Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
N
ngraph
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
ngraph
Commits
54132cc9
Unverified
Commit
54132cc9
authored
Feb 26, 2020
by
Mateusz Bencer
Committed by
GitHub
Feb 26, 2020
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[ONNX] norm builders should produce v1 ops (#4354)
parent
d28fac61
Expand all
Hide whitespace changes
Inline
Side-by-side
Showing
8 changed files
with
65 additions
and
61 deletions
+65
-61
norm.cpp
src/ngraph/builder/norm.cpp
+0
-0
norm.hpp
src/ngraph/builder/norm.hpp
+57
-54
lp_norm.cpp
src/ngraph/frontend/onnx_import/op/lp_norm.cpp
+1
-1
lp_pool.cpp
src/ngraph/frontend/onnx_import/op/lp_pool.cpp
+1
-1
reduce.hpp
src/ngraph/frontend/onnx_import/op/reduce.hpp
+2
-2
grn.cpp
src/ngraph/op/fused/grn.cpp
+1
-1
normalize_l2.cpp
src/ngraph/op/fused/normalize_l2.cpp
+2
-1
provenance.cpp
test/provenance.cpp
+1
-1
No files found.
src/ngraph/builder/norm.cpp
View file @
54132cc9
This diff is collapsed.
Click to expand it.
src/ngraph/builder/norm.hpp
View file @
54132cc9
...
...
@@ -34,62 +34,65 @@ namespace ngraph
MAX
};
/// \brief Calculates L-0 norm of input tensor.
///
/// \note The L-0 norm represents the cardinality of elements different
/// from zero. This actually is not a "true" norm.
///
/// \param[in] value The input tensor.
/// \param[in] reduction_axes The axes along which we calculate norm.
///
/// \return L-0 norm of value.
///
std
::
shared_ptr
<
Node
>
l0_norm
(
const
Output
<
Node
>&
value
,
const
AxisSet
&
reduction_axes
);
namespace
opset1
{
/// \brief Calculates L-0 norm of input tensor.
///
/// \note The L-0 norm represents the cardinality of elements different
/// from zero. This actually is not a "true" norm.
///
/// \param[in] value The input tensor.
/// \param[in] reduction_axes The axes along which we calculate norm.
///
/// \return L-0 norm of value. The output sub-graph is composed of v1 ops.
///
std
::
shared_ptr
<
Node
>
l0_norm
(
const
Output
<
Node
>&
value
,
const
AxisSet
&
reduction_axes
);
/// \brief Calculates L-1 norm of a value.
///
/// \note The L-1 norm represents the sum of absolute values.
///
/// \param[in] value The input tensor.
/// \param[in] reduction_axes The axes along which we calculate norm.
/// \param[in] bias The bias added to the calculated sum.
///
/// \return L-1 norm of value
.
///
std
::
shared_ptr
<
Node
>
l1_norm
(
const
Output
<
Node
>&
value
,
const
AxisSet
&
reduction_axes
,
float
bias
=
0.
f
);
/// \brief Calculates L-1 norm of a value.
///
/// \note The L-1 norm represents the sum of absolute values.
///
/// \param[in] value The input tensor.
/// \param[in] reduction_axes The axes along which we calculate norm.
/// \param[in] bias The bias added to the calculated sum.
///
/// \return L-1 norm of value. The output sub-graph is composed of v1 ops
.
///
std
::
shared_ptr
<
Node
>
l1_norm
(
const
Output
<
Node
>&
value
,
const
AxisSet
&
reduction_axes
,
float
bias
=
0.
f
);
/// \brief Calculates L-2 norm of input tensor.
///
/// \note The L-2 norm represents the square root of sum of squares of each
/// individual element.
///
/// \param[in] value The input tensor.
/// \param[in] reduction_axes The axes along which we calculate norm.
/// \param[in] bias The bias combined with calculated sum.
/// \param[in] bias_mode The method of bias application.
/// \param[in] keep_dims The flag indicates if axes will be removed or kept.
///
/// \return L-2 norm of value
.
///
std
::
shared_ptr
<
Node
>
l2_norm
(
const
Output
<
Node
>&
value
,
const
AxisSet
&
reduction_axes
,
float
bias
=
0.
f
,
BiasMode
bias_mode
=
BiasMode
::
ADD
,
bool
keep_dims
=
false
);
/// \brief Calculates L-2 norm of input tensor.
///
/// \note The L-2 norm represents the square root of sum of squares of each
/// individual element.
///
/// \param[in] value The input tensor.
/// \param[in] reduction_axes The axes along which we calculate norm.
/// \param[in] bias The bias combined with calculated sum.
/// \param[in] bias_mode The method of bias application.
/// \param[in] keep_dims The flag indicates if axes will be removed or kept.
///
/// \return L-2 norm of value. The output sub-graph is composed of v1 ops
.
///
std
::
shared_ptr
<
Node
>
l2_norm
(
const
Output
<
Node
>&
value
,
const
AxisSet
&
reduction_axes
,
float
bias
=
0.
f
,
BiasMode
bias_mode
=
BiasMode
::
ADD
,
bool
keep_dims
=
false
);
/// \brief Creates node which calculates L-p norm on input tensor.
///
/// \param[in] value The input tensor.
/// \param[in] reduction_axes The axes along which we calculate norm.
/// \param[in] p_norm The p norm to calculate.
/// \param[in] bias The bias added to the calculated sum.
///
/// \return L-p norm of value.
///
std
::
shared_ptr
<
Node
>
lp_norm
(
const
Output
<
Node
>&
value
,
const
AxisSet
&
reduction_axes
,
std
::
size_t
p_norm
=
2
,
float
bias
=
0.
f
);
/// \brief Creates node which calculates L-p norm on input tensor.
///
/// \param[in] value The input tensor.
/// \param[in] reduction_axes The axes along which we calculate norm.
/// \param[in] p_norm The p norm to calculate.
/// \param[in] bias The bias added to the calculated sum.
///
/// \return L-p norm of value. The output sub-graph is composed of v1 ops.
///
std
::
shared_ptr
<
Node
>
lp_norm
(
const
Output
<
Node
>&
value
,
const
AxisSet
&
reduction_axes
,
std
::
size_t
p_norm
=
2
,
float
bias
=
0.
f
);
}
}
// namespace builder
}
// namespace ngraph
src/ngraph/frontend/onnx_import/op/lp_norm.cpp
View file @
54132cc9
...
...
@@ -55,7 +55,7 @@ namespace ngraph
<<
"Invalid `p` attribute value: "
<<
p_norm
<<
"Only normalization of 1st or 2nd order is supported."
;
std
::
shared_ptr
<
ngraph
::
Node
>
norm
=
ngraph
::
builder
::
lp_norm
(
std
::
shared_ptr
<
ngraph
::
Node
>
norm
=
ngraph
::
builder
::
opset1
::
lp_norm
(
data
,
AxisSet
{
normalize_axis
},
static_cast
<
std
::
size_t
>
(
p_norm
));
const
auto
target_shape
=
default_opset
::
Constant
::
create
(
...
...
src/ngraph/frontend/onnx_import/op/lp_pool.cpp
View file @
54132cc9
...
...
@@ -55,7 +55,7 @@ namespace ngraph
AxisSet
reduction_axes
{
common
::
get_monotonic_range
<
std
::
size_t
>
(
orig_shape
.
size
(),
2
)};
slice
=
ngraph
::
builder
::
lp_norm
(
slice
=
ngraph
::
builder
::
opset1
::
lp_norm
(
slice
,
reduction_axes
,
static_cast
<
std
::
size_t
>
(
p_norm
));
// output shape is all ones except N channel
...
...
src/ngraph/frontend/onnx_import/op/reduce.hpp
View file @
54132cc9
...
...
@@ -97,7 +97,7 @@ namespace ngraph
///
inline
NodeVector
reduce_l1
(
const
Node
&
node
)
{
auto
l1_norm_reduction
=
std
::
bind
(
ngraph
::
builder
::
l1_norm
,
auto
l1_norm_reduction
=
std
::
bind
(
ngraph
::
builder
::
opset1
::
l1_norm
,
std
::
placeholders
::
_1
,
std
::
placeholders
::
_2
,
0.
f
);
...
...
@@ -119,7 +119,7 @@ namespace ngraph
///
inline
NodeVector
reduce_l2
(
const
Node
&
node
)
{
auto
l2_norm_reduction
=
std
::
bind
(
ngraph
::
builder
::
l2_norm
,
auto
l2_norm_reduction
=
std
::
bind
(
ngraph
::
builder
::
opset1
::
l2_norm
,
std
::
placeholders
::
_1
,
std
::
placeholders
::
_2
,
0.
f
,
...
...
src/ngraph/op/fused/grn.cpp
View file @
54132cc9
...
...
@@ -68,7 +68,7 @@ NodeVector op::GRN::decompose_op() const
}
// Calculate l2 norm across channels.
shared_ptr
<
Node
>
norm
=
builder
::
l2_norm
(
data
,
AxisSet
{
1
},
m_bias
);
shared_ptr
<
Node
>
norm
=
builder
::
opset1
::
l2_norm
(
data
,
AxisSet
{
1
},
m_bias
);
// Get back reduced axis.
norm
=
std
::
make_shared
<
Broadcast
>
(
norm
,
data
.
get_shape
(),
AxisSet
{
1
});
data
=
data
/
norm
;
...
...
src/ngraph/op/fused/normalize_l2.cpp
View file @
54132cc9
...
...
@@ -96,7 +96,8 @@ NodeVector op::NormalizeL2::decompose_op() const
// Calculate l2 norm across axes determined by axes input
auto
builder_bias_mode
=
(
m_eps_mode
==
EpsMode
::
MAX
)
?
builder
::
BiasMode
::
MAX
:
builder
::
BiasMode
::
ADD
;
Output
<
Node
>
norm
=
builder
::
l2_norm
(
data
,
reduction_axes
,
m_eps
,
builder_bias_mode
,
true
);
Output
<
Node
>
norm
=
builder
::
opset1
::
l2_norm
(
data
,
reduction_axes
,
m_eps
,
builder_bias_mode
,
true
);
data
=
make_shared
<
op
::
Divide
>
(
data
,
norm
,
AutoBroadcastSpec
(
AutoBroadcastType
::
NUMPY
));
...
...
test/provenance.cpp
View file @
54132cc9
...
...
@@ -389,7 +389,7 @@ TEST(provenance, builder)
{
auto
p1
=
make_shared
<
op
::
Parameter
>
(
element
::
i32
,
PartialShape
{
2
,
3
,
4
});
p1
->
add_provenance_tag
(
"P1"
);
auto
norm
=
builder
::
lp_norm
(
p1
,
{
0
},
1
,
0
);
auto
norm
=
builder
::
opset1
::
lp_norm
(
p1
,
{
0
},
1
,
0
);
norm
->
add_provenance_tag
(
"norm"
);
for
(
auto
node
:
topological_sort
(
NodeVector
{
norm
}))
{
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment