Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
N
ngraph
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
ngraph
Commits
518bba03
Commit
518bba03
authored
Mar 08, 2018
by
Jayaram Bobba
Browse files
Options
Browse Files
Download
Plain Diff
Merge remote-tracking branch 'origin/master' into jbobba/maxpool-layouts
parents
eed7b313
e46184a1
Hide whitespace changes
Inline
Side-by-side
Showing
9 changed files
with
318 additions
and
27 deletions
+318
-27
cpu_emitter.cpp
src/ngraph/runtime/cpu/cpu_emitter.cpp
+108
-7
mkldnn_utils.cpp
src/ngraph/runtime/cpu/mkldnn_utils.cpp
+31
-5
mkldnn_utils.hpp
src/ngraph/runtime/cpu/mkldnn_utils.hpp
+3
-2
matmul_bias.cpp
src/ngraph/runtime/cpu/ops/matmul_bias.cpp
+20
-2
matmul_bias.hpp
src/ngraph/runtime/cpu/ops/matmul_bias.hpp
+5
-1
cpu_assignment.cpp
src/ngraph/runtime/cpu/pass/cpu_assignment.cpp
+12
-0
cpu_fusion.cpp
src/ngraph/runtime/cpu/pass/cpu_fusion.cpp
+13
-4
cpu_layout.cpp
src/ngraph/runtime/cpu/pass/cpu_layout.cpp
+42
-0
cpu_fusion.cpp
test/cpu_fusion.cpp
+84
-6
No files found.
src/ngraph/runtime/cpu/cpu_emitter.cpp
View file @
518bba03
...
@@ -272,13 +272,6 @@ namespace ngraph
...
@@ -272,13 +272,6 @@ namespace ngraph
const
char
*
cbeta
=
"0.0f"
;
const
char
*
cbeta
=
"0.0f"
;
if
(
args
.
size
()
>
2
)
{
writer
<<
"memcpy("
<<
out
[
0
].
get_name
()
<<
", "
<<
args
[
2
].
get_name
()
<<
", "
<<
out
[
0
].
get_size
()
*
out
[
0
].
get_element_type
().
size
()
<<
");
\n
"
;
cbeta
=
"1.0f"
;
}
writer
<<
"cblas::cblas_sgemm("
writer
<<
"cblas::cblas_sgemm("
<<
"cblas::Layout::RowMajor, "
<<
tranpose_a
<<
tranpose_b
<<
m
<<
", "
<<
n
<<
"cblas::Layout::RowMajor, "
<<
tranpose_a
<<
tranpose_b
<<
m
<<
", "
<<
n
<<
", "
<<
k
<<
",
\n
"
<<
", "
<<
k
<<
",
\n
"
...
@@ -287,6 +280,101 @@ namespace ngraph
...
@@ -287,6 +280,101 @@ namespace ngraph
<<
" "
<<
out
[
0
].
get_name
()
<<
", "
<<
max
(
1UL
,
arg2_shape
[
1
])
<<
" "
<<
out
[
0
].
get_name
()
<<
", "
<<
max
(
1UL
,
arg2_shape
[
1
])
<<
");
\n
"
;
<<
");
\n
"
;
if
(
args
.
size
()
>
2
)
{
auto
axes
=
cg
->
get_broadcast_axes
();
if
(
axes
.
size
()
==
1
)
{
if
(
*
(
axes
.
begin
())
==
0
)
{
writer
<<
"static "
<<
out
[
0
].
get_element_type
().
c_type_string
()
<<
" ones_row["
<<
arg2_shape
[
0
]
<<
"]"
<<
" = { 1.0f"
;
for
(
size_t
i
=
1
;
i
<
arg2_shape
[
0
];
++
i
)
{
writer
<<
", 1.0f"
;
}
writer
<<
"};
\n
"
;
writer
<<
"cblas::cblas_sgemm("
<<
"cblas::Layout::RowMajor, "
<<
cnotranspose
<<
cnotranspose
<<
arg2_shape
[
0
]
<<
", "
<<
arg2_shape
[
1
]
<<
", 1"
<<
",
\n
"
<<
" 1.0f, ones_row, "
<<
"1"
<<
", "
<<
args
[
2
].
get_name
()
<<
", "
<<
max
(
1UL
,
arg2_shape
[
1
])
<<
", "
<<
"1.0f"
<<
",
\n
"
<<
" "
<<
out
[
0
].
get_name
()
<<
", "
<<
max
(
1UL
,
arg2_shape
[
1
])
<<
");
\n
"
;
}
else
{
writer
<<
"static "
<<
out
[
0
].
get_element_type
().
c_type_string
()
<<
" ones_col["
<<
arg2_shape
[
1
]
<<
"]"
<<
" = { 1.0f"
;
for
(
size_t
i
=
1
;
i
<
arg2_shape
[
1
];
++
i
)
{
writer
<<
", 1.0f"
;
}
writer
<<
"};
\n
"
;
writer
<<
"cblas::cblas_sgemm("
<<
"cblas::Layout::RowMajor, "
<<
cnotranspose
<<
ctranspose
<<
arg2_shape
[
0
]
<<
", "
<<
arg2_shape
[
1
]
<<
", 1"
<<
",
\n
"
<<
" 1.0f, ones_col,"
<<
max
(
1UL
,
arg2_shape
[
1
])
<<
", "
<<
args
[
2
].
get_name
()
<<
", "
<<
"1"
<<
", "
<<
"1.0f"
<<
",
\n
"
<<
" "
<<
out
[
0
].
get_name
()
<<
", "
<<
max
(
1UL
,
arg2_shape
[
1
])
<<
");
\n
"
;
}
}
else
{
if
(
axes
.
size
()
!=
2
)
{
throw
ngraph_error
(
"unexpected broadcast rank"
);
}
writer
<<
out
[
0
].
get_element_type
().
c_type_string
()
<<
" bias["
<<
arg2_shape
[
1
]
<<
"]"
<<
" = { "
<<
args
[
2
].
get_name
()
<<
"[0]"
;
for
(
size_t
i
=
1
;
i
<
arg2_shape
[
1
];
++
i
)
{
writer
<<
","
<<
args
[
2
].
get_name
()
<<
"[0]"
;
}
writer
<<
"};
\n
"
;
writer
<<
"static "
<<
out
[
0
].
get_element_type
().
c_type_string
()
<<
" ones_scalar["
<<
arg2_shape
[
0
]
<<
"]"
<<
" = { 1.0f"
;
for
(
size_t
i
=
1
;
i
<
arg2_shape
[
0
];
++
i
)
{
writer
<<
", 1.0f"
;
}
writer
<<
"};
\n
"
;
writer
<<
"cblas::cblas_sgemm("
<<
"cblas::Layout::RowMajor, "
<<
cnotranspose
<<
cnotranspose
<<
arg2_shape
[
0
]
<<
", "
<<
arg2_shape
[
1
]
<<
", 1"
<<
",
\n
"
<<
" 1.0f, ones_scalar, "
<<
"1"
<<
", "
<<
"bias"
<<
", "
<<
max
(
1UL
,
arg2_shape
[
1
])
<<
", "
<<
"1.0f"
<<
",
\n
"
<<
" "
<<
out
[
0
].
get_name
()
<<
", "
<<
max
(
1UL
,
arg2_shape
[
1
])
<<
");
\n
"
;
}
}
writer
.
indent
--
;
writer
.
indent
--
;
writer
<<
"}
\n
"
;
writer
<<
"}
\n
"
;
}
}
...
@@ -3022,6 +3110,19 @@ namespace ngraph
...
@@ -3022,6 +3110,19 @@ namespace ngraph
auto
output_format
=
auto
output_format
=
dynamic_cast
<
runtime
::
cpu
::
LayoutDescriptor
&>
(
*
output_tvl
).
get_mkldnn_format
();
dynamic_cast
<
runtime
::
cpu
::
LayoutDescriptor
&>
(
*
output_tvl
).
get_mkldnn_format
();
// MKLDNN relies on format names for selecting optimized kernel implementations
// Hacky way to deal with this until they move to using canonicalized layouts
if
(
input_format
==
mkldnn
::
memory
::
format
::
nchw
&&
runtime
::
cpu
::
mkldnn_utils
::
is_mkldnn_filter_format
(
output_format
))
{
input_format
=
mkldnn
::
memory
::
format
::
oihw
;
}
if
(
output_format
==
mkldnn
::
memory
::
format
::
nchw
&&
runtime
::
cpu
::
mkldnn_utils
::
is_mkldnn_filter_format
(
input_format
))
{
output_format
=
mkldnn
::
memory
::
format
::
oihw
;
}
auto
&
mkldnn_emitter
=
external_function
->
get_mkldnn_emitter
();
auto
&
mkldnn_emitter
=
external_function
->
get_mkldnn_emitter
();
auto
input_desc
=
mkldnn_emitter
->
build_memory_descriptor
(
args
[
0
],
input_format
);
auto
input_desc
=
mkldnn_emitter
->
build_memory_descriptor
(
args
[
0
],
input_format
);
auto
result_desc
=
mkldnn_emitter
->
build_memory_descriptor
(
out
[
0
],
output_format
);
auto
result_desc
=
mkldnn_emitter
->
build_memory_descriptor
(
out
[
0
],
output_format
);
...
...
src/ngraph/runtime/cpu/mkldnn_utils.cpp
View file @
518bba03
...
@@ -110,6 +110,23 @@ static const std::map<memory::format, const std::string> s_mkldnn_format_string_
...
@@ -110,6 +110,23 @@ static const std::map<memory::format, const std::string> s_mkldnn_format_string_
{
memory
::
format
::
OhIw16o4i
,
"memory::format::OhIw16o4i"
},
{
memory
::
format
::
OhIw16o4i
,
"memory::format::OhIw16o4i"
},
};
};
static
const
std
::
set
<
memory
::
format
>
s_filter_formats
{
memory
::
format
::
oihw
,
memory
::
format
::
ihwo
,
memory
::
format
::
hwio
,
// memory::format::oIhw8i, // These currently map to nChw8c and nChw16c
// memory::format::oIhw16i,
memory
::
format
::
OIhw8i8o
,
memory
::
format
::
OIhw16i16o
,
memory
::
format
::
IOhw16o16i
,
memory
::
format
::
OIhw8o8i
,
memory
::
format
::
OIhw16o16i
,
memory
::
format
::
Oihw8o
,
memory
::
format
::
Oihw16o
,
memory
::
format
::
Ohwi8o
,
memory
::
format
::
Ohwi16o
,
memory
::
format
::
OhIw16o4i
};
bool
runtime
::
cpu
::
mkldnn_utils
::
IsMKLDNNOp
(
ngraph
::
Node
&
op
)
bool
runtime
::
cpu
::
mkldnn_utils
::
IsMKLDNNOp
(
ngraph
::
Node
&
op
)
{
{
return
(
s_op_registry
.
find
(
TI
(
op
))
!=
s_op_registry
.
end
());
return
(
s_op_registry
.
find
(
TI
(
op
))
!=
s_op_registry
.
end
());
...
@@ -157,16 +174,16 @@ const std::string& runtime::cpu::mkldnn_utils::get_mkldnn_format_string(memory::
...
@@ -157,16 +174,16 @@ const std::string& runtime::cpu::mkldnn_utils::get_mkldnn_format_string(memory::
}
}
mkldnn
::
memory
::
format
runtime
::
cpu
::
mkldnn_utils
::
get_input_mkldnn_format
(
const
Node
*
node
,
mkldnn
::
memory
::
format
runtime
::
cpu
::
mkldnn_utils
::
get_input_mkldnn_format
(
const
Node
*
node
,
in
t
index
)
size_
t
index
)
{
{
auto
tvl
=
node
->
get_inputs
()[
index
].
get_output
().
get_tensor_view
()
->
get_tensor_view_layout
();
auto
tvl
=
node
->
get_inputs
()[
index
].
get_output
().
get_tensor_view
()
->
get_tensor_view_layout
();
return
dynamic_cast
<
runtime
::
cpu
::
LayoutDescriptor
&>
(
*
tvl
).
get_mkldnn_format
();
return
dynamic_cast
<
runtime
::
cpu
::
LayoutDescriptor
&>
(
*
tvl
).
get_mkldnn_format
();
}
}
mkldnn
::
memory
::
format
runtime
::
cpu
::
mkldnn_utils
::
get_output_mkldnn_format
(
const
Node
*
node
,
mkldnn
::
memory
::
format
runtime
::
cpu
::
mkldnn_utils
::
get_output_mkldnn_format
(
const
Node
*
node
,
in
t
index
)
size_
t
index
)
{
{
auto
tvl
=
node
->
get_output_tensor_view
(
0
)
->
get_tensor_view_layout
();
auto
tvl
=
node
->
get_output_tensor_view
(
index
)
->
get_tensor_view_layout
();
return
dynamic_cast
<
runtime
::
cpu
::
LayoutDescriptor
&>
(
*
tvl
).
get_mkldnn_format
();
return
dynamic_cast
<
runtime
::
cpu
::
LayoutDescriptor
&>
(
*
tvl
).
get_mkldnn_format
();
}
}
...
@@ -181,8 +198,8 @@ bool runtime::cpu::mkldnn_utils::use_mkldnn_kernel(const ngraph::Node* node)
...
@@ -181,8 +198,8 @@ bool runtime::cpu::mkldnn_utils::use_mkldnn_kernel(const ngraph::Node* node)
bool
runtime
::
cpu
::
mkldnn_utils
::
compare_mkldnn_formats
(
mkldnn
::
memory
::
format
fmt1
,
bool
runtime
::
cpu
::
mkldnn_utils
::
compare_mkldnn_formats
(
mkldnn
::
memory
::
format
fmt1
,
mkldnn
::
memory
::
format
fmt2
)
mkldnn
::
memory
::
format
fmt2
)
{
{
set
<
mkldnn
::
memory
::
format
>
similar_4d_formats
{
mkldnn
::
memory
::
format
::
nchw
,
s
td
::
s
et
<
mkldnn
::
memory
::
format
>
similar_4d_formats
{
mkldnn
::
memory
::
format
::
nchw
,
mkldnn
::
memory
::
format
::
oihw
};
mkldnn
::
memory
::
format
::
oihw
};
if
((
fmt1
==
fmt2
)
||
(
similar_4d_formats
.
find
(
fmt1
)
!=
similar_4d_formats
.
end
()
&&
if
((
fmt1
==
fmt2
)
||
(
similar_4d_formats
.
find
(
fmt1
)
!=
similar_4d_formats
.
end
()
&&
similar_4d_formats
.
find
(
fmt2
)
!=
similar_4d_formats
.
end
()))
similar_4d_formats
.
find
(
fmt2
)
!=
similar_4d_formats
.
end
()))
{
{
...
@@ -190,3 +207,12 @@ bool runtime::cpu::mkldnn_utils::compare_mkldnn_formats(mkldnn::memory::format f
...
@@ -190,3 +207,12 @@ bool runtime::cpu::mkldnn_utils::compare_mkldnn_formats(mkldnn::memory::format f
}
}
return
false
;
return
false
;
}
}
bool
runtime
::
cpu
::
mkldnn_utils
::
is_mkldnn_filter_format
(
mkldnn
::
memory
::
format
fmt
)
{
if
(
s_filter_formats
.
find
(
fmt
)
!=
s_filter_formats
.
end
())
{
return
true
;
}
return
false
;
}
src/ngraph/runtime/cpu/mkldnn_utils.hpp
View file @
518bba03
...
@@ -39,11 +39,12 @@ namespace ngraph
...
@@ -39,11 +39,12 @@ namespace ngraph
mkldnn
::
memory
::
data_type
get_mkldnn_data_type
(
const
ngraph
::
element
::
Type
&
type
);
mkldnn
::
memory
::
data_type
get_mkldnn_data_type
(
const
ngraph
::
element
::
Type
&
type
);
const
std
::
string
&
get_mkldnn_format_string
(
mkldnn
::
memory
::
format
fmt
);
const
std
::
string
&
get_mkldnn_format_string
(
mkldnn
::
memory
::
format
fmt
);
mkldnn
::
memory
::
format
get_input_mkldnn_format
(
const
Node
*
node
,
in
t
index
);
mkldnn
::
memory
::
format
get_input_mkldnn_format
(
const
Node
*
node
,
size_
t
index
);
mkldnn
::
memory
::
format
get_output_mkldnn_format
(
const
Node
*
node
,
in
t
index
);
mkldnn
::
memory
::
format
get_output_mkldnn_format
(
const
Node
*
node
,
size_
t
index
);
bool
use_mkldnn_kernel
(
const
ngraph
::
Node
*
node
);
bool
use_mkldnn_kernel
(
const
ngraph
::
Node
*
node
);
bool
compare_mkldnn_formats
(
mkldnn
::
memory
::
format
fmt1
,
bool
compare_mkldnn_formats
(
mkldnn
::
memory
::
format
fmt1
,
mkldnn
::
memory
::
format
fmt2
);
mkldnn
::
memory
::
format
fmt2
);
bool
is_mkldnn_filter_format
(
mkldnn
::
memory
::
format
fmt
);
}
}
}
}
}
}
...
...
src/ngraph/runtime/cpu/ops/matmul_bias.cpp
View file @
518bba03
...
@@ -32,7 +32,8 @@ std::shared_ptr<ngraph::Node>
...
@@ -32,7 +32,8 @@ std::shared_ptr<ngraph::Node>
m_shape_w
,
m_shape_w
,
m_shape_x
,
m_shape_x
,
m_transpose_w
,
m_transpose_w
,
m_transpose_x
);
m_transpose_x
,
m_broadcast_axes
);
}
}
ngraph
::
op
::
MatmulBias
::
MatmulBias
(
std
::
shared_ptr
<
ngraph
::
Node
>
W
,
ngraph
::
op
::
MatmulBias
::
MatmulBias
(
std
::
shared_ptr
<
ngraph
::
Node
>
W
,
...
@@ -41,7 +42,8 @@ ngraph::op::MatmulBias::MatmulBias(std::shared_ptr<ngraph::Node> W,
...
@@ -41,7 +42,8 @@ ngraph::op::MatmulBias::MatmulBias(std::shared_ptr<ngraph::Node> W,
Shape
shape_w
,
Shape
shape_w
,
Shape
shape_x
,
Shape
shape_x
,
bool
transpose_w
,
bool
transpose_w
,
bool
transpose_x
)
bool
transpose_x
,
AxisSet
axes
)
:
RequiresTensorViewArgs
(
"MatMulBias"
,
:
RequiresTensorViewArgs
(
"MatMulBias"
,
b
==
nullptr
?
std
::
vector
<
std
::
shared_ptr
<
Node
>>
{
W
,
x
}
b
==
nullptr
?
std
::
vector
<
std
::
shared_ptr
<
Node
>>
{
W
,
x
}
:
std
::
vector
<
std
::
shared_ptr
<
Node
>>
{
W
,
x
,
b
})
:
std
::
vector
<
std
::
shared_ptr
<
Node
>>
{
W
,
x
,
b
})
...
@@ -49,8 +51,24 @@ ngraph::op::MatmulBias::MatmulBias(std::shared_ptr<ngraph::Node> W,
...
@@ -49,8 +51,24 @@ ngraph::op::MatmulBias::MatmulBias(std::shared_ptr<ngraph::Node> W,
,
m_shape_x
(
shape_x
)
,
m_shape_x
(
shape_x
)
,
m_transpose_w
(
transpose_w
)
,
m_transpose_w
(
transpose_w
)
,
m_transpose_x
(
transpose_x
)
,
m_transpose_x
(
transpose_x
)
,
m_broadcast_axes
(
axes
)
{
{
if
(
axes
.
size
()
==
0
&&
b
!=
nullptr
)
{
throw
ngraph_error
(
"Bias but no broadcast axes"
);
}
if
(
b
==
nullptr
&&
axes
.
size
()
!=
0
)
{
throw
ngraph_error
(
"Broadcast axes but no bias"
);
}
if
(
axes
.
size
()
>
2
)
{
throw
ngraph_error
(
"Broadcasting to > 2D tensor"
);
}
if
(
shape_w
.
size
()
!=
2
)
if
(
shape_w
.
size
()
!=
2
)
{
{
NGRAPH_DEBUG
<<
"W shape = "
<<
vector_to_string
(
shape_w
);
NGRAPH_DEBUG
<<
"W shape = "
<<
vector_to_string
(
shape_w
);
...
...
src/ngraph/runtime/cpu/ops/matmul_bias.hpp
View file @
518bba03
...
@@ -16,6 +16,7 @@
...
@@ -16,6 +16,7 @@
#pragma once
#pragma once
#include "ngraph/axis_set.hpp"
#include "ngraph/ops/util/requires_tensor_view_args.hpp"
#include "ngraph/ops/util/requires_tensor_view_args.hpp"
namespace
ngraph
namespace
ngraph
...
@@ -31,12 +32,14 @@ namespace ngraph
...
@@ -31,12 +32,14 @@ namespace ngraph
Shape
shape_w
,
Shape
shape_w
,
Shape
shape_x
,
Shape
shape_x
,
bool
transpose_w
,
bool
transpose_w
,
bool
transpose_x
);
bool
transpose_x
,
AxisSet
axes
=
AxisSet
{});
bool
get_is_arg0_transposed
()
const
{
return
m_transpose_w
;
}
bool
get_is_arg0_transposed
()
const
{
return
m_transpose_w
;
}
bool
get_is_arg1_transposed
()
const
{
return
m_transpose_x
;
}
bool
get_is_arg1_transposed
()
const
{
return
m_transpose_x
;
}
Shape
get_arg0_shape
()
const
{
return
m_shape_w
;
}
Shape
get_arg0_shape
()
const
{
return
m_shape_w
;
}
Shape
get_arg1_shape
()
const
{
return
m_shape_x
;
}
Shape
get_arg1_shape
()
const
{
return
m_shape_x
;
}
const
AxisSet
&
get_broadcast_axes
()
const
{
return
m_broadcast_axes
;
}
virtual
std
::
shared_ptr
<
Node
>
virtual
std
::
shared_ptr
<
Node
>
copy_with_new_args
(
const
NodeVector
&
new_args
)
const
override
;
copy_with_new_args
(
const
NodeVector
&
new_args
)
const
override
;
...
@@ -45,6 +48,7 @@ namespace ngraph
...
@@ -45,6 +48,7 @@ namespace ngraph
Shape
m_shape_x
;
Shape
m_shape_x
;
bool
m_transpose_w
;
bool
m_transpose_w
;
bool
m_transpose_x
;
bool
m_transpose_x
;
AxisSet
m_broadcast_axes
;
};
};
}
}
}
}
src/ngraph/runtime/cpu/pass/cpu_assignment.cpp
View file @
518bba03
...
@@ -27,6 +27,7 @@
...
@@ -27,6 +27,7 @@
#include "ngraph/descriptor/output.hpp"
#include "ngraph/descriptor/output.hpp"
#include "ngraph/ops/add.hpp"
#include "ngraph/ops/add.hpp"
#include "ngraph/ops/avg_pool.hpp"
#include "ngraph/ops/avg_pool.hpp"
#include "ngraph/ops/batch_norm.hpp"
#include "ngraph/ops/convolution.hpp"
#include "ngraph/ops/convolution.hpp"
#include "ngraph/ops/max_pool.hpp"
#include "ngraph/ops/max_pool.hpp"
#include "ngraph/ops/relu.hpp"
#include "ngraph/ops/relu.hpp"
...
@@ -265,6 +266,16 @@ namespace ngraph
...
@@ -265,6 +266,16 @@ namespace ngraph
relu_bprop
->
set_op_annotations
(
op_annotations
);
relu_bprop
->
set_op_annotations
(
op_annotations
);
}
}
}
}
template
<>
void
CPUAssignment
::
ASSIGN_DECL
(
ngraph
::
op
::
BatchNorm
)
{
auto
batchnorm
=
static_cast
<
op
::
BatchNorm
*>
(
node
);
auto
op_annotations
=
std
::
make_shared
<
ngraph
::
runtime
::
cpu
::
CPUOpAnnotations
>
();
op_annotations
->
set_mkldnn_op
(
true
);
batchnorm
->
set_op_annotations
(
op_annotations
);
}
}
}
}
}
}
}
...
@@ -277,6 +288,7 @@ static const runtime::cpu::pass::AssignOpMap s_dispatcher{
...
@@ -277,6 +288,7 @@ static const runtime::cpu::pass::AssignOpMap s_dispatcher{
{
TI
(
ngraph
::
op
::
AvgPool
),
&
runtime
::
cpu
::
pass
::
CPUAssignment
::
assign
<
ngraph
::
op
::
AvgPool
>
},
{
TI
(
ngraph
::
op
::
AvgPool
),
&
runtime
::
cpu
::
pass
::
CPUAssignment
::
assign
<
ngraph
::
op
::
AvgPool
>
},
{
TI
(
ngraph
::
op
::
AvgPoolBackprop
),
{
TI
(
ngraph
::
op
::
AvgPoolBackprop
),
&
runtime
::
cpu
::
pass
::
CPUAssignment
::
assign
<
ngraph
::
op
::
AvgPoolBackprop
>
},
&
runtime
::
cpu
::
pass
::
CPUAssignment
::
assign
<
ngraph
::
op
::
AvgPoolBackprop
>
},
{
TI
(
ngraph
::
op
::
BatchNorm
),
&
runtime
::
cpu
::
pass
::
CPUAssignment
::
assign
<
ngraph
::
op
::
BatchNorm
>
},
{
TI
(
ngraph
::
op
::
Convolution
),
{
TI
(
ngraph
::
op
::
Convolution
),
&
runtime
::
cpu
::
pass
::
CPUAssignment
::
assign
<
ngraph
::
op
::
Convolution
>
},
&
runtime
::
cpu
::
pass
::
CPUAssignment
::
assign
<
ngraph
::
op
::
Convolution
>
},
{
TI
(
ngraph
::
op
::
ConvolutionBackpropData
),
{
TI
(
ngraph
::
op
::
ConvolutionBackpropData
),
...
...
src/ngraph/runtime/cpu/pass/cpu_fusion.cpp
View file @
518bba03
...
@@ -134,12 +134,21 @@ void ngraph::runtime::cpu::pass::CPUFusion::construct_matmulbias_pattern()
...
@@ -134,12 +134,21 @@ void ngraph::runtime::cpu::pass::CPUFusion::construct_matmulbias_pattern()
<<
m
.
match_root
()
->
get_name
();
<<
m
.
match_root
()
->
get_name
();
auto
mpattern
=
m
.
match_root
();
//add
auto
mpattern
=
m
.
match_root
();
//add
auto
m_matmul
=
mpattern
->
get_input_op
(
0
);
auto
m_matmul
=
std
::
dynamic_pointer_cast
<
op
::
MatmulBias
>
(
mpattern
->
get_input_op
(
0
));
auto
m_broadcast
=
mpattern
->
get_input_op
(
1
);
auto
m_broadcast
=
std
::
dynamic_pointer_cast
<
op
::
Broadcast
>
(
mpattern
->
get_input_op
(
1
));
auto
m_bias
=
m_broadcast
->
get_input_op
(
0
);
auto
pattern_map
=
m
.
get_pattern_map
();
auto
pattern_map
=
m
.
get_pattern_map
();
return
m_matmul
->
copy_with_new_args
(
auto
mmb
=
std
::
make_shared
<
op
::
MatmulBias
>
(
pattern_map
[
W
],
NodeVector
{
pattern_map
[
W
],
pattern_map
[
x
],
m_broadcast
});
pattern_map
[
x
],
m_bias
,
m_matmul
->
get_arg0_shape
(),
m_matmul
->
get_arg1_shape
(),
m_matmul
->
get_is_arg0_transposed
(),
m_matmul
->
get_is_arg1_transposed
(),
m_broadcast
->
get_broadcast_axes
());
return
mmb
;
};
};
auto
m
=
std
::
make_shared
<
ngraph
::
pattern
::
Matcher
>
(
padd
,
callback
);
auto
m
=
std
::
make_shared
<
ngraph
::
pattern
::
Matcher
>
(
padd
,
callback
);
...
...
src/ngraph/runtime/cpu/pass/cpu_layout.cpp
View file @
518bba03
...
@@ -28,8 +28,10 @@
...
@@ -28,8 +28,10 @@
#include "ngraph/log.hpp"
#include "ngraph/log.hpp"
#include "ngraph/ops/add.hpp"
#include "ngraph/ops/add.hpp"
#include "ngraph/ops/avg_pool.hpp"
#include "ngraph/ops/avg_pool.hpp"
#include "ngraph/ops/batch_norm.hpp"
#include "ngraph/ops/convolution.hpp"
#include "ngraph/ops/convolution.hpp"
#include "ngraph/ops/max_pool.hpp"
#include "ngraph/ops/max_pool.hpp"
#include "ngraph/ops/get_output_element.hpp"
#include "ngraph/ops/op.hpp"
#include "ngraph/ops/op.hpp"
#include "ngraph/ops/relu.hpp"
#include "ngraph/ops/relu.hpp"
#include "ngraph/ops/result.hpp"
#include "ngraph/ops/result.hpp"
...
@@ -796,6 +798,17 @@ namespace ngraph
...
@@ -796,6 +798,17 @@ namespace ngraph
set_output_layouts
(
node
,
prim_output_formats
);
set_output_layouts
(
node
,
prim_output_formats
);
}
}
template
<>
void
CPULayout
::
LAYOUT_DECL
(
ngraph
::
op
::
GetOutputElement
)
{
auto
goe
=
static_cast
<
const
ngraph
::
op
::
GetOutputElement
*>
(
node
.
get
());
auto
input_layout
=
runtime
::
cpu
::
mkldnn_utils
::
get_input_mkldnn_format
(
node
.
get
(),
goe
->
get_n
());
vector
<
memory
::
format
>
prim_output_formats
;
prim_output_formats
.
push_back
(
input_layout
);
set_output_layouts
(
node
,
prim_output_formats
);
}
template
<>
template
<>
void
CPULayout
::
LAYOUT_DECL
(
ngraph
::
op
::
Relu
)
void
CPULayout
::
LAYOUT_DECL
(
ngraph
::
op
::
Relu
)
{
{
...
@@ -836,6 +849,32 @@ namespace ngraph
...
@@ -836,6 +849,32 @@ namespace ngraph
}
}
}
}
template
<>
void
CPULayout
::
LAYOUT_DECL
(
ngraph
::
op
::
BatchNorm
)
{
if
(
runtime
::
cpu
::
mkldnn_utils
::
use_mkldnn_kernel
(
node
.
get
()))
{
auto
input_layout
=
runtime
::
cpu
::
mkldnn_utils
::
get_input_mkldnn_format
(
node
.
get
(),
2
);
vector
<
memory
::
format
>
prim_input_formats
;
vector
<
memory
::
format
>
prim_output_formats
;
prim_input_formats
.
push_back
(
memory
::
format
::
x
);
prim_input_formats
.
push_back
(
memory
::
format
::
x
);
prim_input_formats
.
push_back
(
input_layout
);
prim_output_formats
.
push_back
(
input_layout
);
prim_output_formats
.
push_back
(
memory
::
format
::
x
);
prim_output_formats
.
push_back
(
memory
::
format
::
x
);
node
=
insert_input_conversions
(
external_function
,
node
,
prim_input_formats
);
set_output_layouts
(
node
,
prim_output_formats
);
}
else
{
throw
ngraph_error
(
"Batchnorm only supported in MKLDNN for now"
);
}
}
template
<>
template
<>
void
CPULayout
::
LAYOUT_DECL
(
ngraph
::
op
::
Add
)
void
CPULayout
::
LAYOUT_DECL
(
ngraph
::
op
::
Add
)
{
{
...
@@ -878,6 +917,9 @@ static const runtime::cpu::pass::LayoutOpMap s_dispatcher{
...
@@ -878,6 +917,9 @@ static const runtime::cpu::pass::LayoutOpMap s_dispatcher{
{
TI
(
ngraph
::
op
::
MaxPool
),
&
runtime
::
cpu
::
pass
::
CPULayout
::
layout
<
ngraph
::
op
::
MaxPool
>
},
{
TI
(
ngraph
::
op
::
MaxPool
),
&
runtime
::
cpu
::
pass
::
CPULayout
::
layout
<
ngraph
::
op
::
MaxPool
>
},
{
TI
(
ngraph
::
op
::
MaxPoolBackprop
),
{
TI
(
ngraph
::
op
::
MaxPoolBackprop
),
&
runtime
::
cpu
::
pass
::
CPULayout
::
layout
<
ngraph
::
op
::
MaxPoolBackprop
>
},
&
runtime
::
cpu
::
pass
::
CPULayout
::
layout
<
ngraph
::
op
::
MaxPoolBackprop
>
},
{
TI
(
ngraph
::
op
::
BatchNorm
),
&
runtime
::
cpu
::
pass
::
CPULayout
::
layout
<
ngraph
::
op
::
BatchNorm
>
},
{
TI
(
ngraph
::
op
::
GetOutputElement
),
&
runtime
::
cpu
::
pass
::
CPULayout
::
layout
<
ngraph
::
op
::
GetOutputElement
>
},
{
TI
(
ngraph
::
op
::
Relu
),
&
runtime
::
cpu
::
pass
::
CPULayout
::
layout
<
ngraph
::
op
::
Relu
>
},
{
TI
(
ngraph
::
op
::
Relu
),
&
runtime
::
cpu
::
pass
::
CPULayout
::
layout
<
ngraph
::
op
::
Relu
>
},
{
TI
(
ngraph
::
op
::
Result
),
&
runtime
::
cpu
::
pass
::
CPULayout
::
layout
<
ngraph
::
op
::
Result
>
},
{
TI
(
ngraph
::
op
::
Result
),
&
runtime
::
cpu
::
pass
::
CPULayout
::
layout
<
ngraph
::
op
::
Result
>
},
{
TI
(
ngraph
::
op
::
ReluBackprop
),
{
TI
(
ngraph
::
op
::
ReluBackprop
),
...
...
test/cpu_fusion.cpp
View file @
518bba03
...
@@ -91,11 +91,89 @@ TEST(cpu_fusion, gemm_pattern)
...
@@ -91,11 +91,89 @@ TEST(cpu_fusion, gemm_pattern)
ASSERT_EQ
(
n
.
get_pattern_map
()[
x
],
B
);
ASSERT_EQ
(
n
.
get_pattern_map
()[
x
],
B
);
ASSERT_EQ
(
n
.
get_pattern_map
()[
b
],
C
);
ASSERT_EQ
(
n
.
get_pattern_map
()[
b
],
C
);
auto
cg
=
auto
cg
=
make_shared
<
op
::
MatmulBias
>
(
make_shared
<
op
::
MatmulBias
>
(
W
,
x
,
broadcast
,
W
->
get_shape
(),
x
->
get_shape
(),
false
,
false
);
W
,
x
,
C
,
W
->
get_shape
(),
x
->
get_shape
(),
false
,
false
,
AxisSet
{
0
});
}
TEST
(
cpu_fusion
,
gemm_cpu_broadcast_row
)
{
Shape
shapeA
{
3
,
2
};
Shape
shapeB
{
2
,
3
};
Shape
shapeC
{
2
,
2
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shapeA
);
auto
B
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shapeB
);
auto
reshape_w
=
make_shared
<
op
::
Reshape
>
(
A
,
AxisVector
{
1
,
0
},
Shape
{
2
,
3
});
auto
reshape_x
=
make_shared
<
op
::
Reshape
>
(
B
,
AxisVector
{
1
,
0
},
Shape
{
3
,
2
});
auto
one
=
op
::
Constant
::
create
<
float
>
(
element
::
f32
,
Shape
{
2
},
std
::
vector
<
float
>
{
1.0
f
,
1.0
f
});
auto
broadcast
=
make_shared
<
op
::
Broadcast
>
(
one
,
shapeC
,
AxisSet
{
0
});
auto
cg
=
make_shared
<
op
::
MatmulBias
>
(
A
,
B
,
one
,
A
->
get_shape
(),
B
->
get_shape
(),
true
,
true
,
AxisSet
{
0
});
auto
f
=
make_shared
<
Function
>
(
cg
,
op
::
ParameterVector
{
A
,
B
});
auto
manager
=
runtime
::
Manager
::
get
(
"CPU"
);
auto
external
=
manager
->
compile
(
f
);
auto
backend
=
manager
->
allocate_backend
();
auto
cf
=
backend
->
make_call_frame
(
external
);
shared_ptr
<
runtime
::
TensorView
>
a
=
backend
->
make_primary_tensor_view
(
element
::
f32
,
shapeA
);
shared_ptr
<
runtime
::
TensorView
>
b
=
backend
->
make_primary_tensor_view
(
element
::
f32
,
shapeB
);
shared_ptr
<
runtime
::
TensorView
>
result
=
backend
->
make_primary_tensor_view
(
element
::
f32
,
shapeC
);
vector
<
float
>
dataA
{
1.0
f
,
4.0
f
,
1.0
f
,
4.0
f
,
1.0
f
,
4.0
f
};
vector
<
float
>
dataB
{
3.0
f
,
3.0
f
,
3.0
f
,
9.0
f
,
9.0
f
,
9.0
f
};
copy_data
(
a
,
dataA
);
copy_data
(
b
,
dataB
);
cf
->
call
({
a
,
b
},
{
result
});
vector
<
float
>
expected
{
10
,
28
,
37
,
109
};
ASSERT_TRUE
(
read_vector
<
float
>
(
result
)
==
expected
);
}
}
TEST
(
cpu_fusion
,
gemm_cpu
)
TEST
(
cpu_fusion
,
gemm_cpu_broadcast_column
)
{
Shape
shapeA
{
3
,
2
};
Shape
shapeB
{
2
,
3
};
Shape
shapeC
{
2
,
2
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shapeA
);
auto
B
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shapeB
);
auto
reshape_w
=
make_shared
<
op
::
Reshape
>
(
A
,
AxisVector
{
1
,
0
},
Shape
{
2
,
3
});
auto
reshape_x
=
make_shared
<
op
::
Reshape
>
(
B
,
AxisVector
{
1
,
0
},
Shape
{
3
,
2
});
auto
one
=
op
::
Constant
::
create
<
float
>
(
element
::
f32
,
Shape
{
2
},
std
::
vector
<
float
>
{
1.0
f
,
1.0
f
});
auto
broadcast
=
make_shared
<
op
::
Broadcast
>
(
one
,
shapeC
,
AxisSet
{
1
});
auto
cg
=
make_shared
<
op
::
MatmulBias
>
(
A
,
B
,
one
,
A
->
get_shape
(),
B
->
get_shape
(),
true
,
true
,
AxisSet
{
1
});
auto
f
=
make_shared
<
Function
>
(
cg
,
op
::
ParameterVector
{
A
,
B
});
auto
manager
=
runtime
::
Manager
::
get
(
"CPU"
);
auto
external
=
manager
->
compile
(
f
);
auto
backend
=
manager
->
allocate_backend
();
auto
cf
=
backend
->
make_call_frame
(
external
);
shared_ptr
<
runtime
::
TensorView
>
a
=
backend
->
make_primary_tensor_view
(
element
::
f32
,
shapeA
);
shared_ptr
<
runtime
::
TensorView
>
b
=
backend
->
make_primary_tensor_view
(
element
::
f32
,
shapeB
);
shared_ptr
<
runtime
::
TensorView
>
result
=
backend
->
make_primary_tensor_view
(
element
::
f32
,
shapeC
);
vector
<
float
>
dataA
{
1.0
f
,
4.0
f
,
1.0
f
,
4.0
f
,
1.0
f
,
4.0
f
};
vector
<
float
>
dataB
{
3.0
f
,
3.0
f
,
3.0
f
,
9.0
f
,
9.0
f
,
9.0
f
};
copy_data
(
a
,
dataA
);
copy_data
(
b
,
dataB
);
cf
->
call
({
a
,
b
},
{
result
});
vector
<
float
>
expected
{
10
,
28
,
37
,
109
};
ASSERT_TRUE
(
read_vector
<
float
>
(
result
)
==
expected
);
}
TEST
(
cpu_fusion
,
gemm_cpu_broadcast_matrix
)
{
{
Shape
shapeA
{
3
,
2
};
Shape
shapeA
{
3
,
2
};
Shape
shapeB
{
2
,
3
};
Shape
shapeB
{
2
,
3
};
...
@@ -109,8 +187,8 @@ TEST(cpu_fusion, gemm_cpu)
...
@@ -109,8 +187,8 @@ TEST(cpu_fusion, gemm_cpu)
auto
one
=
op
::
Constant
::
create
<
float
>
(
element
::
f32
,
Shape
{},
std
::
vector
<
float
>
{
1.0
f
});
auto
one
=
op
::
Constant
::
create
<
float
>
(
element
::
f32
,
Shape
{},
std
::
vector
<
float
>
{
1.0
f
});
auto
broadcast
=
make_shared
<
op
::
Broadcast
>
(
one
,
shapeC
,
AxisSet
{
0
,
1
});
auto
broadcast
=
make_shared
<
op
::
Broadcast
>
(
one
,
shapeC
,
AxisSet
{
0
,
1
});
auto
cg
=
auto
cg
=
make_shared
<
op
::
MatmulBias
>
(
make_shared
<
op
::
MatmulBias
>
(
A
,
B
,
broadcast
,
A
->
get_shape
(),
B
->
get_shape
(),
true
,
true
);
A
,
B
,
one
,
A
->
get_shape
(),
B
->
get_shape
(),
true
,
true
,
AxisSet
{
0
,
1
}
);
auto
f
=
make_shared
<
Function
>
(
cg
,
op
::
ParameterVector
{
A
,
B
});
auto
f
=
make_shared
<
Function
>
(
cg
,
op
::
ParameterVector
{
A
,
B
});
...
@@ -212,7 +290,7 @@ TEST(cpu_fusion, cpu_fusion_pass_matmul_bias)
...
@@ -212,7 +290,7 @@ TEST(cpu_fusion, cpu_fusion_pass_matmul_bias)
pass_manager
.
run_passes
(
func
);
pass_manager
.
run_passes
(
func
);
auto
gmm
=
graph
->
get_input_op
(
0
);
auto
gmm
=
graph
->
get_input_op
(
0
);
ASSERT_TRUE
(
std
::
dynamic_pointer_cast
<
op
::
MatmulBias
>
(
gmm
));
ASSERT_TRUE
(
std
::
dynamic_pointer_cast
<
op
::
MatmulBias
>
(
gmm
));
ASSERT_EQ
(
gmm
->
get_input_op
(
2
),
b
roadcast
);
ASSERT_EQ
(
gmm
->
get_input_op
(
2
),
b
);
}
}
TEST
(
cpu_fusion
,
cpu_fusion_pass_matmul_no_bias
)
TEST
(
cpu_fusion
,
cpu_fusion_pass_matmul_no_bias
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment