Commit 4b84262c authored by Robert Kimball's avatar Robert Kimball

Merge branch 'master' into bob/async

parents 098b73c1 e090c6aa
#!/usr/bin/env python3 #!/usr/bin/env python3
# -*- coding: utf-8 -*- # -*- coding: utf-8 -*-
# #
...@@ -73,13 +71,11 @@ author = 'Intel Corporation' ...@@ -73,13 +71,11 @@ author = 'Intel Corporation'
# built documents. # built documents.
# #
# The short X.Y version. # The short X.Y version.
version = '0.22' version = '0.23'
# The Documentation full version, including alpha/beta/rc tags. Some features # The Documentation full version, including alpha/beta/rc tags. Some features
# available in the latest code will not necessarily be documented first. # available in the latest code will not necessarily be documented first
# rc syntax may be tagged; this documentation supports various rc-naming conventions release = '0.23.0'
release = '0.22.0'
# The language for content autogenerated by Sphinx. Refer to documentation # The language for content autogenerated by Sphinx. Refer to documentation
# for a list of supported languages. # for a list of supported languages.
...@@ -107,38 +103,18 @@ todo_include_todos = True ...@@ -107,38 +103,18 @@ todo_include_todos = True
# -- Options for HTML output ---------------------------------------------- # -- Options for HTML output ----------------------------------------------
html_title = 'nGraph Compiler stack Documentation' html_title = "Documentation for the nGraph Library and Compiler stack"
# The theme to use for HTML and HTML Help pages. See the documentation for
# a list of builtin themes.
#
html_theme = 'ngraph_theme' html_theme = 'ngraph_theme'
# Theme options are theme-specific and customize the look and feel of a theme
# further. For a list of options available for each theme, see the
# documentation.
# html_theme_options = {} # html_theme_options = {}
html_theme_path = ["../"] html_logo = '../ngraph_theme/static/logo.png'
if tags.has('release'):
is_release = True
docs_title = 'Docs / %s' %(version) %(release)
else:
is_release = False
docs_title = 'Docs / Latest'
# borrow this from the zephyr docs theme
html_context = {
# 'show_license': html_show_license, we have custom footers to attribute
# RTD, WTD, and Sphinx contributors; so we do not enable this
'docs_title': docs_title,
'is_release': is_release,
'theme_logo_only': False,
'current_version': version,
'versions': ( ("latest", "../"),
("0.20.0", "/0.20.0/"), #not yet sure how we'll do this
("0.19.0", "/0.19.0/"),
("0.18.0", "/0.18.0/"),
("0.17.0", "/0.17.0/"),
("0.16.0", "/0.16.0/"),
)
}
html_logo = '../ngraph_theme/static/favicon.ico'
# The name of an image file (within the static path) to use as favicon of the # The name of an image file (within the static path) to use as favicon of the
# docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32
...@@ -151,6 +127,7 @@ html_favicon = '../ngraph_theme/static/favicon.ico' ...@@ -151,6 +127,7 @@ html_favicon = '../ngraph_theme/static/favicon.ico'
html_static_path = ['../ngraph_theme/static'] html_static_path = ['../ngraph_theme/static']
# Add any paths that contain custom themes here, relative to this directory. # Add any paths that contain custom themes here, relative to this directory.
html_theme_path = ["../"]
# Custom sidebar templates, must be a dictionary that maps document names # Custom sidebar templates, must be a dictionary that maps document names
# to template names. # to template names.
...@@ -165,26 +142,6 @@ html_sidebars = { ...@@ -165,26 +142,6 @@ html_sidebars = {
} }
# Custom added feature to allow redirecting old URLs
#
# list of tuples (old_url, new_url) for pages to redirect
# (URLs should be relative to document root, only)
html_redirect_pages = [
('backend-support', 'backends/index'),
('core/core', 'core/overview.rst'),
('core/fusion', 'core/fusion/index'),
('frameworks/mxnet', 'frameworks/mxnet_intg.rst'),
('frameworks/onnx', 'frameworks/onnx_intg.rst'),
('frameworks/tensorflow', 'frameworks/tensorflow_connect.rst'),
('frameworks/paddle', 'frameworks/paddle_integ.rst'),
('inspection/inspection', 'inspection/index'),
('releases/release-notes', 'releases/index'),
# ('getting_started/getting_starting', 'getting_started/index'),
# mv to framework-specific helper directory
('project/project', 'project/index'),
('python_api/', 'python_api/index'),
]
# -- Options for HTMLHelp output ------------------------------------------ # -- Options for HTMLHelp output ------------------------------------------
# Output file base name for HTML help builder. # Output file base name for HTML help builder.
...@@ -195,11 +152,11 @@ htmlhelp_basename = 'IntelnGraphlibrarydoc' ...@@ -195,11 +152,11 @@ htmlhelp_basename = 'IntelnGraphlibrarydoc'
latex_elements = { latex_elements = {
# The paper size ('letterpaper' or 'a4paper'). # The paper size ('letterpaper' or 'a4paper').
# #
# 'papersize': 'letterpaper', 'papersize': 'letterpaper',
# The font size ('10pt', '11pt' or '12pt'). # The font size ('10pt', '11pt' or '12pt').
# #
# 'pointsize': '10pt', 'pointsize': '10pt',
# Additional stuff for the LaTeX preamble. # Additional stuff for the LaTeX preamble.
# #
...@@ -214,11 +171,10 @@ latex_elements = { ...@@ -214,11 +171,10 @@ latex_elements = {
# (source start file, target name, title, # (source start file, target name, title,
# author, documentclass [howto, manual, or own class]). # author, documentclass [howto, manual, or own class]).
latex_documents = [ latex_documents = [
(master_doc, 'nGraphCompilerStack.tex', 'nGraph Compiler Stack Documentation', (master_doc, 'nGraphCompilerStack.tex', u'nGraph Compiler Stack Documentation',
'Intel Corporation', 'manual'), u'Intel Corporation', 'manual'),
] ]
# -- Options for manual page output --------------------------------------- # -- Options for manual page output ---------------------------------------
# One entry per manual page. List of tuples # One entry per manual page. List of tuples
...@@ -244,22 +200,7 @@ breathe_projects = { ...@@ -244,22 +200,7 @@ breathe_projects = {
} }
rst_epilog = u""" rst_epilog = u"""
.. |codename| replace:: Intel nGraph .. include:: /replacements.txt
.. |project| replace:: Intel nGraph Library
.. |InG| replace:: Intel® nGraph
.. |copy| unicode:: U+000A9 .. COPYRIGHT SIGN
:ltrim:
.. |deg| unicode:: U+000B0 .. DEGREE SIGN
:ltrim:
.. |plusminus| unicode:: U+000B1 .. PLUS-MINUS SIGN
:rtrim:
.. |micro| unicode:: U+000B5 .. MICRO SIGN
:rtrim:
.. |trade| unicode:: U+02122 .. TRADEMARK SIGN
:ltrim:
.. |reg| unicode:: U+000AE .. REGISTERED TRADEMARK SIGN
:ltrim:
""" """
# -- autodoc Extension configuration -------------------------------------- # -- autodoc Extension configuration --------------------------------------
......
...@@ -6,16 +6,14 @@ ...@@ -6,16 +6,14 @@
</span> </span>
<div class="rst-other-versions"> <div class="rst-other-versions">
<dl> <dl>
<dt>{{ _('Previous Versions') }}</dt> <dt>{{ _('Recent Versions') }}</dt>
<dd><!-- Until our https://docs.ngraph.ai/ publishing is set up, we link to GitHub --> <dd><!-- Until our https://docs.ngraph.ai/ publishing is set up, we link to GitHub -->
<ul> <ul>
<li><a href="https://github.com/NervanaSystems/ngraph/releases/tag/v0.20.0">0.20.0-rc.0</a></li> <li><a href="https://github.com/NervanaSystems/ngraph/releases/tag/v0.23.0">0.23.0</a></li>
<li><a href="https://github.com/NervanaSystems/ngraph/releases/tag/v0.19.0-rc.2">0.19.0-rc.2</a></li> <li><a href="https://github.com/NervanaSystems/ngraph/releases/tag/v0.22.0">0.22.0</a></li>
<li><a href="https://github.com/NervanaSystems/ngraph/releases/tag/v0.18.1">0.18.1</a></li> <li><a href="https://github.com/NervanaSystems/ngraph/releases/tag/v0.21.0">0.21.0</a></li>
<li><a href="https://github.com/NervanaSystems/ngraph/releases/tag/v0.17.0-rc.1">0.17.0-rc.1</a></li> <li><a href="https://github.com/NervanaSystems/ngraph/releases/tag/v0.20.0">0.20.0</a></li>
<li><a href="https://github.com/NervanaSystems/ngraph/releases/tag/v0.16.0-rc.3">0.16.0-rc.3</a></li> <li><a href="https://github.com/NervanaSystems/ngraph/releases/tag/v0.19.0">0.19.0</a></li>
<li><a href="https://github.com/NervanaSystems/ngraph/releases/tag/v0.16.0-rc.2">0.16.0-rc.2</a></li>
<li><a href="https://github.com/NervanaSystems/ngraph/releases/tag/v0.16.0-rc.1">0.16.0-rc.1</a></li>
</ul></dd> </ul></dd>
</dl> </dl>
<dl> <dl>
...@@ -28,4 +26,4 @@ ...@@ -28,4 +26,4 @@
</dd> </dd>
</dl> </dl>
</div> </div>
</div> </div>
\ No newline at end of file
...@@ -7,4 +7,3 @@ Backend ...@@ -7,4 +7,3 @@ Backend
.. doxygenclass:: ngraph::runtime::Backend .. doxygenclass:: ngraph::runtime::Backend
:project: ngraph :project: ngraph
:members: :members:
...@@ -7,9 +7,10 @@ Backend APIs ...@@ -7,9 +7,10 @@ Backend APIs
:maxdepth: 1 :maxdepth: 1
backend-api/index backend-api/index
executable-api/index dynamicbackend-api/index
hosttensor-api/index
plaidml-ng-api/index plaidml-ng-api/index
executable-api/index
As of version ``0.15``, there is a new backend API to work with functions that As of version ``0.15``, there is a new backend API to work with functions that
can be compiled as a runtime ``Executable``. Where previously ``Backend`` used a can be compiled as a runtime ``Executable``. Where previously ``Backend`` used a
......
.. backends/hosttensor-api/index.rst: .. backends/hosttensor-api/index.rst:
HostTensor DynamicBackend
========== ==============
.. doxygenclass:: ngraph::runtime::HostTensor .. doxygenclass:: ngraph::runtime::dynamic::DynamicBackend
:project: ngraph :project: ngraph
:members: :members:
...@@ -7,7 +7,6 @@ Executable ...@@ -7,7 +7,6 @@ Executable
The ``compile`` function on an ``Executable`` has more direct methods to The ``compile`` function on an ``Executable`` has more direct methods to
actions such as ``validate``, ``call``, ``get_performance_data``, and so on. actions such as ``validate``, ``call``, ``get_performance_data``, and so on.
.. doxygenclass:: ngraph::runtime::Executable .. doxygenclass:: ngraph::runtime::Executable
:project: ngraph :project: ngraph
:members: :members:
......
...@@ -6,6 +6,7 @@ Developer Resources for Backends ...@@ -6,6 +6,7 @@ Developer Resources for Backends
* :ref:`what_is_backend` * :ref:`what_is_backend`
* :ref:`how_to_use` * :ref:`how_to_use`
* :ref:`miscellaneous_resources`
.. _what_is_backend: .. _what_is_backend:
...@@ -60,3 +61,57 @@ interface; each backend implements the following five functions: ...@@ -60,3 +61,57 @@ interface; each backend implements the following five functions:
for later execution. for later execution.
* And, finally, the ``call()`` method is used to invoke an nGraph function * And, finally, the ``call()`` method is used to invoke an nGraph function
against a particular set of tensors. against a particular set of tensors.
.. _miscellaneous_resources:
Miscellaneous resources
=======================
Additional resources for device or framework-specific configurations:
OpenCL
------
OpenCL is needed for the :doc:`plaidml-ng-api/index`; this is not needed if
you have only a CPU backend.
#. Install the latest Linux driver for your system. You can find a list
of drivers at https://software.intel.com/en-us/articles/opencl-drivers;
You may need to install `OpenCL SDK`_ in case of an ``libOpenCL.so`` absence.
#. Any user added to "video" group:
.. code-block:: console
sudo usermod –a –G video <user_id>
may, for example, be able to find details at the ``/sys/module/[system]/parameters/`` location.
nGraph Bridge from TensorFlow\*
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When specified as the generic backend -- either manually or automatically
from a framework -- ``NGRAPH`` defaults to CPU, and it also allows for
additional device configuration or selection.
Because nGraph can select backends, specifying the ``INTELGPU``
backend as a runtime environment variable also works if one is
present in your system:
:envvar:`NGRAPH_TF_BACKEND="INTELGPU"`
An `axpy.py example`_ is optionally available to test; outputs will vary
depending on the parameters specified.
.. code-block:: console
NGRAPH_TF_BACKEND="INTELGPU" python3 axpy.py
* ``NGRAPH_INTELGPU_DUMP_FUNCTION`` -- dumps nGraph’s functions
in dot format.
.. _axpy.py example: https://github.com/tensorflow/ngraph-bridge/blob/master/examples/axpy.py
.. _OpenCL SDK: https://software.intel.com/en-us/opencl-sdk
...@@ -73,11 +73,11 @@ author = 'Intel Corporation' ...@@ -73,11 +73,11 @@ author = 'Intel Corporation'
# built documents. # built documents.
# #
# The short X.Y version. # The short X.Y version.
version = '0.21' version = '0.22'
# The Documentation full version, including alpha/beta/rc tags. Some features # The Documentation full version, including alpha/beta/rc tags. Some features
# available in the latest code will not necessarily be documented first # available in the latest code will not necessarily be documented first
release = '0.21.0' release = '0.22.0'
# The language for content autogenerated by Sphinx. Refer to documentation # The language for content autogenerated by Sphinx. Refer to documentation
# for a list of supported languages. # for a list of supported languages.
......
...@@ -5,8 +5,8 @@ Integrating new frameworks ...@@ -5,8 +5,8 @@ Integrating new frameworks
This section details some of the *configuration options* and some of the This section details some of the *configuration options* and some of the
*environment variables* that can be used to tune for optimal performance when *environment variables* that can be used to tune for optimal performance when
your system already has a version of nGraph installed with one of our supported your system already has a version of nGraph installed with one or more of our
backends. supported :doc:`../backends/index`.
Regardless of the framework, after the :doc:`../buildlb` step, a good place Regardless of the framework, after the :doc:`../buildlb` step, a good place
to start usually involves making the libraries available to the framework. On to start usually involves making the libraries available to the framework. On
...@@ -19,15 +19,59 @@ something like: ...@@ -19,15 +19,59 @@ something like:
export LD_LIBRARY_PATH=path/to/ngraph_dist/lib/ export LD_LIBRARY_PATH=path/to/ngraph_dist/lib/
Find or display nGraph Version Find or display version
------------------------------- =======================
If you're working with the :doc:`../python_api/index`, the following command
may be useful:
.. code-block:: console .. code-block:: console
python3 -c "import ngraph as ng; print('nGraph version: ',ng.__version__)"; python3 -c "import ngraph as ng; print('nGraph version: ',ng.__version__)";
To manually build a newer version than is available from the latest `PyPI`_
(:abbr:`Python Package Index (PyPI)`), see our nGraph Python API `BUILDING.md`_
documentation.
Activate logtrace-related environment variables
===============================================
Another configuration option is to activate ``NGRAPH_CPU_DEBUG_TRACER``,
a runtime environment variable that supports extra logging and debug detail.
This is a useful tool for data scientists interested in outputs from logtrace
files that can, for example, help in tracking down model convergences. It can
also help engineers who might want to add their new ``Backend`` to an existing
framework to compare intermediate tensors/values to references from a CPU
backend.
To activate this tool, set the ``env`` var ``NGRAPH_CPU_DEBUG_TRACER=1``.
It will dump ``trace_meta.log`` and ``trace_bin_data.log``. The names of the
logfiles can be customized.
To specify the names of logs with those flags:
::
NGRAPH_TRACER_LOG = "meta.log"
NGRAPH_BIN_TRACER_LOG = "bin.log"
The meta_log contains::
kernel_name, serial_number_of_op, tensor_id, symbol_of_in_out, num_elements, shape, binary_data_offset, mean_of_tensor, variance_of_tensor
A line example from a unit-test might look like::
K=Add S=0 TID=0_0 >> size=4 Shape{2, 2} bin_data_offset=8 mean=1.5 var=1.25
The binary_log line contains::
tensor_id, binary data (tensor data)
A reference for the implementation of parsing these logfiles can also be found
in the unit test for this feature.
FMV FMV
--- ---
...@@ -37,7 +81,7 @@ number of generic ways to patch or bring architecture-based optimizations to ...@@ -37,7 +81,7 @@ number of generic ways to patch or bring architecture-based optimizations to
the :abbr:`Operating System (OS)` that is handling your ML environment. See the :abbr:`Operating System (OS)` that is handling your ML environment. See
the `GCC wiki for details`_. the `GCC wiki for details`_.
If your nGraph build is a Neural Network configured on Clear Linux* OS If your nGraph build is a Neural Network configured on Clear Linux\* OS
for Intel® Architecture, and it includes at least one older CPU, the for Intel® Architecture, and it includes at least one older CPU, the
`following article may be helpful`_. `following article may be helpful`_.
...@@ -63,11 +107,14 @@ For CPU (and most cuDNN) backends, the preferred layout is currently ``NCHW``. ...@@ -63,11 +107,14 @@ For CPU (and most cuDNN) backends, the preferred layout is currently ``NCHW``.
Intel® Math Kernel Library for Deep Neural Networks Intel® Math Kernel Library for Deep Neural Networks
--------------------------------------------------- ---------------------------------------------------
-The following `KMP options`_ were originally optimized for models using the .. important:: Intel® MKL-DNN is automatically enabled as part of an
nGraph default :doc:`build <../buildlb>`; you do *not* need to add it
separately or as an additional component to be able to use these
configuration settings.
The following `KMP`_ options were originally optimized for models using the
Intel® `MKL-DNN`_ to train models with the ``NCHW`` data layout; however, other Intel® `MKL-DNN`_ to train models with the ``NCHW`` data layout; however, other
configurations can be explored. MKL-DNN is automatically enabled as part of an configurations can be explored.
nGraph compilation; you do *not* need to add MKL-DNN separately or as an
additional component to be able to use these configuration settings.
* ``KMP_BLOCKTIME`` Sets the time, in milliseconds, that a thread should wait * ``KMP_BLOCKTIME`` Sets the time, in milliseconds, that a thread should wait
after completing the execution of a parallel region, before sleeping. after completing the execution of a parallel region, before sleeping.
...@@ -128,10 +175,11 @@ Convolution shapes ...@@ -128,10 +175,11 @@ Convolution shapes
``OMP_NUM_THREADS`` ``OMP_NUM_THREADS``
^^^^^^^^^^^^^^^^^^^ ^^^^^^^^^^^^^^^^^^^
The best resource for this configuration option is the `gnu.org site`_ The best resource for this configuration option is the Intel® OpenMP\* docs
``OMP_NUM_THREADS`` defaults to the number of logical cores. To check the at the following link: `Intel OpenMP documentation`_. ``OMP_NUM_THREADS``
number of cores on your system, you can run the following on the command-line to defaults to the number of logical cores. To check the number of cores on your
see the details of your CPU: system, you can run the following on the command-line to see the details
of your CPU:
.. code-block:: console .. code-block:: console
...@@ -171,11 +219,12 @@ achieve the best performance for NN workloads on CPU platforms. The nGraph ...@@ -171,11 +219,12 @@ achieve the best performance for NN workloads on CPU platforms. The nGraph
Compiler stack runs on transformers handled by Intel® Architecture (IA), and Compiler stack runs on transformers handled by Intel® Architecture (IA), and
thus can make more efficient use of the underlying hardware. thus can make more efficient use of the underlying hardware.
.. _PyPI: https://pypi.org/project/ngraph-core
.. _KMP options: https://software.intel.com/en-us/cpp-compiler-developer-guide-and-reference-controlling-thread-allocation .. _KMP: https://software.intel.com/en-us/node/522691
.. KMP options: https://software.intel.com/en-us/node/522691
.. _MKL-DNN: https://github.com/intel/mkl-dnn .. _MKL-DNN: https://github.com/intel/mkl-dnn
.. _gnu.org site: https://gcc.gnu.org/onlinedocs/libgomp/Environment-Variables.html .. _Intel OpenMP documentation: https://www.openmprtl.org/documentation
.. _Movidius: https://www.movidius.com/ .. _Movidius: https://www.movidius.com/
.. _BUILDING.md: https://github.com/NervanaSystems/ngraph/blob/master/python/BUILDING.md
.. _GCC wiki for details: https://gcc.gnu.org/wiki/FunctionMultiVersioning .. _GCC wiki for details: https://gcc.gnu.org/wiki/FunctionMultiVersioning
.. _following article may be helpful: https://clearlinux.org/documentation/clear-linux/tutorials/fmv .. _following article may be helpful: https://clearlinux.org/documentation/clear-linux/tutorials/fmv
.. frameworks/mxnet_integ.rst: .. frameworks/mxnet_integ.rst:
MXNet\* bridge MXNet\* bridge
=============== ==============
.. deprecated:: 0.21.0
* See the nGraph-MXNet `Integration Guide`_ on the nGraph-MXNet repo. * See the nGraph-MXNet `Integration Guide`_ on the nGraph-MXNet repo.
......
...@@ -10,7 +10,7 @@ nGraph's internal representation and converted to ``Function`` objects, which ...@@ -10,7 +10,7 @@ nGraph's internal representation and converted to ``Function`` objects, which
can be compiled and executed on one of nGraph's backends. can be compiled and executed on one of nGraph's backends.
You can use nGraph's Python API to run an ONNX model and nGraph can be used You can use nGraph's Python API to run an ONNX model and nGraph can be used
as an ONNX backend using the add-on package `nGraph-ONNX <ngraph_onnx>`_. as an ONNX backend using the add-on package `nGraph ONNX`_.
.. note:: In order to support ONNX, nGraph must be built with the .. note:: In order to support ONNX, nGraph must be built with the
...@@ -33,8 +33,7 @@ for nGraph, ONNX and NumPy: ...@@ -33,8 +33,7 @@ for nGraph, ONNX and NumPy:
Importing an ONNX model Importing an ONNX model
----------------------- -----------------------
You can download models from the `ONNX Model Zoo <onnx_model_zoo_>`_. You can download models from the `ONNX Model Zoo`_. For example, ResNet-50:
For example ResNet-50:
:: ::
...@@ -92,9 +91,9 @@ data: ...@@ -92,9 +91,9 @@ data:
Find more information about nGraph and ONNX in the Find more information about nGraph and ONNX in the
`nGraph-ONNX <ngraph_onnx>`_ GitHub repository. `nGraph ONNX`_ GitHub repository.
.. _ngraph_onnx: https://github.com/NervanaSystems/ngraph-onnx/ .. _ngraph ONNX: https://github.com/NervanaSystems/ngraph-onnx
.. _ngraph_onnx_building: https://github.com/NervanaSystems/ngraph-onnx/blob/master/BUILDING.md .. _ngraph ONNX building: https://github.com/NervanaSystems/ngraph-onnx/blob/master/BUILDING.md
.. _onnx_model_zoo: https://github.com/onnx/models .. _ONNX model zoo: https://github.com/onnx/models
.. ---------------------------------------------------------------------------
.. Copyright 2018-2019 Intel Corporation .. Copyright 2018-2019 Intel Corporation
.. Licensed under the Apache License, Version 2.0 (the "License"); .. Licensed under the Apache License, Version 2.0 (the "License");
.. you may not use this file except in compliance with the License. .. you may not use this file except in compliance with the License.
......
...@@ -6,11 +6,11 @@ Visualization Tools ...@@ -6,11 +6,11 @@ Visualization Tools
nGraph provides serialization and deserialization facilities, along with the nGraph provides serialization and deserialization facilities, along with the
ability to create image formats or a PDF. ability to create image formats or a PDF.
When visualization is enabled, a ``dot`` file gets generated, along with a When visualization is enabled, ``svg`` files for your graph get generated. The
``png``. The default can be adjusted by setting the default can be adjusted by setting the ``NGRAPH_VISUALIZE_TRACING_FORMAT``
``NGRAPH_VISUALIZE_TREE_OUTPUT_FORMAT`` flag to another format, like PDF. flag to another format, like PNG or PDF.
.. note:: Large graphs are usually not legible with formats like PDF. .. note:: Large graphs are usually not legible with formats like PDF.
Large graphs may require additional work to get into a human-readable format. Large graphs may require additional work to get into a human-readable format.
On the back end, very long edges will need to be cut to make (for example) a On the back end, very long edges will need to be cut to make (for example) a
......
...@@ -18,9 +18,36 @@ ...@@ -18,9 +18,36 @@
Contributing to documentation Contributing to documentation
============================= =============================
.. important:: Read this for changes affecting **anything** in ``ngraph/doc`` .. note:: Tips for contributors who are new to the highly-dynamic
environment of documentation in AI software:
For updates to the nGraph Library ``/doc`` repo, please submit a PR with * A good place to start is "document something you figured out how to
get working". Content changes and additions should be targeted at
something more specific than "developers". If you don't understand
how varied and wide the audience is, you'll inadvertently break or block
things.
* There are experts who work on all parts of the stack; try asking how
documentation changes ought to be made in their respective sections.
* Start with something small. It is okay to add a "patch" to fix a typo
or suggest a word change; larger changes to files or structure require
research and testing first, as well as some logic for why you think
something needs changed.
* Most documentation should wrap at about ``80``. We do our best to help
authors source-link and maintain their own code and contributions;
overwriting something already documented doesn't always improve it.
* Be careful editing files with links already present in them; deleting
links to papers, citations, or sources is discouraged.
* Please do not submit Jupyter* notebook code to the nGraph Library
or core repos; best practice is to maintain any project-specific
examples, tests, or walk-throughs in a separate repository and to link
back to the stable ``op`` or Ops that you use in your project.
For updates within the nGraph Library ``/doc`` repo, please submit a PR with
any changes or ideas you'd like integrated. This helps us maintain trackability any changes or ideas you'd like integrated. This helps us maintain trackability
with respect to changes made, additions, deletions, and feature requests. with respect to changes made, additions, deletions, and feature requests.
...@@ -36,7 +63,6 @@ it for a specific use case. Add a note on our wiki to show us what you ...@@ -36,7 +63,6 @@ it for a specific use case. Add a note on our wiki to show us what you
did; new and novel applications may have their projects highlighted on an did; new and novel applications may have their projects highlighted on an
upcoming `ngraph.ai`_ release. upcoming `ngraph.ai`_ release.
.. note:: Please do not submit Jupyter* notebook code to the nGraph Library .. note:: Please do not submit Jupyter* notebook code to the nGraph Library
or core repos; best practice is to maintain any project-specific examples, or core repos; best practice is to maintain any project-specific examples,
tests, or walk-throughs in a separate repository. tests, or walk-throughs in a separate repository.
...@@ -45,9 +71,11 @@ upcoming `ngraph.ai`_ release. ...@@ -45,9 +71,11 @@ upcoming `ngraph.ai`_ release.
Documenting source code examples Documenting source code examples
-------------------------------- --------------------------------
When **verbosely** documenting functionality of specific sections of code -- whether When **verbosely** documenting functionality of specific sections of code --
they are entire code blocks within a file, or code strings that are **outside** whether they are entire code blocks within a file, or code strings that are
the nGraph Library's `documentation repo`_, here is an example of best practice: **outside** the nGraph Library's `documentation repo`_, here is an example
of best practice:
Say a file has some interesting functionality that could benefit from more Say a file has some interesting functionality that could benefit from more
explanation about one or more of the pieces in context. To keep the "in context" explanation about one or more of the pieces in context. To keep the "in context"
...@@ -73,8 +101,7 @@ the folder where the ``Makefile`` is that generates the documentation you're ...@@ -73,8 +101,7 @@ the folder where the ``Makefile`` is that generates the documentation you're
writing. writing.
See the **note** at the bottom of this page for more detail about how See the **note** at the bottom of this page for more detail about how
this works in the current |version| version of Intel nGraph library this works in the current |version| version of nGraph Library documentation.
documentation.
Adding captions to code blocks Adding captions to code blocks
......
...@@ -6,34 +6,50 @@ Release Notes ...@@ -6,34 +6,50 @@ Release Notes
nGraph is provided as source code, APIs, build scripts, and some binary formats nGraph is provided as source code, APIs, build scripts, and some binary formats
for various Compiler stack configurations and use cases. for various Compiler stack configurations and use cases.
For downloads formatted as ``.zip`` and ``tar.gz``, see
https://github.com/NervanaSystems/ngraph/releases.
This page includes additional documentation updates. This page includes additional documentation updates.
We are pleased to announce the release of version |version|-doc. We are pleased to announce the release of version |version|-doc.
0.21-doc Core updates for |version|
-------- ~~~~~~~~~~~~~~~~~~~~~~~~~~~
Documentation updates + PlaidML support
~~~~~~~~~~~~~~~~~~~~~ + More ONNX ops
+ Elementwise divide defaults to Python semantics
+ GenerateMask seed optional
Summary of documentation-related changes:
+ Update :doc:`doc-contributor-README` for new community-based contributions. Latest doc updates
+ Added instructions on how to test or display the installed nGraph version. ~~~~~~~~~~~~~~~~~~
+ Added instructions on building nGraph bridge (ngraph-bridge).
+ Updated Backend Developer Guides and ToC structure.
+ Tested documentation build on Clear Linux OS; it works.
+ Fixed a few links and redirs affected by filename changes.
+ Some coding adjustments for options to render math symbols, so they can be
documented more clearly and without excessive JS (see replacements.txt).
+ Consistent filenaming on all BE indexes.
+ Remove deprecated TensorAPI.
+
+ Document new debug tool
+ Note deprecation of MXNet's ``ngraph-mxnet`` PyPI
+ Note default change to `svg` files for graphs and visualization
+ Add more prominent tips for contributors who find the doc-contributor-README
.. important:: Pre-releases (``-rc-0.*``) have newer features, and are less stable.
Changelog on Previous Releases
==============================
0.22
----
+ More ONNX ops
+ Optimizations
+ Don't reseed RNG on each use
+ Initial doc and API for IntelGPU backend
+ DynamicBackend API
Core updates for |version|
~~~~~~~~~~~~~~~~~~~~~~~~~~~ 0.21
----
+ The offset argument in tensor reads and writes has been removed + The offset argument in tensor reads and writes has been removed
+ Save/load API + Save/load API
...@@ -43,17 +59,19 @@ Core updates for |version| ...@@ -43,17 +59,19 @@ Core updates for |version|
+ Provenance improvements + Provenance improvements
+ offset arg for tensor creation is deprecated + offset arg for tensor creation is deprecated
+ static linking support + static linking support
+ Initial test of 0.21-doc
+ Updated :doc:`doc-contributor-README` for new community-based contributions.
+ Added instructions on how to test or display the installed nGraph version.
+ Added instructions on building nGraph bridge (ngraph-bridge).
+ Updated Backend Developer Guides and ToC structure.
+ Tested documentation build on Clear Linux OS; it works.
+ Fixed a few links and redirs affected by filename changes.
+ Some coding adjustments for options to render math symbols, so they can be
documented more clearly and without excessive JS (see replacements.txt).
+ Consistent filenaming on all BE indexes.
+ Removed deprecated TensorAPI.
.. important:: Pre-releases (``-rc-0.*``) have newer features, and are less stable.
Changelog on Previous Releases
==============================
For downloads formatted as ``.zip`` and ``tar.gz``, see
https://github.com/NervanaSystems/ngraph/releases.
0.20 0.20
---- ----
...@@ -67,8 +85,6 @@ https://github.com/NervanaSystems/ngraph/releases. ...@@ -67,8 +85,6 @@ https://github.com/NervanaSystems/ngraph/releases.
0.19 0.19
---- ----
**Download** `0.19.0-rc.2`_
+ More dynamic shape preparation + More dynamic shape preparation
+ Distributed interface factored out + Distributed interface factored out
+ fp16 and bfloat16 types + fp16 and bfloat16 types
...@@ -88,9 +104,6 @@ https://github.com/NervanaSystems/ngraph/releases. ...@@ -88,9 +104,6 @@ https://github.com/NervanaSystems/ngraph/releases.
0.18 0.18
---- ----
**Download** `0.18.1`_
+ Python formatting issue + Python formatting issue
+ mkl-dnn work-around + mkl-dnn work-around
+ Event tracing improvements + Event tracing improvements
...@@ -103,8 +116,6 @@ https://github.com/NervanaSystems/ngraph/releases. ...@@ -103,8 +116,6 @@ https://github.com/NervanaSystems/ngraph/releases.
0.17 0.17
---- ----
**Download** `0.17.0-rc.1`_
+ Allow negative padding in more places + Allow negative padding in more places
+ Add code generation for some quantized ops + Add code generation for some quantized ops
+ Preliminary dynamic shape support + Preliminary dynamic shape support
...@@ -116,11 +127,6 @@ https://github.com/NervanaSystems/ngraph/releases. ...@@ -116,11 +127,6 @@ https://github.com/NervanaSystems/ngraph/releases.
0.16 0.16
---- ----
* **Download**: `0.16.0-rc.3`_
* **Download** `0.16.0-rc.2`_
* **Download** `0.16.0-rc.1`_
+ NodeInput and NodeOutput classes prepare for simplifications of Node + NodeInput and NodeOutput classes prepare for simplifications of Node
+ Test improvements + Test improvements
+ Additional quantization ops + Additional quantization ops
...@@ -128,11 +134,3 @@ https://github.com/NervanaSystems/ngraph/releases. ...@@ -128,11 +134,3 @@ https://github.com/NervanaSystems/ngraph/releases.
+ Fix memory leak + Fix memory leak
+ Concat optimization + Concat optimization
+ Doc updates + Doc updates
.. _0.20.0-rc.0: https://github.com/NervanaSystems/ngraph/releases/tag/v0.20.0-rc.0_
.. _0.19.0-rc.2: https://github.com/NervanaSystems/ngraph/releases/tag/v0.19.0-rc.2_
.. _0.18.1: https://github.com/NervanaSystems/ngraph/releases/tag/v0.18.1_
.. _0.17.0-rc.1: `https://github.com/NervanaSystems/ngraph/releases/tag/v0.17.0-rc.1
.. _0.16.0-rc.3: https://github.com/NervanaSystems/ngraph/releases/tag/v0.16.0-rc.3
.. _0.16.0-rc.2: https://github.com/NervanaSystems/ngraph/releases/tag/v0.16.0-rc.2
.. _0.16.0-rc.1: https://github.com/NervanaSystems/ngraph/releases/tag/v0.16.0-rc.1
...@@ -2,10 +2,10 @@ ...@@ -2,10 +2,10 @@
## Building nGraph Python Wheels ## Building nGraph Python Wheels
If you want to try a newer version of nGraph's Python API than is available from If you want to try a newer version of nGraph's Python API than is available
PyPI, you can build your own latest version from the source code. This from PyPI, you can build the latest version from source code. This process is
process is very similar to what is outlined in our [ngraph_build] instructions very similar to what is outlined in our [ngraph_build] instructions with two
with two important differences: important differences:
1. You must specify: `-DNGRAPH_PYTHON_BUILD_ENABLE=ON` and `-DNGRAPH_ONNX_IMPORT_ENABLE=ON` 1. You must specify: `-DNGRAPH_PYTHON_BUILD_ENABLE=ON` and `-DNGRAPH_ONNX_IMPORT_ENABLE=ON`
when running `cmake`. when running `cmake`.
...@@ -18,7 +18,7 @@ with two important differences: ...@@ -18,7 +18,7 @@ with two important differences:
After this procedure completes, the `ngraph/build/python/dist` directory should After this procedure completes, the `ngraph/build/python/dist` directory should
contain the Python packages of the version you cloned. For example, if you contain the Python packages of the version you cloned. For example, if you
checked out and built `0.21`, you may see something like: checked out and built `0.21` for Python 3.7, you might see something like:
$ ls python/dist/ $ ls python/dist/
ngraph-core-0.21.0rc0.tar.gz ngraph-core-0.21.0rc0.tar.gz
......
...@@ -18,8 +18,8 @@ boost compared to native implementations. ...@@ -18,8 +18,8 @@ boost compared to native implementations.
nGraph can be used directly with the [Python API][api_python] described here, or nGraph can be used directly with the [Python API][api_python] described here, or
with the [C++ API][api_cpp] described in the [core documentation]. Alternatively, with the [C++ API][api_cpp] described in the [core documentation]. Alternatively,
its performance benefits can be realized through a frontend such as its performance benefits can be realized through frontends such as
[TensorFlow][frontend_tf], [MXNet][frontend_mxnet], and [ONNX][frontend_onnx]. [TensorFlow][frontend_tf], [PaddlePaddle][paddle_paddle] and [ONNX][frontend_onnx].
You can also create your own custom framework to integrate directly with the You can also create your own custom framework to integrate directly with the
[nGraph Ops] for highly-targeted graph execution. [nGraph Ops] for highly-targeted graph execution.
...@@ -77,7 +77,7 @@ print('Result = ', result) ...@@ -77,7 +77,7 @@ print('Result = ', result)
[up to 45X]: https://ai.intel.com/ngraph-compiler-stack-beta-release/ [up to 45X]: https://ai.intel.com/ngraph-compiler-stack-beta-release/
[frontend_onnx]: https://pypi.org/project/ngraph-onnx/ [frontend_onnx]: https://pypi.org/project/ngraph-onnx/
[frontend_mxnet]: https://pypi.org/project/ngraph-mxnet/ [paddle_paddle]: https://ngraph.nervanasys.com/docs/latest/frameworks/paddle_integ.html
[frontend_tf]: https://pypi.org/project/ngraph-tensorflow-bridge/ [frontend_tf]: https://pypi.org/project/ngraph-tensorflow-bridge/
[ngraph_github]: https://github.com/NervanaSystems/ngraph "nGraph on GitHub" [ngraph_github]: https://github.com/NervanaSystems/ngraph "nGraph on GitHub"
[ngraph_building]: https://github.com/NervanaSystems/ngraph/blob/master/python/BUILDING.md "Building nGraph" [ngraph_building]: https://github.com/NervanaSystems/ngraph/blob/master/python/BUILDING.md "Building nGraph"
......
...@@ -370,7 +370,6 @@ set (SRC ...@@ -370,7 +370,6 @@ set (SRC
op/util/index_reduction.hpp op/util/index_reduction.hpp
op/util/logical_reduction.cpp op/util/logical_reduction.cpp
op/util/logical_reduction.hpp op/util/logical_reduction.hpp
op/util/reshape.hpp
op/util/rnn_cell_base.cpp op/util/rnn_cell_base.cpp
op/util/rnn_cell_base.hpp op/util/rnn_cell_base.hpp
op/util/unary_elementwise_arithmetic.cpp op/util/unary_elementwise_arithmetic.cpp
...@@ -458,6 +457,8 @@ set (SRC ...@@ -458,6 +457,8 @@ set (SRC
rank.hpp rank.hpp
runtime/aligned_buffer.cpp runtime/aligned_buffer.cpp
runtime/aligned_buffer.hpp runtime/aligned_buffer.hpp
runtime/allocator.cpp
runtime/allocator.hpp
runtime/backend.cpp runtime/backend.cpp
runtime/backend.hpp runtime/backend.hpp
runtime/backend_manager.cpp runtime/backend_manager.cpp
......
...@@ -46,7 +46,7 @@ static std::unique_ptr<DistributedInterface> s_distributed_interface; ...@@ -46,7 +46,7 @@ static std::unique_ptr<DistributedInterface> s_distributed_interface;
void ngraph::set_distributed_interface(std::unique_ptr<DistributedInterface> distributed_interface) void ngraph::set_distributed_interface(std::unique_ptr<DistributedInterface> distributed_interface)
{ {
NGRAPH_DEBUG << "Setting distributed interfsce to: " << distributed_interface->get_name(); NGRAPH_DEBUG << "Setting distributed interface to: " << distributed_interface->get_name();
s_distributed_interface = std::move(distributed_interface); s_distributed_interface = std::move(distributed_interface);
} }
......
...@@ -203,7 +203,8 @@ shared_ptr<Node> op::GroupConvolutionTranspose::copy_with_new_args(const NodeVec ...@@ -203,7 +203,8 @@ shared_ptr<Node> op::GroupConvolutionTranspose::copy_with_new_args(const NodeVec
get_padding_end(), get_padding_end(),
get_output_padding(), get_output_padding(),
get_groups(), get_groups(),
get_pad_type()); get_pad_type(),
get_output_shape());
} }
Shape op::GroupConvolutionTranspose::get_data_batch_shape() const Shape op::GroupConvolutionTranspose::get_data_batch_shape() const
......
//*****************************************************************************
// Copyright 2017-2019 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#pragma once
#include <cstddef>
#include <memory>
#include <vector>
#include "ngraph/builder/reshape.hpp"
#include "ngraph/node.hpp"
#include "ngraph/shape.hpp"
namespace ngraph
{
namespace op
{
namespace util
{
/// \brief Change shape of input tensor.
///
/// \param[in] node The node producing the tensor to be reshaped.
/// \param[in] shape The new shape for input tensor.
///
/// \return The node representing a Reshape operation.
///
std::shared_ptr<ngraph::Node> reshape(const std::shared_ptr<ngraph::Node>& node,
const Shape& shape)
{
return builder::reshape(node, shape);
}
/// \brief Permute axes according to specified axes_order parameter.
///
/// \param node The node which axes we want to permute.
/// \param axes_order The permutation of node tensor axes.
///
/// \return: New node with permuted axes.
std::shared_ptr<ngraph::Node> reorder_axes(const std::shared_ptr<ngraph::Node>& node,
std::vector<std::size_t> axes_order)
{
return builder::reorder_axes(node, axes_order);
}
/// \brief Return transposed tensor (with axes in reversed order).
///
/// \param node Input tensor we want to transpose
///
/// \return: New node with reversed dimensions.
std::shared_ptr<ngraph::Node> transpose(const std::shared_ptr<ngraph::Node>& node)
{
return builder::transpose(node);
}
/// \brief Flatten the input tensor into a 2D matrix.
///
/// \param node The tensor to be flattened.
/// \param axis The axis dividing shape.
///
/// \return The new node will be a 2D matrix representing the flattened input node.
std::shared_ptr<ngraph::Node> flatten(const std::shared_ptr<ngraph::Node>& node,
int axis)
{
return builder::flatten(node, axis);
}
} // namespace util
} // namespace op
} // namespace ngraph
...@@ -18,22 +18,34 @@ ...@@ -18,22 +18,34 @@
#include <memory> #include <memory>
#include "ngraph/runtime/aligned_buffer.hpp" #include "ngraph/runtime/aligned_buffer.hpp"
#include "ngraph/runtime/allocator.hpp"
#include "ngraph/util.hpp" #include "ngraph/util.hpp"
using namespace ngraph; using namespace ngraph;
using namespace std;
runtime::AlignedBuffer::AlignedBuffer() runtime::AlignedBuffer::AlignedBuffer()
: m_allocated_buffer(nullptr) : m_allocator(nullptr)
, m_allocated_buffer(nullptr)
, m_aligned_buffer(nullptr) , m_aligned_buffer(nullptr)
, m_byte_size(0) , m_byte_size(0)
{ {
} }
runtime::AlignedBuffer::AlignedBuffer(size_t byte_size, size_t alignment) runtime::AlignedBuffer::AlignedBuffer(size_t byte_size, size_t alignment, Allocator* allocator)
: m_allocator(allocator)
, m_byte_size(byte_size)
{ {
m_byte_size = std::max<size_t>(1, byte_size); m_byte_size = std::max<size_t>(1, byte_size);
size_t allocation_size = m_byte_size + alignment; size_t allocation_size = m_byte_size + alignment;
m_allocated_buffer = static_cast<char*>(ngraph_malloc(allocation_size)); if (allocator)
{
m_allocated_buffer = static_cast<char*>(m_allocator->malloc(allocation_size, alignment));
}
else
{
m_allocated_buffer = static_cast<char*>(malloc(allocation_size));
}
m_aligned_buffer = m_allocated_buffer; m_aligned_buffer = m_allocated_buffer;
size_t mod = size_t(m_aligned_buffer) % alignment; size_t mod = size_t(m_aligned_buffer) % alignment;
...@@ -44,10 +56,12 @@ runtime::AlignedBuffer::AlignedBuffer(size_t byte_size, size_t alignment) ...@@ -44,10 +56,12 @@ runtime::AlignedBuffer::AlignedBuffer(size_t byte_size, size_t alignment)
} }
runtime::AlignedBuffer::AlignedBuffer(AlignedBuffer&& other) runtime::AlignedBuffer::AlignedBuffer(AlignedBuffer&& other)
: m_allocated_buffer(other.m_allocated_buffer) : m_allocator(other.m_allocator)
, m_allocated_buffer(other.m_allocated_buffer)
, m_aligned_buffer(other.m_aligned_buffer) , m_aligned_buffer(other.m_aligned_buffer)
, m_byte_size(other.m_byte_size) , m_byte_size(other.m_byte_size)
{ {
other.m_allocator = nullptr;
other.m_allocated_buffer = nullptr; other.m_allocated_buffer = nullptr;
other.m_aligned_buffer = nullptr; other.m_aligned_buffer = nullptr;
other.m_byte_size = 0; other.m_byte_size = 0;
...@@ -57,7 +71,14 @@ runtime::AlignedBuffer::~AlignedBuffer() ...@@ -57,7 +71,14 @@ runtime::AlignedBuffer::~AlignedBuffer()
{ {
if (m_allocated_buffer != nullptr) if (m_allocated_buffer != nullptr)
{ {
ngraph_free(m_allocated_buffer); if (m_allocator)
{
m_allocator->free(m_allocated_buffer);
}
else
{
free(m_allocated_buffer);
}
} }
} }
...@@ -65,9 +86,11 @@ runtime::AlignedBuffer& runtime::AlignedBuffer::operator=(AlignedBuffer&& other) ...@@ -65,9 +86,11 @@ runtime::AlignedBuffer& runtime::AlignedBuffer::operator=(AlignedBuffer&& other)
{ {
if (this != &other) if (this != &other)
{ {
m_allocator = other.m_allocator;
m_allocated_buffer = other.m_allocated_buffer; m_allocated_buffer = other.m_allocated_buffer;
m_aligned_buffer = other.m_aligned_buffer; m_aligned_buffer = other.m_aligned_buffer;
m_byte_size = other.m_byte_size; m_byte_size = other.m_byte_size;
other.m_allocator = nullptr;
other.m_allocated_buffer = nullptr; other.m_allocated_buffer = nullptr;
other.m_aligned_buffer = nullptr; other.m_aligned_buffer = nullptr;
other.m_byte_size = 0; other.m_byte_size = 0;
......
...@@ -18,6 +18,8 @@ ...@@ -18,6 +18,8 @@
#include <cstddef> #include <cstddef>
#include "ngraph/runtime/allocator.hpp"
namespace ngraph namespace ngraph
{ {
namespace runtime namespace runtime
...@@ -32,7 +34,11 @@ namespace ngraph ...@@ -32,7 +34,11 @@ namespace ngraph
class ngraph::runtime::AlignedBuffer class ngraph::runtime::AlignedBuffer
{ {
public: public:
AlignedBuffer(size_t byte_size, size_t alignment); // Allocator objects and the allocation interfaces are owned by the
// creators of AlignedBuffers. They need to ensure that the lifetime of
// allocator exceeds the lifetime of this AlignedBuffer.
AlignedBuffer(size_t byte_size, size_t alignment, Allocator* allocator = nullptr);
AlignedBuffer(); AlignedBuffer();
~AlignedBuffer(); ~AlignedBuffer();
...@@ -46,6 +52,7 @@ private: ...@@ -46,6 +52,7 @@ private:
AlignedBuffer(const AlignedBuffer&) = delete; AlignedBuffer(const AlignedBuffer&) = delete;
AlignedBuffer& operator=(const AlignedBuffer&) = delete; AlignedBuffer& operator=(const AlignedBuffer&) = delete;
Allocator* m_allocator;
char* m_allocated_buffer; char* m_allocated_buffer;
char* m_aligned_buffer; char* m_aligned_buffer;
size_t m_byte_size; size_t m_byte_size;
......
//*****************************************************************************
// Copyright 2017-2019 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#include "ngraph/runtime/allocator.hpp"
ngraph::runtime::Allocator::~Allocator()
{
}
class ngraph::runtime::DefaultAllocator : public ngraph::runtime::Allocator
{
public:
void* malloc(size_t size, size_t alignment)
{
// If allocation succeeds, returns a pointer to the lowest (first) byte in the
// allocated memory block that is suitably aligned for any scalar type.
// TODO(pruthvi): replace std::malloc with custom aligned_alloc implementation
// which is portable and work on all alignment requirement.
void* ptr = std::malloc(size);
// check for exception
if (!ptr)
{
throw ngraph::ngraph_error("malloc failed to allocate memory of size " +
std::to_string(size));
}
return ptr;
}
void free(void* ptr)
{
if (ptr)
{
std::free(ptr);
}
}
};
std::unique_ptr<ngraph::runtime::Allocator> ngraph::runtime::create_default_allocator()
{
return std::unique_ptr<DefaultAllocator>(new DefaultAllocator());
}
//*****************************************************************************
// Copyright 2017-2019 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#pragma once
#include <cstddef>
#include <cstdint>
#include <cstdlib>
#include "ngraph/except.hpp"
#include "ngraph/util.hpp"
namespace ngraph
{
namespace runtime
{
class Allocator;
class DefaultAllocator;
/// \brief Create a default allocator that calls into system
/// allocation libraries
std::unique_ptr<Allocator> create_default_allocator();
}
}
/// \brief Abstract class for the allocator
class ngraph::runtime::Allocator
{
public:
virtual ~Allocator() = 0;
/// \brief allocates memory with the given size and alignment requirement
/// \param size exact size of bytes to allocate
/// \param alignment specifies the alignment. Must be a valid alignment supported by the implementation.
virtual void* malloc(size_t size, size_t alignment) = 0;
/// \brief deallocates the memory pointed by ptr
/// \param ptr pointer to the aligned memory to be released
virtual void free(void* ptr) = 0;
};
...@@ -93,6 +93,13 @@ void runtime::Backend::remove_compiled_function(std::shared_ptr<Executable> exec ...@@ -93,6 +93,13 @@ void runtime::Backend::remove_compiled_function(std::shared_ptr<Executable> exec
{ {
} }
bool runtime::Backend::is_device_memory(void* ptr)
{
// override this method for each supported backend to determine if the passed pointer is in
// device pinned memory or not
return false;
}
std::shared_ptr<runtime::Executable> runtime::Backend::load(istream& input_stream) std::shared_ptr<runtime::Executable> runtime::Backend::load(istream& input_stream)
{ {
throw runtime_error("load opertion unimplemented."); throw runtime_error("load opertion unimplemented.");
......
...@@ -21,10 +21,12 @@ ...@@ -21,10 +21,12 @@
#include "ngraph/function.hpp" #include "ngraph/function.hpp"
#include "ngraph/pass/pass_config.hpp" #include "ngraph/pass/pass_config.hpp"
#include "ngraph/runtime/allocator.hpp"
#include "ngraph/runtime/executable.hpp" #include "ngraph/runtime/executable.hpp"
#include "ngraph/runtime/performance_counter.hpp" #include "ngraph/runtime/performance_counter.hpp"
#include "ngraph/shape.hpp" #include "ngraph/shape.hpp"
#include "ngraph/type/element_type.hpp" #include "ngraph/type/element_type.hpp"
#include "ngraph/util.hpp"
namespace ngraph namespace ngraph
{ {
...@@ -142,6 +144,23 @@ public: ...@@ -142,6 +144,23 @@ public:
/// \returns a shared pointer to the op if found, else nullptr /// \returns a shared pointer to the op if found, else nullptr
virtual std::shared_ptr<ngraph::Node> get_backend_op(const std::string& op_name, ...); virtual std::shared_ptr<ngraph::Node> get_backend_op(const std::string& op_name, ...);
/// \brief Returns memory allocator used by backend for host allocations
virtual Allocator* get_host_memory_allocator() { return nullptr; }
/// \brief Set the host memory allocator to be used by the backend
/// \param allocator is pointer to host memory allocator object
virtual void set_host_memory_allocator(std::unique_ptr<Allocator> allocator) {}
/// \brief Returns memory allocator used by backend for device allocations
virtual Allocator* get_device_memory_allocator()
{
// override this method from each supported backend to return
// its own device memory allocator
return nullptr;
}
/// \brief method for each supported backend to determine if the passed pointer is in device pinned memory or not
/// \param ptr pointer to the memory to determine if its in device memory or not
virtual bool is_device_memory(void* ptr);
/// \brief Allows sending backend specific configuration. The map contains key, value pairs /// \brief Allows sending backend specific configuration. The map contains key, value pairs
/// specific to a particluar backend. The definition of these key, value pairs is /// specific to a particluar backend. The definition of these key, value pairs is
/// defined by each backend. /// defined by each backend.
......
...@@ -63,11 +63,17 @@ namespace ...@@ -63,11 +63,17 @@ namespace
} s_cpu_static_init; } s_cpu_static_init;
} }
runtime::cpu::CPU_Backend::~CPU_Backend()
{
m_exec_map.clear();
}
shared_ptr<runtime::cpu::CPU_CallFrame> runtime::cpu::CPU_Backend::make_call_frame( shared_ptr<runtime::cpu::CPU_CallFrame> runtime::cpu::CPU_Backend::make_call_frame(
const shared_ptr<runtime::cpu::CPU_ExternalFunction>& external_function, const shared_ptr<runtime::cpu::CPU_ExternalFunction>& external_function,
ngraph::pass::PassConfig& pass_config) ngraph::pass::PassConfig& pass_config,
Allocator* allocator)
{ {
return external_function->make_call_frame(pass_config); return external_function->make_call_frame(pass_config, allocator);
} }
shared_ptr<runtime::Tensor> shared_ptr<runtime::Tensor>
...@@ -114,7 +120,8 @@ shared_ptr<runtime::Executable> ...@@ -114,7 +120,8 @@ shared_ptr<runtime::Executable>
return rc; return rc;
} }
} }
rc = make_shared<CPU_Executable>(func, pass_config, performance_counters_enabled); rc = make_shared<CPU_Executable>(
func, pass_config, get_host_memory_allocator(), performance_counters_enabled);
{ {
std::lock_guard<std::mutex> guard(m_exec_map_mutex); std::lock_guard<std::mutex> guard(m_exec_map_mutex);
m_exec_map.insert({func, rc}); m_exec_map.insert({func, rc});
...@@ -124,6 +131,7 @@ shared_ptr<runtime::Executable> ...@@ -124,6 +131,7 @@ shared_ptr<runtime::Executable>
runtime::cpu::CPU_Executable::CPU_Executable(shared_ptr<Function> func, runtime::cpu::CPU_Executable::CPU_Executable(shared_ptr<Function> func,
ngraph::pass::PassConfig& pass_config, ngraph::pass::PassConfig& pass_config,
Allocator* allocator,
bool performance_counters_enabled) bool performance_counters_enabled)
{ {
FunctionInstance& instance = m_function_instance; FunctionInstance& instance = m_function_instance;
...@@ -131,7 +139,7 @@ runtime::cpu::CPU_Executable::CPU_Executable(shared_ptr<Function> func, ...@@ -131,7 +139,7 @@ runtime::cpu::CPU_Executable::CPU_Executable(shared_ptr<Function> func,
{ {
instance.m_external_function = make_shared<CPU_ExternalFunction>(func); instance.m_external_function = make_shared<CPU_ExternalFunction>(func);
instance.m_external_function->m_emit_timing = performance_counters_enabled; instance.m_external_function->m_emit_timing = performance_counters_enabled;
auto cf = instance.m_external_function->make_call_frame(pass_config); auto cf = instance.m_external_function->make_call_frame(pass_config, allocator);
instance.m_call_frame = dynamic_pointer_cast<CPU_CallFrame>(cf); instance.m_call_frame = dynamic_pointer_cast<CPU_CallFrame>(cf);
} }
set_parameters_and_results(*func); set_parameters_and_results(*func);
...@@ -173,6 +181,28 @@ void runtime::cpu::CPU_Backend::remove_compiled_function(shared_ptr<Executable> ...@@ -173,6 +181,28 @@ void runtime::cpu::CPU_Backend::remove_compiled_function(shared_ptr<Executable>
} }
} }
runtime::Allocator* runtime::cpu::CPU_Backend::get_host_memory_allocator()
{
if (!m_allocator)
{
m_allocator = create_default_allocator();
}
return m_allocator.get();
}
void runtime::cpu::CPU_Backend::set_host_memory_allocator(
std::unique_ptr<runtime::Allocator> allocator)
{
if (m_allocator)
{
// Resources allocated with the existing allocator might still be around and expect it
// to be available for freeing. We cannot switch to the new allocator
throw ngraph_error(
"Allocator already exists. Changing allocators mid-execution is not permitted.");
}
m_allocator = std::move(allocator);
}
vector<runtime::PerformanceCounter> runtime::cpu::CPU_Executable::get_performance_data() const vector<runtime::PerformanceCounter> runtime::cpu::CPU_Executable::get_performance_data() const
{ {
vector<runtime::PerformanceCounter> rc; vector<runtime::PerformanceCounter> rc;
...@@ -190,6 +220,7 @@ bool runtime::cpu::CPU_Backend::is_supported(const Node& op) const ...@@ -190,6 +220,7 @@ bool runtime::cpu::CPU_Backend::is_supported(const Node& op) const
{ {
return true; return true;
} }
bool runtime::cpu::CPU_Backend::is_supported_property(const Property prop) const bool runtime::cpu::CPU_Backend::is_supported_property(const Property prop) const
{ {
if (prop == Property::memory_attach) if (prop == Property::memory_attach)
......
...@@ -22,6 +22,7 @@ ...@@ -22,6 +22,7 @@
#include "cpu_backend_visibility.h" #include "cpu_backend_visibility.h"
#include "ngraph/pass/pass_config.hpp" #include "ngraph/pass/pass_config.hpp"
#include "ngraph/runtime/allocator.hpp"
#include "ngraph/runtime/backend.hpp" #include "ngraph/runtime/backend.hpp"
namespace ngraph namespace ngraph
...@@ -36,9 +37,12 @@ namespace ngraph ...@@ -36,9 +37,12 @@ namespace ngraph
class CPU_BACKEND_API CPU_Backend : public runtime::Backend class CPU_BACKEND_API CPU_Backend : public runtime::Backend
{ {
public: public:
~CPU_Backend() override;
std::shared_ptr<CPU_CallFrame> std::shared_ptr<CPU_CallFrame>
make_call_frame(const std::shared_ptr<CPU_ExternalFunction>& external_function, make_call_frame(const std::shared_ptr<CPU_ExternalFunction>& external_function,
ngraph::pass::PassConfig& pass_config); ngraph::pass::PassConfig& pass_config,
Allocator* allocator);
std::shared_ptr<ngraph::runtime::Tensor> std::shared_ptr<ngraph::runtime::Tensor>
create_tensor(const ngraph::element::Type& element_type, create_tensor(const ngraph::element::Type& element_type,
...@@ -60,6 +64,9 @@ namespace ngraph ...@@ -60,6 +64,9 @@ namespace ngraph
void remove_compiled_function(std::shared_ptr<Executable> exec) override; void remove_compiled_function(std::shared_ptr<Executable> exec) override;
Allocator* get_host_memory_allocator() override;
void set_host_memory_allocator(std::unique_ptr<Allocator> allocator) override;
bool is_supported(const Node& node) const override; bool is_supported(const Node& node) const override;
bool is_supported_property(const Property prop) const override; bool is_supported_property(const Property prop) const override;
...@@ -69,6 +76,7 @@ namespace ngraph ...@@ -69,6 +76,7 @@ namespace ngraph
std::mutex m_exec_map_mutex; std::mutex m_exec_map_mutex;
std::unordered_map<std::shared_ptr<Function>, std::shared_ptr<Executable>> std::unordered_map<std::shared_ptr<Function>, std::shared_ptr<Executable>>
m_exec_map; m_exec_map;
std::unique_ptr<Allocator> m_allocator;
}; };
class CPU_BACKEND_API CPU_Executable : public runtime::Executable class CPU_BACKEND_API CPU_Executable : public runtime::Executable
...@@ -76,6 +84,7 @@ namespace ngraph ...@@ -76,6 +84,7 @@ namespace ngraph
public: public:
CPU_Executable(std::shared_ptr<Function> func, CPU_Executable(std::shared_ptr<Function> func,
ngraph::pass::PassConfig& pass_config, ngraph::pass::PassConfig& pass_config,
Allocator* allocator,
bool performance_counters_enabled); bool performance_counters_enabled);
bool call(const std::vector<std::shared_ptr<runtime::Tensor>>& outputs, bool call(const std::vector<std::shared_ptr<runtime::Tensor>>& outputs,
const std::vector<std::shared_ptr<runtime::Tensor>>& inputs) override; const std::vector<std::shared_ptr<runtime::Tensor>>& inputs) override;
......
...@@ -30,7 +30,8 @@ using namespace ngraph; ...@@ -30,7 +30,8 @@ using namespace ngraph;
runtime::cpu::CPU_CallFrame::CPU_CallFrame(std::shared_ptr<CPU_ExternalFunction> external_function, runtime::cpu::CPU_CallFrame::CPU_CallFrame(std::shared_ptr<CPU_ExternalFunction> external_function,
InitContextFuncCG compiled_init_ctx_func, InitContextFuncCG compiled_init_ctx_func,
DestroyContextFuncCG compiled_destroy_ctx_func, DestroyContextFuncCG compiled_destroy_ctx_func,
EntryPoint compiled_function) EntryPoint compiled_function,
runtime::Allocator* allocator)
: m_external_function(external_function) : m_external_function(external_function)
, m_compiled_init_ctx_func(compiled_init_ctx_func) , m_compiled_init_ctx_func(compiled_init_ctx_func)
, m_compiled_destroy_ctx_func(compiled_destroy_ctx_func) , m_compiled_destroy_ctx_func(compiled_destroy_ctx_func)
...@@ -47,7 +48,7 @@ runtime::cpu::CPU_CallFrame::CPU_CallFrame(std::shared_ptr<CPU_ExternalFunction> ...@@ -47,7 +48,7 @@ runtime::cpu::CPU_CallFrame::CPU_CallFrame(std::shared_ptr<CPU_ExternalFunction>
std::to_string(std::thread::hardware_concurrency()) + "]"); std::to_string(std::thread::hardware_concurrency()) + "]");
} }
setup_runtime_context(); setup_runtime_context(allocator);
if (!m_external_function->is_direct_execution()) if (!m_external_function->is_direct_execution())
{ {
// Invoke codegen runtime context initialization function. // Invoke codegen runtime context initialization function.
...@@ -178,7 +179,7 @@ void runtime::cpu::CPU_CallFrame::propagate_layouts( ...@@ -178,7 +179,7 @@ void runtime::cpu::CPU_CallFrame::propagate_layouts(
} }
} }
void runtime::cpu::CPU_CallFrame::setup_runtime_context() void runtime::cpu::CPU_CallFrame::setup_runtime_context(Allocator* allocator)
{ {
for (auto i = 0; i < m_num_ctx; i++) for (auto i = 0; i < m_num_ctx; i++)
{ {
...@@ -202,7 +203,7 @@ void runtime::cpu::CPU_CallFrame::setup_runtime_context() ...@@ -202,7 +203,7 @@ void runtime::cpu::CPU_CallFrame::setup_runtime_context()
size_t alignment = runtime::cpu::CPU_ExternalFunction::s_memory_pool_alignment; size_t alignment = runtime::cpu::CPU_ExternalFunction::s_memory_pool_alignment;
for (auto buffer_size : m_external_function->get_memory_buffer_sizes()) for (auto buffer_size : m_external_function->get_memory_buffer_sizes())
{ {
auto buffer = new AlignedBuffer(buffer_size, alignment); auto buffer = new AlignedBuffer(buffer_size, alignment, allocator);
ctx->memory_buffers.push_back(buffer); ctx->memory_buffers.push_back(buffer);
} }
const auto& mkldnn_emitter = m_external_function->get_mkldnn_emitter(); const auto& mkldnn_emitter = m_external_function->get_mkldnn_emitter();
......
...@@ -24,6 +24,7 @@ ...@@ -24,6 +24,7 @@
#include <vector> #include <vector>
#include "ngraph/function.hpp" #include "ngraph/function.hpp"
#include "ngraph/runtime/allocator.hpp"
#include "ngraph/runtime/cpu/cpu_layout_descriptor.hpp" #include "ngraph/runtime/cpu/cpu_layout_descriptor.hpp"
#include "ngraph/runtime/cpu/cpu_runtime_context.hpp" #include "ngraph/runtime/cpu/cpu_runtime_context.hpp"
#include "ngraph/runtime/tensor.hpp" #include "ngraph/runtime/tensor.hpp"
...@@ -59,7 +60,8 @@ namespace ngraph ...@@ -59,7 +60,8 @@ namespace ngraph
CPU_CallFrame(std::shared_ptr<CPU_ExternalFunction> external_function, CPU_CallFrame(std::shared_ptr<CPU_ExternalFunction> external_function,
InitContextFuncCG compiled_init_ctx_func, InitContextFuncCG compiled_init_ctx_func,
DestroyContextFuncCG compiled_destroy_ctx_func, DestroyContextFuncCG compiled_destroy_ctx_func,
EntryPoint compiled_function); EntryPoint compiled_function,
runtime::Allocator* allocator);
~CPU_CallFrame(); ~CPU_CallFrame();
/// \brief Invoke the function with values matching the signature of the function. /// \brief Invoke the function with values matching the signature of the function.
...@@ -71,7 +73,7 @@ namespace ngraph ...@@ -71,7 +73,7 @@ namespace ngraph
void propagate_layouts(const std::vector<std::shared_ptr<runtime::Tensor>>& tvs, void propagate_layouts(const std::vector<std::shared_ptr<runtime::Tensor>>& tvs,
const LayoutDescriptorPtrs& layouts) const; const LayoutDescriptorPtrs& layouts) const;
void setup_runtime_context(); void setup_runtime_context(runtime::Allocator* allocator);
void setup_cg_runtime_context(); void setup_cg_runtime_context();
void cleanup_runtime_context(); void cleanup_runtime_context();
......
...@@ -1825,7 +1825,8 @@ bool runtime::cpu::CPU_ExternalFunction::is_codegen(const ngraph::pass::PassConf ...@@ -1825,7 +1825,8 @@ bool runtime::cpu::CPU_ExternalFunction::is_codegen(const ngraph::pass::PassConf
} }
shared_ptr<ngraph::runtime::cpu::CPU_CallFrame> shared_ptr<ngraph::runtime::cpu::CPU_CallFrame>
runtime::cpu::CPU_ExternalFunction::make_call_frame(ngraph::pass::PassConfig& pass_config) runtime::cpu::CPU_ExternalFunction::make_call_frame(ngraph::pass::PassConfig& pass_config,
Allocator* allocator)
{ {
#if defined(NGRAPH_DEX_ONLY) #if defined(NGRAPH_DEX_ONLY)
if (is_codegen(pass_config)) if (is_codegen(pass_config))
...@@ -1853,7 +1854,8 @@ shared_ptr<ngraph::runtime::cpu::CPU_CallFrame> ...@@ -1853,7 +1854,8 @@ shared_ptr<ngraph::runtime::cpu::CPU_CallFrame>
return make_shared<ngraph::runtime::cpu::CPU_CallFrame>(shared_from_this(), return make_shared<ngraph::runtime::cpu::CPU_CallFrame>(shared_from_this(),
m_compiled_init_ctx_func, m_compiled_init_ctx_func,
m_compiled_destroy_ctx_func, m_compiled_destroy_ctx_func,
m_compiled_function); m_compiled_function,
allocator);
} }
const runtime::cpu::LayoutDescriptorPtrs& const runtime::cpu::LayoutDescriptorPtrs&
......
...@@ -100,8 +100,7 @@ namespace ngraph ...@@ -100,8 +100,7 @@ namespace ngraph
bool release_function = true); bool release_function = true);
~CPU_ExternalFunction(); ~CPU_ExternalFunction();
std::shared_ptr<ngraph::runtime::cpu::CPU_CallFrame> std::shared_ptr<ngraph::runtime::cpu::CPU_CallFrame>
make_call_frame(ngraph::pass::PassConfig& pass_config); make_call_frame(ngraph::pass::PassConfig& pass_config, Allocator* allocator);
const LayoutDescriptorPtrs& get_parameter_layout_descriptors(); const LayoutDescriptorPtrs& get_parameter_layout_descriptors();
const LayoutDescriptorPtrs& get_result_layout_descriptors(); const LayoutDescriptorPtrs& get_result_layout_descriptors();
const std::vector<size_t>& get_memory_buffer_sizes() const const std::vector<size_t>& get_memory_buffer_sizes() const
......
...@@ -37,7 +37,6 @@ namespace ngraph ...@@ -37,7 +37,6 @@ namespace ngraph
{ {
class AlignedBuffer; class AlignedBuffer;
} }
class State; class State;
} }
......
ir_version: 3
producer_name: "backend-test"
graph {
node {
input: "X"
input: "W"
output: "Y"
op_type: "ConvTranspose"
attribute {
name: "output_shape"
ints: 10
ints: 8
type: INTS
}
attribute {
name: "strides"
ints: 3
ints: 2
type: INTS
}
}
name: "test_convtranspose_output_shape"
input {
name: "X"
type {
tensor_type {
elem_type: 1
shape {
dim {
dim_value: 1
}
dim {
dim_value: 1
}
dim {
dim_value: 3
}
dim {
dim_value: 3
}
}
}
}
}
input {
name: "W"
type {
tensor_type {
elem_type: 1
shape {
dim {
dim_value: 1
}
dim {
dim_value: 2
}
dim {
dim_value: 3
}
dim {
dim_value: 3
}
}
}
}
}
output {
name: "Y"
type {
tensor_type {
elem_type: 1
shape {
dim {
dim_value: 1
}
dim {
dim_value: 2
}
dim {
dim_value: 10
}
dim {
dim_value: 8
}
}
}
}
}
}
opset_import {
version: 9
}
...@@ -30,6 +30,7 @@ ...@@ -30,6 +30,7 @@
#include "util/all_close.hpp" #include "util/all_close.hpp"
#include "util/all_close_f.hpp" #include "util/all_close_f.hpp"
#include "util/ndarray.hpp" #include "util/ndarray.hpp"
#include "util/test_case.hpp"
#include "util/test_control.hpp" #include "util/test_control.hpp"
#include "util/test_tools.hpp" #include "util/test_tools.hpp"
...@@ -409,3 +410,19 @@ NGRAPH_TEST(onnx_${BACKEND_NAME}, model_global_lp_pool_p3) ...@@ -409,3 +410,19 @@ NGRAPH_TEST(onnx_${BACKEND_NAME}, model_global_lp_pool_p3)
EXPECT_TRUE(test::all_close_f(expected_outputs.front(), outputs.front())); EXPECT_TRUE(test::all_close_f(expected_outputs.front(), outputs.front()));
} }
NGRAPH_TEST(onnx_${BACKEND_NAME}, model_convtranspose_output_shape)
{
auto conv_transpose_fn = onnx_import::import_onnx_model(
file_util::path_join(SERIALIZED_ZOO, "onnx/convtranspose_output_shape.prototxt"));
auto test_case = ngraph::test::NgraphTestCase(conv_transpose_fn, "${BACKEND_NAME}");
test_case.add_input_from_file<float>(TEST_FILES, "onnx/convtranspose_output_shape/x.bin");
test_case.add_input_from_file<float>(TEST_FILES, "onnx/convtranspose_output_shape/w.bin");
test_case.add_expected_output_from_file<float>(
{1, 2, 10, 8}, TEST_FILES, "onnx/convtranspose_output_shape/y.bin");
test_case.dump_results();
test_case.run();
}
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment