_type()}},
input_shape,
input_order);
size_t reshape_data_index = cuda_emitter->build_reshape(
{{args[0].get_type(), args[0].get_type()}}, input_shape, input_order);
writer << "void* data = gpu::invoke_memory_primitive(ctx, "
<< transposed_data_idx << ");\n";
writer << "gpu::invoke_primitive(ctx, " << reshape_data_index << ", ";
writer << "std::vector<void*>{" << args[0].get_name() << "}.data(), ";
writer << "std::vector<void*>{data}.data());\n";
size_t reshape_filter_index =
cuda_emitter->build_reshape(external_function->ctx().get(),
{{args[1].get_type(), args[1].get_type()}},
filter_shape,
input_order);
size_t reshape_filter_index = cuda_emitter->build_reshape(
{{args[1].get_type(), args[1].get_type()}}, filter_shape, input_order);
writer << "void* filter = gpu::invoke_memory_primitive(ctx, "
<< transposed_filter_idx << ");\n";
writer << "gpu::invoke_primitive(ctx, " << reshape_filter_index << ", ";
......@@ -227,7 +216,6 @@ namespace ngraph
output_shape = reshape(output_shape, input_order);
size_t conv_index = cuda_emitter->build_convolution(
external_function->ctx().get(),
{{args[0].get_type(), args[1].get_type(), out[0].get_type()}},
input_shape,
padding_below_diff,
......@@ -250,11 +238,8 @@ namespace ngraph
input_order.push_back(i);
}
size_t reshape_output_index =
cuda_emitter->build_reshape(external_function->ctx().get(),
{{args[1].get_type(), args[1].get_type()}},
output_shape,
input_order);
size_t reshape_output_index = cuda_emitter->build_reshape(
{{args[1].get_type(), args[1].get_type()}}, output_shape, input_order);
writer << "gpu::invoke_primitive(ctx, " << reshape_output_index << ", ";
writer << "std::vector<void*>{output}.data(), ";
writer << "std::vector<void*>{" << out[0].get_name() << "}.data());\n";
......@@ -304,7 +289,6 @@ namespace ngraph
auto& cuda_emitter =
external_function->get_primitive_emitter()->get_cuda_emitter();
auto pad_dynamic_index = cuda_emitter->build_pad_dynamic(
external_function->ctx().get(),
{{args[0].get_type(), out[0].get_type()}},
input_shape,
input_shape_padded,
......@@ -322,8 +306,7 @@ namespace ngraph
auto& cudnn_emitter =
external_function->get_primitive_emitter()->get_cudnn_emitter();
size_t index = cudnn_emitter->build_convolution(external_function->ctx().get(),
out[0].get_type(),
size_t index = cudnn_emitter->build_convolution(out[0].get_type(),
input_shape_padded,
args[1].get_shape(),
out[0].get_shape(),
......@@ -424,8 +407,7 @@ namespace ngraph
auto& cuda_emitter =
external_function->get_primitive_emitter()->get_cuda_emitter();
auto pad_dynamic_index =
cuda_emitter->build_pad_dynamic(external_function->ctx().get(),
{{args[0].get_type(), out[0].get_type()}},
cuda_emitter->build_pad_dynamic({{args[0].get_type(), out[0].get_type()}},
output_shape,
output_shape_padded,
padding_below,
......@@ -442,8 +424,7 @@ namespace ngraph
auto& cudnn_emitter =
external_function->get_primitive_emitter()->get_cudnn_emitter();
size_t index =
cudnn_emitter->build_convolution_backward_data(external_function->ctx().get(),
out[0].get_type(),
cudnn_emitter->build_convolution_backward_data(out[0].get_type(),
args[0].get_shape(),
args[1].get_shape(),
output_shape_padded,
......@@ -469,8 +450,7 @@ namespace ngraph
auto& cuda_emitter =
external_function->get_primitive_emitter()->get_cuda_emitter();
auto slice_index =
cuda_emitter->build_slice(external_function->ctx().get(),
{{args[0].get_type(), out[0].get_type()}},
cuda_emitter->build_slice({{args[0].get_type(), out[0].get_type()}},
output_shape_padded,
padding_below_back,
padding_interior_back,
......@@ -550,8 +530,7 @@ namespace ngraph
auto& cuda_emitter =
external_function->get_primitive_emitter()->get_cuda_emitter();
auto pad_dynamic_index =
cuda_emitter->build_pad_dynamic(external_function->ctx().get(),
{{args[0].get_type(), out[0].get_type()}},
cuda_emitter->build_pad_dynamic({{args[0].get_type(), out[0].get_type()}},
input_shape,
input_shape_padded,
padding_below,
......@@ -569,8 +548,7 @@ namespace ngraph
auto& cudnn_emitter =
external_function->get_primitive_emitter()->get_cudnn_emitter();
size_t index =
cudnn_emitter->build_convolution_backward_filter(external_function->ctx().get(),
out[0].get_type(),
cudnn_emitter->build_convolution_backward_filter(out[0].get_type(),
input_shape_padded,
args[1].get_shape(),
out[0].get_shape(),
......@@ -770,13 +748,8 @@ namespace ngraph
{
auto& cudnn_emitter =
external_function->get_primitive_emitter()->get_cudnn_emitter();
auto index = cudnn_emitter->build_tensor_op(external_function->ctx().get(),
CUDNN_OP_TENSOR_MAX,
out[0].get_type(),
args[0].get_shape(),
1.0,
1.0,
0);
auto index = cudnn_emitter->build_tensor_op(
CUDNN_OP_TENSOR_MAX, out[0].get_type(), args[0].get_shape(), 1.0, 1.0, 0);
writer << "gpu::invoke_primitive(ctx, " << index << ", ";
writer << "std::vector<void*>{" << args[0].get_name() << ","
......@@ -798,13 +771,8 @@ namespace ngraph
{
auto& cudnn_emitter =
external_function->get_primitive_emitter()->get_cudnn_emitter();
auto index = cudnn_emitter->build_tensor_op(external_function->ctx().get(),
CUDNN_OP_TENSOR_MIN,
out[0].get_type(),
args[0].get_shape(),
1.0,
1.0,
0);
auto index = cudnn_emitter->build_tensor_op(
CUDNN_OP_TENSOR_MIN, out[0].get_type(), args[0].get_shape(), 1.0, 1.0, 0);
writer << "gpu::invoke_primitive(ctx, " << index << ", ";
writer << "std::vector<void*>{" << args[0].get_name() << ","
......@@ -838,11 +806,8 @@ namespace ngraph
auto& cuda_emitter = external_function->get_primitive_emitter()->get_cuda_emitter();
auto bcast_index =
cuda_emitter->build_broadcast(external_function->ctx().get(),
{{args[0].get_type(), out[0].get_type()}},
result_shape,
axes);
auto bcast_index = cuda_emitter->build_broadcast(
{{args[0].get_type(), out[0].get_type()}}, result_shape, axes);
writer << "gpu::invoke_primitive(ctx, " << bcast_index << ", ";
writer << "std::vector<void*>{" << args[0].get_name() << "}.data(), ";
writer << "std::vector<void*>{" << out[0].get_name() << "}.data()";
......@@ -954,11 +919,8 @@ namespace ngraph
{
auto& cuda_emitter =
external_function->get_primitive_emitter()->get_cuda_emitter();
auto index =
cuda_emitter->build_reshape(external_function->ctx().get(),
{{args[0].get_type(), out[0].get_type()}},
arg_shape,
input_order);
auto index = cuda_emitter->build_reshape(
{{args[0].get_type(), out[0].get_type()}}, arg_shape, input_order);
writer << "gpu::invoke_primitive(ctx, " << index << ", ";
writer << "std::vector<void*>{" << args[0].get_name() << "}.data(), ";
......@@ -1031,8 +993,7 @@ namespace ngraph
auto& cuda_emitter =
external_function->get_primitive_emitter()->get_cuda_emitter();
auto index =
cuda_emitter->build_slice(external_function->ctx().get(),
{{args[0].get_type(), out[0].get_type()}},
cuda_emitter->build_slice({{args[0].get_type(), out[0].get_type()}},
arg_shape,
lower_bounds,
slice_strides,
......@@ -1117,7 +1078,6 @@ namespace ngraph
auto& cuda_emitter = external_function->get_primitive_emitter()->get_cuda_emitter();
auto rs_index = cuda_emitter->build_reverse_sequence(
external_function->ctx().get(),
{{args[0].get_type(), args[1].get_type(), out[0].get_type()}},
arg_shape0,
arg_shape1,
......@@ -1142,13 +1102,8 @@ namespace ngraph
{
auto& cudnn_emitter =
external_function->get_primitive_emitter()->get_cudnn_emitter();
auto index = cudnn_emitter->build_tensor_op(external_function->ctx().get(),
CUDNN_OP_TENSOR_MUL,
out[0].get_type(),
args[0].get_shape(),
1.0,
1.0,
0);
auto index = cudnn_emitter->build_tensor_op(
CUDNN_OP_TENSOR_MUL, out[0].get_type(), args[0].get_shape(), 1.0, 1.0, 0);
writer << "gpu::invoke_primitive(ctx, " << index << ", ";
writer << "std::vector<void*>{" << args[0].get_name() << ","
......@@ -1201,13 +1156,8 @@ namespace ngraph
{
auto& cudnn_emitter =
external_function->get_primitive_emitter()->get_cudnn_emitter();
auto index = cudnn_emitter->build_tensor_op(external_function->ctx().get(),
CUDNN_OP_TENSOR_SQRT,
out[0].get_type(),
args[0].get_shape(),
1.0,
0,
0);
auto index = cudnn_emitter->build_tensor_op(
CUDNN_OP_TENSOR_SQRT, out[0].get_type(), args[0].get_shape(), 1.0, 0, 0);
writer << "gpu::invoke_primitive(ctx, " << index << ", ";
writer << "std::vector<void*>{" << args[0].get_name() << ","
......@@ -1259,8 +1209,7 @@ namespace ngraph
auto& cudnn_emitter =
external_function->get_primitive_emitter()->get_cudnn_emitter();
auto max_index =
cudnn_emitter->build_reduce_forward(external_function->ctx().get(),
CUDNN_REDUCE_TENSOR_MAX,
cudnn_emitter->build_reduce_forward(CUDNN_REDUCE_TENSOR_MAX,
out[0].get_type(),
args[0].get_shape(),
max_op->get_reduction_axes());
......@@ -1308,8 +1257,7 @@ namespace ngraph
auto& cudnn_emitter =
external_function->get_primitive_emitter()->get_cudnn_emitter();
auto min_index =
cudnn_emitter->build_reduce_forward(external_function->ctx().get(),
CUDNN_REDUCE_TENSOR_MIN,
cudnn_emitter->build_reduce_forward(CUDNN_REDUCE_TENSOR_MIN,
out[0].get_type(),
args[0].get_shape(),
min_op->get_reduction_axes());
......@@ -1348,8 +1296,7 @@ namespace ngraph
auto& cudnn_emitter =
external_function->get_primitive_emitter()->get_cudnn_emitter();
auto sum_index =
cudnn_emitter->build_reduce_forward(external_function->ctx().get(),
CUDNN_REDUCE_TENSOR_ADD,
cudnn_emitter->build_reduce_forward(CUDNN_REDUCE_TENSOR_ADD,
out[0].get_type(),
args[0].get_shape(),
sum->get_reduction_axes());
......@@ -1393,8 +1340,7 @@ namespace ngraph
auto& cudnn_emitter =
external_function->get_primitive_emitter()->get_cudnn_emitter();
auto index =
cudnn_emitter->build_reduce_forward(external_function->ctx().get(),
CUDNN_REDUCE_TENSOR_MUL,
cudnn_emitter->build_reduce_forward(CUDNN_REDUCE_TENSOR_MUL,
out[0].get_type(),
args[0].get_shape(),
product->get_reduction_axes());
......@@ -1491,7 +1437,6 @@ namespace ngraph
auto& cudnn_emitter =
external_function->get_primitive_emitter()->get_cudnn_emitter();
auto reduce_index = cudnn_emitter->build_reduce_forward(
external_function->ctx().get(),
reduce_tensor_op,
out[0].get_type(),
args[0].get_shape(),
......@@ -1596,7 +1541,6 @@ namespace ngraph
args[0].get_type(), args[0].get_type(), out[0].get_type()};
reduce_index = cuda_emitter->build_reduce_window(
external_function->ctx().get(),
it->second,
dtypes,
args[0].get_shape(),
......@@ -1631,8 +1575,7 @@ namespace ngraph
external_function->get_primitive_emitter()->get_cuda_emitter();
auto pad_index =
cuda_emitter->build_pad(external_function->ctx().get(),
{{args[0].get_type(), out[0].get_type()}},
cuda_emitter->build_pad({{args[0].get_type(), out[0].get_type()}},
input_shape,
output_shape,
padding_below,
......@@ -1694,8 +1637,7 @@ namespace ngraph
ss << TypeInfo::Get(args[0].get_element_type())->lowest();
auto pad_index =
cuda_emitter->build_pad(external_function->ctx().get(),
{{args[0].get_type(), out[0].get_type()}},
cuda_emitter->build_pad({{args[0].get_type(), out[0].get_type()}},
input_shape,
shape_to_pool,
padding_below,
......@@ -1733,7 +1675,6 @@ namespace ngraph
external_function->get_primitive_emitter()->get_cuda_emitter();
max_pool_index = cuda_emitter->build_1d_max_pool(
external_function->ctx().get(),
{{args[0].get_type(), out[0].get_type()}},
input_shape,
result_shape,
......@@ -1747,7 +1688,6 @@ namespace ngraph
external_function->get_primitive_emitter()->get_cudnn_emitter();
max_pool_index = cudnn_emitter->build_pooling(
external_function->ctx().get(),
CUDNN_POOLING_MAX,
out[0].get_type(),
CUDNNEmitter::Prop::Forward,
......@@ -1795,8 +1735,7 @@ namespace ngraph
if (fp_input_shape.size() >= 4)
{
auto max_pool_bp_index =
cudnn_emitter->build_pooling(external_function->ctx().get(),
CUDNN_POOLING_MAX,
cudnn_emitter->build_pooling(CUDNN_POOLING_MAX,
out[0].get_type(),
CUDNNEmitter::Prop::Backward,
fp_input_shape,
......@@ -1835,8 +1774,7 @@ namespace ngraph
direction = CUDNNEmitter::Prop::Inference;
}
auto bn_index = cudnn_emitter->build_batchnorm(external_function->ctx().get(),
CUDNN_BATCHNORM_SPATIAL,
auto bn_index = cudnn_emitter->build_batchnorm(CUDNN_BATCHNORM_SPATIAL,
out[0].get_type(),
direction,
args[2].get_shape(),
......@@ -1872,8 +1810,7 @@ namespace ngraph
auto& cudnn_emitter =
external_function->get_primitive_emitter()->get_cudnn_emitter();
auto bn_index = cudnn_emitter->build_batchnorm(external_function->ctx().get(),
CUDNN_BATCHNORM_SPATIAL,
auto bn_index = cudnn_emitter->build_batchnorm(CUDNN_BATCHNORM_SPATIAL,
out[0].get_type(),
CUDNNEmitter::Prop::Backward,
args[2].get_shape(),
......@@ -1970,8 +1907,7 @@ namespace ngraph
external_function->get_primitive_emitter()->get_cuda_emitter();
avg_pool_index =
cuda_emitter->build_avg_pool(external_function->ctx().get(),
{{args[0].get_type(), out[0].get_type()}},
cuda_emitter->build_avg_pool({{args[0].get_type(), out[0].get_type()}},
input_shape,
result_shape,
avg_pool->get_window_shape(),
......@@ -1991,7 +1927,6 @@ namespace ngraph
: CUDNN_POOLING_AVERAGE_COUNT_EXCLUDE_PADDING;
avg_pool_index = cudnn_emitter->build_pooling(
external_function->ctx().get(),
cudnn_avg_type,
out[0].get_type(),
CUDNNEmitter::Prop::Forward,
......@@ -2036,8 +1971,7 @@ namespace ngraph
: CUDNN_POOLING_AVERAGE_COUNT_EXCLUDE_PADDING;
auto avg_pool_bp_index =
cudnn_emitter->build_pooling(external_function->ctx().get(),
cudnn_avg_type,
cudnn_emitter->build_pooling(cudnn_avg_type,
out[0].get_type(),
CUDNNEmitter::Prop::Backward,
output_shape,
......@@ -2095,7 +2029,6 @@ namespace ngraph
external_function->get_primitive_emitter()->get_cuda_emitter();
auto replace_slice_index = cuda_emitter->build_replace_slice(
external_function->ctx().get(),
{{args[0].get_type(), args[1].get_type(), out[0].get_type()}},
input_shape,
source_shape,
......@@ -2146,7 +2079,6 @@ namespace ngraph
size_t exp_sum_reduce =
cuda_emitter
->build_elementwise_collective<ngraph::op::Exp, ngraph::op::Add>(
external_function->ctx().get(),
{{args[0].get_type(), out[0].get_type()}},
args[0].get_shape(),
{},
......@@ -2166,7 +2098,6 @@ namespace ngraph
// inplace binary division with fused broadcast to calculate softmax
size_t div_broadcast =
cuda_emitter->build_elementwise_collective<ngraph::op::Divide>(
external_function->ctx().get(),
{{out[0].get_type(), out[0].get_type(), out[0].get_type()}},
out[0].get_shape(),
{1},
......@@ -2181,8 +2112,7 @@ namespace ngraph
else
{
size_t softmax_index =
cudnn_emitter->build_softmax(external_function->ctx().get(),
CUDNN_SOFTMAX_FAST,
cudnn_emitter->build_softmax(CUDNN_SOFTMAX_FAST,
CUDNN_SOFTMAX_MODE_INSTANCE,
out[0].get_type(),
CUDNNEmitter::Prop::Forward,
......
......@@ -85,8 +85,8 @@ namespace ngraph
dtypes.push_back(arg.get_type());
}
dtypes.push_back(out[0].get_type());
auto ew_index = cuda_emitter->build_elementwise<T>(
external_function->ctx().get(), dtypes, out[0].get_shape());
auto ew_index =
cuda_emitter->build_elementwise<T>(dtypes, out[0].get_shape());
writer << "gpu::invoke_primitive(ctx, " << ew_index << ", ";
writer << "std::vector<void*>{" << args.front().get_name();
for (size_t i = 1; i < args.size(); i++)
......
......@@ -237,44 +237,21 @@ static const runtime::gpu::OpMap dispatcher{
{TI(ngraph::op::Or), &runtime::gpu::GPU_Emitter::emit_elementwise<ngraph::op::Or>}};
runtime::gpu::GPU_ExternalFunction::GPU_ExternalFunction(
const shared_ptr<ngraph::Function>& function, bool release_function)
const shared_ptr<ngraph::Function>& function,
std::shared_ptr<GPU_Backend::BackendContext>& shared_context,
bool release_function)
: m_compiled_function(nullptr)
, m_ctx(new GPURuntimeContext)
, m_function(function)
, m_emit_timing(false)
, m_is_compiled(false)
, m_release_function(release_function)
, m_temporaries_used(false)
, m_shared_context(shared_context)
{
// Create context use driver API and make it current, the runtime call will pickup the context
// http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
// #interoperability-between-runtime-and-driver-apis
ngraph::runtime::gpu::CudaContextManager::Instance().SetContextCurrent();
cublasStatus_t cublasStatus = cublasCreate(&m_cublas_handle);
if (cublasStatus != CUBLAS_STATUS_SUCCESS)
{
throw runtime_error("cuBLAS create handle failed");
}
cudnnStatus_t cudnnStatus = cudnnCreate(&m_cudnn_handle);
if (cudnnStatus != CUDNN_STATUS_SUCCESS)
{
throw runtime_error("cuDNN create handle failed");
}
// Pass scalars as reference on the Device
cublasSetPointerMode(m_cublas_handle, CUBLAS_POINTER_MODE_DEVICE);
// register with c-api runtime context
m_ctx->cublas_handle = &m_cublas_handle;
m_ctx->cudnn_handle = &m_cudnn_handle;
m_ctx->compiled_kernel_pool = new CudaFunctionPool;
}
runtime::gpu::GPU_ExternalFunction::~GPU_ExternalFunction()
{
cublasDestroy(m_cublas_handle);
cudnnDestroy(m_cudnn_handle);
delete m_ctx->compiled_kernel_pool;
}
void runtime::gpu::GPU_ExternalFunction::emit_header()
......@@ -387,7 +364,8 @@ void runtime::gpu::GPU_ExternalFunction::emit_constant_declarations()
{
shared_ptr<descriptor::TensorView> tv = node->get_outputs()[0].get_tensor_view();
// get an allocator for transient per kernel gpu memory
GPUAllocator allocator = this->m_primitive_emitter->get_memory_allocator();
GPUAllocator allocator =
m_shared_context->m_primitive_emitter->get_memory_allocator();
size_t idx = allocator.reserve_argspace(
c->get_data_ptr(),
tv->get_tensor().size() * tv->get_tensor().get_element_type().size());
......@@ -698,8 +676,6 @@ void runtime::gpu::GPU_ExternalFunction::compile()
return;
}
m_primitive_emitter.reset(new GPUPrimitiveEmitter());
m_function_name = m_function->get_name();
string dump_filename = file_util::path_join(s_output_dir, m_function_name + "_ops.txt");
......@@ -722,8 +698,9 @@ void runtime::gpu::GPU_ExternalFunction::compile()
emit_function_declarations();
collect_unique_functions();
emit_functions();
// allocate device buffers for primitive arguments and workspace
m_primitive_emitter->allocate_primitive_memory();
m_shared_context->m_primitive_emitter->allocate_primitive_memory();
string code = m_writer.get_code();
store_emitted_functions(code);
......@@ -781,11 +758,6 @@ void runtime::gpu::GPU_ExternalFunction::emit_debug_function_exit(Node* node)
}
}
unique_ptr<runtime::gpu::GPURuntimeContext>& runtime::gpu::GPU_ExternalFunction::ctx()
{
return m_ctx;
}
string runtime::gpu::GPU_ExternalFunction::emit_op_as_function(const Node& node,
const string& function_name)
{
......
......@@ -32,6 +32,7 @@
#include "ngraph/pass/manager.hpp"
#include "ngraph/pass/memory_layout.hpp"
#include "ngraph/pass/result_copy_elimination.hpp"
#include "ngraph/runtime/gpu/gpu_backend.hpp"
#include "ngraph/runtime/gpu/gpu_call_frame.hpp"
#include "ngraph/runtime/gpu/gpu_primitive_emitter.hpp"
#include "ngraph/runtime/gpu/gpu_tensor_view_wrapper.hpp"
......@@ -62,6 +63,7 @@ namespace ngraph
public:
GPU_ExternalFunction(const std::shared_ptr<ngraph::Function>& function,
std::shared_ptr<GPU_Backend::BackendContext>& shared_context,
bool release_function = true);
~GPU_ExternalFunction();
......@@ -69,7 +71,7 @@ namespace ngraph
std::unique_ptr<runtime::gpu::GPURuntimeContext>& ctx();
const std::unique_ptr<GPUPrimitiveEmitter>& get_primitive_emitter() const
{
return m_primitive_emitter;
return m_shared_context->m_primitive_emitter;
}
protected:
......@@ -98,8 +100,6 @@ namespace ngraph
std::unique_ptr<codegen::Compiler> m_compiler;
std::unique_ptr<codegen::ExecutionEngine> m_execution_engine;
std::unique_ptr<GPUPrimitiveEmitter> m_primitive_emitter;
std::unique_ptr<GPURuntimeContext> m_ctx;
std::shared_ptr<ngraph::Function> m_function;
std::map<std::string, size_t> m_name_index_map;
......@@ -116,8 +116,7 @@ namespace ngraph
std::string m_function_name;
std::string m_pch_header_source;
cublasHandle_t m_cublas_handle;
cudnnHandle_t m_cudnn_handle;
std::shared_ptr<GPU_Backend::BackendContext> m_shared_context;
};
}
}
......
......@@ -28,17 +28,36 @@ runtime::gpu::GPUMemoryManager::GPUMemoryManager(GPUPrimitiveEmitter* emitter)
: m_buffer_offset(0)
, m_buffered_mem(initial_buffer_size)
, m_workspace_manager(alignment)
, m_argspace(nullptr)
, m_workspace(nullptr)
, m_allocation_size(0)
, m_argspace_mem(1, {nullptr, 0})
, m_workspace_mem(1, {nullptr, 0})
, m_primitive_emitter(emitter)
{
}
size_t runtime::gpu::GPUMemoryManager::get_allocation_size() const
{
size_t allocation_size = 0;
for (auto const& alloc : m_argspace_mem)
{
allocation_size += alloc.size;
}
for (auto const& alloc : m_workspace_mem)
{
allocation_size += alloc.size;
}
return allocation_size;
}
runtime::gpu::GPUMemoryManager::~GPUMemoryManager()
{
runtime::gpu::free_gpu_buffer(m_argspace);
runtime::gpu::free_gpu_buffer(m_workspace);
for (auto& alloc : m_argspace_mem)
{
runtime::gpu::free_gpu_buffer(alloc.ptr);
}
for (auto& alloc : m_workspace_mem)
{
runtime::gpu::free_gpu_buffer(alloc.ptr);
}
}
void runtime::gpu::GPUMemoryManager::allocate()
......@@ -46,15 +65,25 @@ void runtime::gpu::GPUMemoryManager::allocate()
if (m_buffer_offset)
{
m_buffer_offset = pass::MemoryManager::align(m_buffer_offset, alignment);
m_argspace = runtime::gpu::create_gpu_buffer(m_buffer_offset);
runtime::gpu::cuda_memcpyHtD(m_argspace, m_buffered_mem.data(), m_buffer_offset);
m_allocation_size += m_buffer_offset;
// the back most node is always empty, fill it here
m_argspace_mem.back().ptr = runtime::gpu::create_gpu_buffer(m_buffer_offset);
m_argspace_mem.back().size = m_buffer_offset;
// copy buffered kernel arguments to device
runtime::gpu::cuda_memcpyHtD(
m_argspace_mem.back().ptr, m_buffered_mem.data(), m_buffer_offset);
// add an empty node to the end of the list and zero offset
m_argspace_mem.push_back({nullptr, 0});
m_buffer_offset = 0;
}
auto workspace_size = m_workspace_manager.max_allocated();
if (workspace_size)
{
m_workspace = runtime::gpu::create_gpu_buffer(workspace_size);
m_allocation_size += workspace_size;
m_workspace_mem.back().ptr = runtime::gpu::create_gpu_buffer(workspace_size);
m_workspace_mem.back().size = workspace_size;
m_workspace_mem.push_back({nullptr, 0});
// construct a new manager if the current one was used
m_workspace_manager = pass::MemoryManager(alignment);
}
}
......@@ -86,17 +115,16 @@ size_t runtime::gpu::GPUAllocator::reserve_argspace(const void* data, size_t siz
// add parameter data to host buffer that will be transfered to device
size = pass::MemoryManager::align(size, runtime::gpu::GPUMemoryManager::alignment);
size_t offset = m_manager->queue_for_transfer(data, size);
// required to capture m_manager pointer
// directly rather than `this` pointer
auto manager = m_manager;
auto local = std::prev(m_manager->m_argspace_mem.end());
// return a lambda that will yield the gpu memory address. this
// should only be evaluated by the runtime invoked primitive
gpu::memory_primitive mem_primitive = [=]() {
if (manager->m_argspace == nullptr)
void* argspace = (*local).ptr;
if (argspace == nullptr)
{
throw std::runtime_error("An attempt was made to use unallocated device memory.");
}
auto gpu_mem = static_cast<uint8_t*>(manager->m_argspace);
auto gpu_mem = static_cast<uint8_t*>(argspace);
return static_cast<void*>(gpu_mem + offset);
};
return m_manager->m_primitive_emitter->insert(mem_primitive);
......@@ -106,23 +134,22 @@ size_t runtime::gpu::GPUAllocator::reserve_workspace(size_t size, bool zero_init
{
size_t offset = m_manager->m_workspace_manager.allocate(size);
m_active.push(offset);
// required to capture m_manager pointer
// directly rather than `this` pointer
auto manager = m_manager;
auto local = std::prev(m_manager->m_workspace_mem.end());
// return a lambda that will yield the gpu memory address. this
// should only be evaluated by the runtime invoked primitive
gpu::memory_primitive mem_primitive = [=]() {
if (manager->m_workspace == nullptr)
void* workspace = (*local).ptr;
if (workspace == nullptr)
{
throw std::runtime_error("An attempt was made to use unallocated device memory.");
}
auto gpu_mem = static_cast<uint8_t*>(manager->m_workspace);
auto workspace = static_cast<void*>(gpu_mem + offset);
auto gpu_mem = static_cast<uint8_t*>(workspace);
auto workspace_ptr = static_cast<void*>(gpu_mem + offset);
if (zero_initialize)
{
runtime::gpu::cuda_memset(workspace, 0, size);
runtime::gpu::cuda_memset(workspace_ptr, 0, size);
}
return workspace;
return workspace_ptr;
};
return m_manager->m_primitive_emitter->insert(mem_primitive);
}
......
......@@ -16,6 +16,7 @@
#pragma once
#include <list>
#include <memory>
#include <stack>
#include <vector>
......@@ -65,7 +66,7 @@ namespace ngraph
~GPUMemoryManager();
void allocate();
size_t get_allocation_size() { return m_allocation_size; }
size_t get_allocation_size() const;
GPUAllocator build_allocator() { return GPUAllocator(this); }
private:
GPUMemoryManager(GPUPrimitiveEmitter* emitter);
......@@ -75,10 +76,15 @@ namespace ngraph
std::vector<uint8_t> m_buffered_mem;
pass::MemoryManager m_workspace_manager;
static constexpr const uint16_t alignment = 8;
void* m_argspace;
void* m_workspace;
size_t m_allocation_size;
struct allocation
{
void* ptr;
size_t size;
};
std::list<allocation> m_argspace_mem;
std::list<allocation> m_workspace_mem;
GPUPrimitiveEmitter* m_primitive_emitter;
};
}
......
......@@ -23,8 +23,15 @@ using namespace ngraph;
using namespace ngraph::runtime::gpu;
GPUPrimitiveEmitter::GPUPrimitiveEmitter()
: m_cuda_emitter(new CUDAEmitter(this))
, m_cudnn_emitter(new CUDNNEmitter(this))
: m_cuda_emitter(new CUDAEmitter(this, nullptr))
, m_cudnn_emitter(new CUDNNEmitter(this, nullptr))
, m_memory_manager(this)
{
}
GPUPrimitiveEmitter::GPUPrimitiveEmitter(const std::unique_ptr<GPURuntimeContext>& ctx)
: m_cuda_emitter(new CUDAEmitter(this, ctx.get()))
, m_cudnn_emitter(new CUDNNEmitter(this, ctx.get()))
, m_memory_manager(this)
{
}
......
......@@ -31,11 +31,11 @@ namespace ngraph
{
class CUDAEmitter;
class CUDNNEmitter;
class GPUPrimitiveEmitter
{
public:
GPUPrimitiveEmitter();
GPUPrimitiveEmitter(const std::unique_ptr<GPURuntimeContext>& ctx);
std::unique_ptr<CUDAEmitter>& get_cuda_emitter();
std::unique_ptr<CUDNNEmitter>& get_cudnn_emitter();
std::vector<gpu::primitive*>& get_primitives() { return m_gpu_primitives; }
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment