Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
N
ngraph
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
ngraph
Commits
4ec19b95
Commit
4ec19b95
authored
Jun 18, 2019
by
nishant.b.patel
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Add support for int32 output in reference kernel
parent
b65e32e2
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
234 additions
and
57 deletions
+234
-57
quantized_conv.cpp
src/ngraph/runtime/cpu/builder/quantized_conv.cpp
+137
-1
int_executable.hpp
src/ngraph/runtime/interpreter/int_executable.hpp
+44
-0
backend_test.in.cpp
test/backend_test.in.cpp
+53
-0
cpu_test.cpp
test/cpu_test.cpp
+0
-56
No files found.
src/ngraph/runtime/cpu/builder/quantized_conv.cpp
View file @
4ec19b95
...
...
@@ -112,7 +112,9 @@ namespace ngraph
};
functors
.
emplace_back
(
functor
);
}
else
else
if
(
args
[
0
].
get_element_type
()
==
element
::
u8
&&
args
[
1
].
get_element_type
()
==
element
::
u8
&&
out
[
0
].
get_element_type
()
==
element
::
u8
)
{
std
::
function
<
decltype
(
runtime
::
cpu
::
kernel
::
convolution
<
uint8_t
,
uint8_t
,
uint8_t
,
int32_t
>
)
>
...
...
@@ -132,6 +134,140 @@ namespace ngraph
auto
padding_above
=
qconvolution
->
get_padding_above
();
auto
data_dilation_strides
=
qconvolution
->
get_data_dilation_strides
();
auto
functor
=
[
&
,
kernel
,
arg0_shape
,
arg1_shape
,
arg0_buffer_index
,
arg1_buffer_index
,
arg2_buffer_index
,
arg3_buffer_index
,
arg4_buffer_index
,
arg5_buffer_index
,
arg6_buffer_index
,
arg7_buffer_index
,
out0_buffer_index
,
result_shape
,
window_movement_strides
,
window_dilation_strides
,
padding_below
,
padding_above
,
data_dilation_strides
,
scales_size
](
CPURuntimeContext
*
ctx
,
CPUExecutionContext
*
ectx
)
{
vector
<
float
>
dyn_scales
;
dyn_scales
.
assign
(
static_cast
<
float
*>
(
ctx
->
buffer_data
[
arg2_buffer_index
]),
static_cast
<
float
*>
(
ctx
->
buffer_data
[
arg2_buffer_index
])
+
scales_size
);
kernel
(
ctx
->
buffer_data
[
arg0_buffer_index
],
ctx
->
buffer_data
[
arg1_buffer_index
],
ctx
->
buffer_data
[
out0_buffer_index
],
arg0_shape
,
arg1_shape
,
result_shape
,
window_movement_strides
,
window_dilation_strides
,
padding_below
,
padding_above
,
data_dilation_strides
,
ctx
->
buffer_data
[
arg2_buffer_index
],
ctx
->
buffer_data
[
arg3_buffer_index
],
ctx
->
buffer_data
[
arg4_buffer_index
],
ctx
->
buffer_data
[
arg5_buffer_index
],
ctx
->
buffer_data
[
arg6_buffer_index
],
ctx
->
buffer_data
[
arg7_buffer_index
]);
};
functors
.
emplace_back
(
functor
);
}
else
if
(
args
[
0
].
get_element_type
()
==
element
::
u8
&&
args
[
1
].
get_element_type
()
==
element
::
u8
&&
out
[
0
].
get_element_type
()
==
element
::
i32
)
{
std
::
function
<
decltype
(
runtime
::
cpu
::
kernel
::
convolution
<
uint8_t
,
uint8_t
,
int32_t
,
int32_t
>
)
>
kernel
;
kernel
=
runtime
::
cpu
::
kernel
::
convolution
<
uint8_t
,
uint8_t
,
int32_t
,
int32_t
>
;
auto
arg3_buffer_index
=
external_function
->
get_buffer_index
(
args
[
3
].
get_name
());
// input scale
auto
arg5_buffer_index
=
external_function
->
get_buffer_index
(
args
[
5
].
get_name
());
// filter scale
auto
arg7_buffer_index
=
external_function
->
get_buffer_index
(
args
[
7
].
get_name
());
// output scale
auto
window_movement_strides
=
qconvolution
->
get_window_movement_strides
();
auto
window_dilation_strides
=
qconvolution
->
get_window_dilation_strides
();
auto
padding_below
=
qconvolution
->
get_padding_below
();
auto
padding_above
=
qconvolution
->
get_padding_above
();
auto
data_dilation_strides
=
qconvolution
->
get_data_dilation_strides
();
auto
functor
=
[
&
,
kernel
,
arg0_shape
,
arg1_shape
,
arg0_buffer_index
,
arg1_buffer_index
,
arg2_buffer_index
,
arg3_buffer_index
,
arg4_buffer_index
,
arg5_buffer_index
,
arg6_buffer_index
,
arg7_buffer_index
,
out0_buffer_index
,
result_shape
,
window_movement_strides
,
window_dilation_strides
,
padding_below
,
padding_above
,
data_dilation_strides
,
scales_size
](
CPURuntimeContext
*
ctx
,
CPUExecutionContext
*
ectx
)
{
vector
<
float
>
dyn_scales
;
dyn_scales
.
assign
(
static_cast
<
float
*>
(
ctx
->
buffer_data
[
arg2_buffer_index
]),
static_cast
<
float
*>
(
ctx
->
buffer_data
[
arg2_buffer_index
])
+
scales_size
);
kernel
(
ctx
->
buffer_data
[
arg0_buffer_index
],
ctx
->
buffer_data
[
arg1_buffer_index
],
ctx
->
buffer_data
[
out0_buffer_index
],
arg0_shape
,
arg1_shape
,
result_shape
,
window_movement_strides
,
window_dilation_strides
,
padding_below
,
padding_above
,
data_dilation_strides
,
ctx
->
buffer_data
[
arg2_buffer_index
],
ctx
->
buffer_data
[
arg3_buffer_index
],
ctx
->
buffer_data
[
arg4_buffer_index
],
ctx
->
buffer_data
[
arg5_buffer_index
],
ctx
->
buffer_data
[
arg6_buffer_index
],
ctx
->
buffer_data
[
arg7_buffer_index
]);
};
functors
.
emplace_back
(
functor
);
}
else
if
(
args
[
0
].
get_element_type
()
==
element
::
u8
&&
args
[
1
].
get_element_type
()
==
element
::
i8
&&
out
[
0
].
get_element_type
()
==
element
::
i32
)
{
std
::
function
<
decltype
(
runtime
::
cpu
::
kernel
::
convolution
<
uint8_t
,
int8_t
,
int32_t
,
int32_t
>
)
>
kernel
;
kernel
=
runtime
::
cpu
::
kernel
::
convolution
<
uint8_t
,
int8_t
,
int32_t
,
int32_t
>
;
auto
arg3_buffer_index
=
external_function
->
get_buffer_index
(
args
[
3
].
get_name
());
// input scale
auto
arg5_buffer_index
=
external_function
->
get_buffer_index
(
args
[
5
].
get_name
());
// filter scale
auto
arg7_buffer_index
=
external_function
->
get_buffer_index
(
args
[
7
].
get_name
());
// output scale
auto
window_movement_strides
=
qconvolution
->
get_window_movement_strides
();
auto
window_dilation_strides
=
qconvolution
->
get_window_dilation_strides
();
auto
padding_below
=
qconvolution
->
get_padding_below
();
auto
padding_above
=
qconvolution
->
get_padding_above
();
auto
data_dilation_strides
=
qconvolution
->
get_data_dilation_strides
();
auto
functor
=
[
&
,
kernel
,
arg0_shape
,
...
...
src/ngraph/runtime/interpreter/int_executable.hpp
View file @
4ec19b95
...
...
@@ -1216,6 +1216,50 @@ private:
args
[
6
]
->
get_data_ptr
<
const
float
>
(),
args
[
7
]
->
get_data_ptr
<
const
uint8_t
>
());
}
else
if
(
input_element_type
==
element
::
u8
&&
filter_element_type
==
element
::
i8
&&
output_element_type
==
element
::
i32
)
{
reference
::
convolution
<
uint8_t
,
int8_t
,
int32_t
,
int32_t
>
(
args
[
0
]
->
get_data_ptr
<
const
uint8_t
>
(),
args
[
1
]
->
get_data_ptr
<
const
int8_t
>
(),
out
[
0
]
->
get_data_ptr
<
int32_t
>
(),
node
.
get_input_shape
(
0
),
node
.
get_input_shape
(
1
),
node
.
get_output_shape
(
0
),
qc
->
get_window_movement_strides
(),
qc
->
get_window_dilation_strides
(),
qc
->
get_padding_below
(),
qc
->
get_padding_above
(),
qc
->
get_data_dilation_strides
(),
args
[
2
]
->
get_data_ptr
<
const
float
>
(),
args
[
3
]
->
get_data_ptr
<
const
uint8_t
>
(),
args
[
4
]
->
get_data_ptr
<
const
float
>
(),
args
[
5
]
->
get_data_ptr
<
const
int8_t
>
(),
args
[
6
]
->
get_data_ptr
<
const
float
>
(),
args
[
7
]
->
get_data_ptr
<
const
int32_t
>
());
}
else
if
(
input_element_type
==
element
::
u8
&&
filter_element_type
==
element
::
u8
&&
output_element_type
==
element
::
i32
)
{
reference
::
convolution
<
uint8_t
,
uint8_t
,
int32_t
,
int32_t
>
(
args
[
0
]
->
get_data_ptr
<
const
uint8_t
>
(),
args
[
1
]
->
get_data_ptr
<
const
uint8_t
>
(),
out
[
0
]
->
get_data_ptr
<
int32_t
>
(),
node
.
get_input_shape
(
0
),
node
.
get_input_shape
(
1
),
node
.
get_output_shape
(
0
),
qc
->
get_window_movement_strides
(),
qc
->
get_window_dilation_strides
(),
qc
->
get_padding_below
(),
qc
->
get_padding_above
(),
qc
->
get_data_dilation_strides
(),
args
[
2
]
->
get_data_ptr
<
const
float
>
(),
args
[
3
]
->
get_data_ptr
<
const
uint8_t
>
(),
args
[
4
]
->
get_data_ptr
<
const
float
>
(),
args
[
5
]
->
get_data_ptr
<
const
uint8_t
>
(),
args
[
6
]
->
get_data_ptr
<
const
float
>
(),
args
[
7
]
->
get_data_ptr
<
const
int32_t
>
());
}
else
{
std
::
stringstream
ss
;
...
...
test/backend_test.in.cpp
View file @
4ec19b95
...
...
@@ -7712,3 +7712,56 @@ NGRAPH_TEST(${BACKEND_NAME}, quantized_conv_non_zero_zero_point)
<<
"Vectors x and y differ at index "
<<
i
;
}
}
TEST
(
$
{
BACKEND_NAME
},
quantized_conv_int32_output
)
{
Shape
shape_a
{
1
,
1
,
3
,
4
};
Shape
shape_b
{
1
,
1
,
3
,
3
};
Shape
shape_r
{
1
,
1
,
3
,
4
};
vector
<
uint8_t
>
a_data
=
{
1
,
2
,
3
,
4
,
5
,
6
,
7
,
0
,
1
,
2
,
3
,
4
};
vector
<
uint8_t
>
b_data
=
{
1
,
2
,
3
,
4
,
5
,
0
,
0
,
1
,
2
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
element
::
u8
,
shape_a
);
auto
B
=
make_shared
<
op
::
Parameter
>
(
element
::
u8
,
shape_b
);
auto
C
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
Shape
{});
auto
D
=
op
::
Constant
::
create
(
element
::
u8
,
Shape
{},
{
0
});
auto
E
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
Shape
{});
auto
F
=
op
::
Constant
::
create
(
element
::
u8
,
Shape
{},
{
0
});
auto
G
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
Shape
{});
auto
H
=
op
::
Constant
::
create
(
element
::
i32
,
Shape
{},
{
0
});
auto
CV
=
make_shared
<
op
::
QuantizedConvolution
>
(
A
,
B
,
Strides
{
1
,
1
},
Strides
{
1
,
1
},
CoordinateDiff
{
1
,
1
},
CoordinateDiff
{
1
,
1
},
Strides
{
1
,
1
},
C
,
D
,
E
,
F
,
G
,
H
,
element
::
i32
,
AxisSet
{},
AxisSet
{},
AxisSet
{});
auto
f
=
make_shared
<
Function
>
(
NodeVector
{
CV
},
ParameterVector
{
A
,
B
,
C
,
E
,
G
});
auto
backend
=
runtime
::
Backend
::
create
(
"${BACKEND_NAME}"
);
// Create some tensors for input/output
auto
a
=
backend
->
create_tensor
(
element
::
u8
,
shape_a
);
copy_data
(
a
,
a_data
);
auto
b
=
backend
->
create_tensor
(
element
::
u8
,
shape_b
);
copy_data
(
b
,
b_data
);
auto
c
=
backend
->
create_tensor
(
element
::
f32
,
Shape
{});
copy_data
(
c
,
vector
<
float
>
{
1.0
f
});
auto
d
=
backend
->
create_tensor
(
element
::
f32
,
Shape
{});
copy_data
(
d
,
vector
<
float
>
{
1.0
f
});
auto
e
=
backend
->
create_tensor
(
element
::
f32
,
Shape
{});
copy_data
(
e
,
vector
<
float
>
{
1.0
f
});
auto
result
=
backend
->
create_tensor
(
element
::
i32
,
shape_r
);
auto
handle
=
backend
->
compile
(
f
);
handle
->
call_with_validate
({
result
},
{
a
,
b
,
c
,
d
,
e
});
EXPECT_EQ
((
vector
<
int32_t
>
{
22
,
34
,
30
,
32
,
38
,
72
,
90
,
43
,
33
,
52
,
43
,
39
}),
read_vector
<
int32_t
>
(
result
));
}
test/cpu_test.cpp
View file @
4ec19b95
...
...
@@ -2057,59 +2057,3 @@ TEST(cpu_test, tensor_copy_from_different_layout)
EXPECT_EQ
((
vector
<
uint8_t
>
{
1
,
4
,
2
,
5
,
3
,
6
}),
read_vector
<
uint8_t
>
(
b
));
}
// Adding this test case in cpu_test
// because reference kernel isn't supporting intermediate
// output types as of now
TEST
(
cpu_test
,
quantized_conv_int32_output
)
{
Shape
shape_a
{
1
,
1
,
3
,
4
};
Shape
shape_b
{
1
,
1
,
3
,
3
};
Shape
shape_r
{
1
,
1
,
3
,
4
};
vector
<
uint8_t
>
a_data
=
{
1
,
2
,
3
,
4
,
5
,
6
,
7
,
0
,
1
,
2
,
3
,
4
};
vector
<
int8_t
>
b_data
=
{
1
,
2
,
3
,
4
,
5
,
0
,
0
,
1
,
2
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
element
::
u8
,
shape_a
);
auto
B
=
make_shared
<
op
::
Parameter
>
(
element
::
i8
,
shape_b
);
auto
C
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
Shape
{});
auto
D
=
op
::
Constant
::
create
(
element
::
u8
,
Shape
{},
{
0
});
auto
E
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
Shape
{});
auto
F
=
op
::
Constant
::
create
(
element
::
i8
,
Shape
{},
{
0
});
auto
G
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
Shape
{});
auto
H
=
op
::
Constant
::
create
(
element
::
i32
,
Shape
{},
{
0
});
auto
CV
=
make_shared
<
op
::
QuantizedConvolution
>
(
A
,
B
,
Strides
{
1
,
1
},
Strides
{
1
,
1
},
CoordinateDiff
{
1
,
1
},
CoordinateDiff
{
1
,
1
},
Strides
{
1
,
1
},
C
,
D
,
E
,
F
,
G
,
H
,
element
::
i32
,
AxisSet
{},
AxisSet
{},
AxisSet
{});
auto
f
=
make_shared
<
Function
>
(
NodeVector
{
CV
},
ParameterVector
{
A
,
B
,
C
,
E
,
G
});
auto
backend
=
runtime
::
Backend
::
create
(
"CPU"
);
// Create some tensors for input/output
auto
a
=
backend
->
create_tensor
(
element
::
u8
,
shape_a
);
copy_data
(
a
,
a_data
);
auto
b
=
backend
->
create_tensor
(
element
::
i8
,
shape_b
);
copy_data
(
b
,
b_data
);
auto
c
=
backend
->
create_tensor
(
element
::
f32
,
Shape
{});
copy_data
(
c
,
vector
<
float
>
{
1.0
f
});
auto
d
=
backend
->
create_tensor
(
element
::
f32
,
Shape
{});
copy_data
(
d
,
vector
<
float
>
{
1.0
f
});
auto
e
=
backend
->
create_tensor
(
element
::
f32
,
Shape
{});
copy_data
(
e
,
vector
<
float
>
{
1.0
f
});
auto
result
=
backend
->
create_tensor
(
element
::
i32
,
shape_r
);
auto
handle
=
backend
->
compile
(
f
);
handle
->
call_with_validate
({
result
},
{
a
,
b
,
c
,
d
,
e
});
EXPECT_EQ
((
vector
<
int32_t
>
{
22
,
34
,
30
,
32
,
38
,
72
,
90
,
43
,
33
,
52
,
43
,
39
}),
read_vector
<
int32_t
>
(
result
));
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment