Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
N
ngraph
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
ngraph
Commits
46e0dea7
Commit
46e0dea7
authored
Feb 23, 2018
by
Jayaram Bobba
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Enable optimal layouts on MKLDNN convolution backprop ops
parent
d0f8dff2
Hide whitespace changes
Inline
Side-by-side
Showing
7 changed files
with
452 additions
and
148 deletions
+452
-148
cpu_emitter.cpp
src/ngraph/runtime/cpu/cpu_emitter.cpp
+55
-48
cpu_tensor_view.cpp
src/ngraph/runtime/cpu/cpu_tensor_view.cpp
+3
-2
mkldnn_utils.cpp
src/ngraph/runtime/cpu/mkldnn_utils.cpp
+44
-3
mkldnn_utils.hpp
src/ngraph/runtime/cpu/mkldnn_utils.hpp
+6
-0
cpu_assignment.cpp
src/ngraph/runtime/cpu/pass/cpu_assignment.cpp
+58
-0
cpu_layout.cpp
src/ngraph/runtime/cpu/pass/cpu_layout.cpp
+279
-95
cpu_layout.hpp
src/ngraph/runtime/cpu/pass/cpu_layout.hpp
+7
-0
No files found.
src/ngraph/runtime/cpu/cpu_emitter.cpp
View file @
46e0dea7
...
@@ -2001,11 +2001,7 @@ namespace ngraph
...
@@ -2001,11 +2001,7 @@ namespace ngraph
auto
arg1_shape
=
args
[
1
].
get_shape
();
auto
arg1_shape
=
args
[
1
].
get_shape
();
auto
result_shape
=
out
[
0
].
get_shape
();
auto
result_shape
=
out
[
0
].
get_shape
();
auto
op_annotations
=
if
(
runtime
::
cpu
::
mkldnn_utils
::
use_mkldnn_kernel
(
node
))
static_cast
<
const
ngraph
::
op
::
Op
*>
(
node
)
->
get_op_annotations
();
if
(
op_annotations
&&
static_pointer_cast
<
ngraph
::
runtime
::
cpu
::
CPUOpAnnotations
>
(
op_annotations
)
->
is_mkldnn_op
())
{
{
// For dilation, MKLDNN wants to know how many elements to insert between, not how far
// For dilation, MKLDNN wants to know how many elements to insert between, not how far
// apart to space the elements like nGraph. So we have to subtract 1 from each pos.
// apart to space the elements like nGraph. So we have to subtract 1 from each pos.
...
@@ -2014,22 +2010,13 @@ namespace ngraph
...
@@ -2014,22 +2010,13 @@ namespace ngraph
{
{
window_dilation_strides_adjusted
.
push_back
(
s
-
1
);
window_dilation_strides_adjusted
.
push_back
(
s
-
1
);
}
}
auto
input_tvl
=
node
->
get_inputs
()[
0
]
.
get_output
()
auto
input_format
=
.
get_tensor_view
()
runtime
::
cpu
::
mkldnn_utils
::
get_input_mkldnn_format
(
node
,
0
);
->
get_tensor_view_layout
();
auto
weights_tvl
=
node
->
get_inputs
()[
1
]
.
get_output
()
.
get_tensor_view
()
->
get_tensor_view_layout
();
auto
output_tvl
=
node
->
get_output_tensor_view
(
0
)
->
get_tensor_view_layout
();
auto
input_format
=
dynamic_cast
<
runtime
::
cpu
::
LayoutDescriptor
&>
(
*
input_tvl
)
.
get_mkldnn_format
();
auto
weights_format
=
auto
weights_format
=
dynamic_cast
<
runtime
::
cpu
::
LayoutDescriptor
&>
(
*
weights_tvl
)
runtime
::
cpu
::
mkldnn_utils
::
get_input_mkldnn_format
(
node
,
1
);
.
get_mkldnn_format
();
auto
output_format
=
auto
output_format
=
dynamic_cast
<
runtime
::
cpu
::
LayoutDescriptor
&>
(
*
output_tvl
)
runtime
::
cpu
::
mkldnn_utils
::
get_output_mkldnn_format
(
node
,
0
);
.
get_mkldnn_format
();
auto
&
mkldnn_emitter
=
external_function
->
get_mkldnn_emitter
();
auto
&
mkldnn_emitter
=
external_function
->
get_mkldnn_emitter
();
auto
input_data_desc
=
auto
input_data_desc
=
...
@@ -2091,17 +2078,8 @@ namespace ngraph
...
@@ -2091,17 +2078,8 @@ namespace ngraph
auto
arg0_shape
=
args
[
0
].
get_shape
();
auto
arg0_shape
=
args
[
0
].
get_shape
();
auto
arg1_shape
=
args
[
1
].
get_shape
();
auto
arg1_shape
=
args
[
1
].
get_shape
();
auto
result_shape
=
out
[
0
].
get_shape
();
auto
result_shape
=
out
[
0
].
get_shape
();
auto
arg0_rank
=
arg0_shape
.
size
();
auto
arg1_rank
=
arg1_shape
.
size
();
bool
data_dilated
=
false
;
for
(
size_t
s
:
convolution
->
get_data_dilation_strides_forward
())
{
data_dilated
=
data_dilated
||
(
s
!=
1
);
}
if
(
!
data_dilated
&&
arg0_rank
==
4
&&
arg1_rank
==
4
&&
if
(
runtime
::
cpu
::
mkldnn_utils
::
use_mkldnn_kernel
(
node
))
args
[
0
].
get_element_type
()
==
element
::
f32
)
{
{
const
string
&
elem_type
=
const
string
&
elem_type
=
runtime
::
cpu
::
mkldnn_utils
::
get_mkldnn_data_type_string
(
runtime
::
cpu
::
mkldnn_utils
::
get_mkldnn_data_type_string
(
...
@@ -2112,12 +2090,19 @@ namespace ngraph
...
@@ -2112,12 +2090,19 @@ namespace ngraph
{
{
window_dilation_strides_adjusted
.
push_back
(
s
-
1
);
window_dilation_strides_adjusted
.
push_back
(
s
-
1
);
}
}
auto
data_format
=
runtime
::
cpu
::
mkldnn_utils
::
get_input_mkldnn_format
(
node
,
0
);
auto
delta_format
=
runtime
::
cpu
::
mkldnn_utils
::
get_input_mkldnn_format
(
node
,
1
);
auto
result_format
=
runtime
::
cpu
::
mkldnn_utils
::
get_output_mkldnn_format
(
node
,
0
);
auto
emit_memory_desc
=
[
&
writer
](
const
std
::
string
&
var
,
auto
emit_memory_desc
=
[
&
writer
](
const
std
::
string
&
var
,
const
std
::
string
&
shape
,
const
std
::
string
&
shape
,
const
std
::
string
&
type
,
const
std
::
string
&
type
,
const
std
::
string
&
layout
)
{
const
std
::
string
&
layout
)
{
writer
<<
"memory::desc "
<<
var
<<
" = memory::desc({"
<<
shape
<<
"}, "
writer
<<
"memory::desc "
<<
var
<<
" = memory::desc({"
<<
shape
<<
"}, "
<<
type
<<
",
memory::format::
"
<<
layout
<<
");
\n
"
;
<<
type
<<
", "
<<
layout
<<
");
\n
"
;
};
};
auto
emit_memory
=
[
&
writer
](
auto
emit_memory
=
[
&
writer
](
...
@@ -2135,9 +2120,21 @@ namespace ngraph
...
@@ -2135,9 +2120,21 @@ namespace ngraph
writer
<<
"try
\n
"
;
writer
<<
"try
\n
"
;
writer
.
block_begin
();
writer
.
block_begin
();
writer
<<
"engine cpu_engine = engine(engine::cpu, 0);
\n
"
;
writer
<<
"engine cpu_engine = engine(engine::cpu, 0);
\n
"
;
emit_memory_desc
(
"data_desc"
,
join
(
arg0_shape
),
elem_type
,
"nchw"
);
emit_memory_desc
(
emit_memory_desc
(
"delta_desc"
,
join
(
arg1_shape
),
elem_type
,
"nchw"
);
"data_desc"
,
emit_memory_desc
(
"result_desc"
,
join
(
result_shape
),
elem_type
,
"oihw"
);
join
(
arg0_shape
),
elem_type
,
runtime
::
cpu
::
mkldnn_utils
::
get_mkldnn_format_string
(
data_format
));
emit_memory_desc
(
"delta_desc"
,
join
(
arg1_shape
),
elem_type
,
runtime
::
cpu
::
mkldnn_utils
::
get_mkldnn_format_string
(
delta_format
));
emit_memory_desc
(
"result_desc"
,
join
(
result_shape
),
elem_type
,
runtime
::
cpu
::
mkldnn_utils
::
get_mkldnn_format_string
(
result_format
));
emit_memory
(
"data"
,
"data_desc"
,
args
[
0
].
get_name
());
emit_memory
(
"data"
,
"data_desc"
,
args
[
0
].
get_name
());
emit_memory
(
"delta"
,
"delta_desc"
,
args
[
1
].
get_name
());
emit_memory
(
"delta"
,
"delta_desc"
,
args
[
1
].
get_name
());
emit_memory
(
"result"
,
"result_desc"
,
out
[
0
].
get_name
());
emit_memory
(
"result"
,
"result_desc"
,
out
[
0
].
get_name
());
...
@@ -2202,17 +2199,8 @@ namespace ngraph
...
@@ -2202,17 +2199,8 @@ namespace ngraph
auto
arg0_shape
=
args
[
0
].
get_shape
();
auto
arg0_shape
=
args
[
0
].
get_shape
();
auto
arg1_shape
=
args
[
1
].
get_shape
();
auto
arg1_shape
=
args
[
1
].
get_shape
();
auto
result_shape
=
out
[
0
].
get_shape
();
auto
result_shape
=
out
[
0
].
get_shape
();
auto
arg0_rank
=
arg0_shape
.
size
();
auto
arg1_rank
=
arg1_shape
.
size
();
bool
data_dilated
=
false
;
for
(
size_t
s
:
convolution
->
get_data_dilation_strides_forward
())
{
data_dilated
=
data_dilated
||
(
s
!=
1
);
}
if
(
!
data_dilated
&&
arg0_rank
==
4
&&
arg1_rank
==
4
&&
if
(
runtime
::
cpu
::
mkldnn_utils
::
use_mkldnn_kernel
(
node
))
args
[
0
].
get_element_type
()
==
element
::
f32
)
{
{
const
string
&
elem_type
=
const
string
&
elem_type
=
runtime
::
cpu
::
mkldnn_utils
::
get_mkldnn_data_type_string
(
runtime
::
cpu
::
mkldnn_utils
::
get_mkldnn_data_type_string
(
...
@@ -2224,12 +2212,19 @@ namespace ngraph
...
@@ -2224,12 +2212,19 @@ namespace ngraph
window_dilation_strides_adjusted
.
push_back
(
s
-
1
);
window_dilation_strides_adjusted
.
push_back
(
s
-
1
);
}
}
auto
weight_format
=
runtime
::
cpu
::
mkldnn_utils
::
get_input_mkldnn_format
(
node
,
0
);
auto
delta_format
=
runtime
::
cpu
::
mkldnn_utils
::
get_input_mkldnn_format
(
node
,
1
);
auto
result_format
=
runtime
::
cpu
::
mkldnn_utils
::
get_output_mkldnn_format
(
node
,
0
);
auto
emit_memory_desc
=
[
&
writer
](
const
std
::
string
&
var
,
auto
emit_memory_desc
=
[
&
writer
](
const
std
::
string
&
var
,
const
std
::
string
&
shape
,
const
std
::
string
&
shape
,
const
std
::
string
&
type
,
const
std
::
string
&
type
,
const
std
::
string
&
layout
)
{
const
std
::
string
&
layout
)
{
writer
<<
"memory::desc "
<<
var
<<
" = memory::desc({"
<<
shape
<<
"}, "
writer
<<
"memory::desc "
<<
var
<<
" = memory::desc({"
<<
shape
<<
"}, "
<<
type
<<
",
memory::format::
"
<<
layout
<<
");
\n
"
;
<<
type
<<
", "
<<
layout
<<
");
\n
"
;
};
};
auto
emit_memory
=
[
&
writer
](
auto
emit_memory
=
[
&
writer
](
...
@@ -2247,9 +2242,21 @@ namespace ngraph
...
@@ -2247,9 +2242,21 @@ namespace ngraph
writer
<<
"try
\n
"
;
writer
<<
"try
\n
"
;
writer
.
block_begin
();
writer
.
block_begin
();
writer
<<
"engine cpu_engine = engine(engine::cpu, 0);
\n
"
;
writer
<<
"engine cpu_engine = engine(engine::cpu, 0);
\n
"
;
emit_memory_desc
(
"weight_desc"
,
join
(
arg0_shape
),
elem_type
,
"oihw"
);
emit_memory_desc
(
emit_memory_desc
(
"delta_desc"
,
join
(
arg1_shape
),
elem_type
,
"nchw"
);
"weight_desc"
,
emit_memory_desc
(
"result_desc"
,
join
(
result_shape
),
elem_type
,
"nchw"
);
join
(
arg0_shape
),
elem_type
,
runtime
::
cpu
::
mkldnn_utils
::
get_mkldnn_format_string
(
weight_format
));
emit_memory_desc
(
"delta_desc"
,
join
(
arg1_shape
),
elem_type
,
runtime
::
cpu
::
mkldnn_utils
::
get_mkldnn_format_string
(
delta_format
));
emit_memory_desc
(
"result_desc"
,
join
(
result_shape
),
elem_type
,
runtime
::
cpu
::
mkldnn_utils
::
get_mkldnn_format_string
(
result_format
));
emit_memory
(
"weight"
,
"weight_desc"
,
args
[
0
].
get_name
());
emit_memory
(
"weight"
,
"weight_desc"
,
args
[
0
].
get_name
());
emit_memory
(
"delta"
,
"delta_desc"
,
args
[
1
].
get_name
());
emit_memory
(
"delta"
,
"delta_desc"
,
args
[
1
].
get_name
());
emit_memory
(
"result"
,
"result_desc"
,
out
[
0
].
get_name
());
emit_memory
(
"result"
,
"result_desc"
,
out
[
0
].
get_name
());
...
...
src/ngraph/runtime/cpu/cpu_tensor_view.cpp
View file @
46e0dea7
...
@@ -107,8 +107,9 @@ void runtime::cpu::CPUTensorView::read(void* target, size_t tensor_offset, size_
...
@@ -107,8 +107,9 @@ void runtime::cpu::CPUTensorView::read(void* target, size_t tensor_offset, size_
auto
tvl
=
this
->
get_tensor_view_layout
();
auto
tvl
=
this
->
get_tensor_view_layout
();
auto
cpu_tvl
=
dynamic_cast
<
runtime
::
cpu
::
LayoutDescriptor
*>
(
tvl
.
get
());
auto
cpu_tvl
=
dynamic_cast
<
runtime
::
cpu
::
LayoutDescriptor
*>
(
tvl
.
get
());
if
(
cpu_tvl
&&
cpu_tvl
->
get_mkldnn_format
()
!=
memory
::
format
::
format_undef
&&
if
(
cpu_tvl
&&
cpu_tvl
->
get_mkldnn_format
()
!=
memory
::
format
::
format_undef
&&
cpu_tvl
->
get_mkldnn_format
()
!=
!
runtime
::
cpu
::
mkldnn_utils
::
compare_mkldnn_formats
(
runtime
::
cpu
::
mkldnn_utils
::
CreateNativeDataFormat
(
*
cpu_tvl
))
cpu_tvl
->
get_mkldnn_format
(),
runtime
::
cpu
::
mkldnn_utils
::
CreateNativeDataFormat
(
*
cpu_tvl
)))
{
{
auto
tensor_shape
=
this
->
get_shape
();
auto
tensor_shape
=
this
->
get_shape
();
auto
input_format
=
cpu_tvl
->
get_mkldnn_format
();
auto
input_format
=
cpu_tvl
->
get_mkldnn_format
();
...
...
src/ngraph/runtime/cpu/mkldnn_utils.cpp
View file @
46e0dea7
...
@@ -19,18 +19,21 @@
...
@@ -19,18 +19,21 @@
#include <typeinfo>
#include <typeinfo>
#include <unordered_set>
#include <unordered_set>
#include "ngraph/types/element_type.hpp"
#include "ngraph/node.hpp"
#include "ngraph/node.hpp"
#include "ngraph/ops/avg_pool.hpp"
#include "ngraph/ops/avg_pool.hpp"
#include "ngraph/ops/batch_norm.hpp"
#include "ngraph/ops/batch_norm.hpp"
#include "ngraph/ops/convolution.hpp"
#include "ngraph/ops/convolution.hpp"
#include "ngraph/ops/max_pool.hpp"
#include "ngraph/ops/max_pool.hpp"
#include "ngraph/ops/relu.hpp"
#include "ngraph/ops/relu.hpp"
#include "ngraph/runtime/cpu/cpu_layout_descriptor.hpp"
#include "ngraph/runtime/cpu/cpu_op_annotations.hpp"
#include "ngraph/types/element_type.hpp"
#include "mkldnn_utils.hpp"
#include "mkldnn_utils.hpp"
using
namespace
mkldnn
;
using
namespace
mkldnn
;
using
namespace
ngraph
;
using
namespace
ngraph
;
using
namespace
std
;
#define TI(x) std::type_index(typeid(x))
#define TI(x) std::type_index(typeid(x))
...
@@ -120,7 +123,8 @@ mkldnn::memory::format runtime::cpu::mkldnn_utils::CreateNativeDataFormat(
...
@@ -120,7 +123,8 @@ mkldnn::memory::format runtime::cpu::mkldnn_utils::CreateNativeDataFormat(
}
}
}
}
const
std
::
string
&
runtime
::
cpu
::
mkldnn_utils
::
get_mkldnn_data_type_string
(
const
ngraph
::
element
::
Type
&
type
)
const
std
::
string
&
runtime
::
cpu
::
mkldnn_utils
::
get_mkldnn_data_type_string
(
const
ngraph
::
element
::
Type
&
type
)
{
{
auto
it
=
s_mkldnn_data_type_string_map
.
find
(
type
);
auto
it
=
s_mkldnn_data_type_string_map
.
find
(
type
);
if
(
it
==
s_mkldnn_data_type_string_map
.
end
()
||
it
->
second
.
empty
())
if
(
it
==
s_mkldnn_data_type_string_map
.
end
()
||
it
->
second
.
empty
())
...
@@ -128,7 +132,8 @@ const std::string& runtime::cpu::mkldnn_utils::get_mkldnn_data_type_string(const
...
@@ -128,7 +132,8 @@ const std::string& runtime::cpu::mkldnn_utils::get_mkldnn_data_type_string(const
return
it
->
second
;
return
it
->
second
;
}
}
mkldnn
::
memory
::
data_type
runtime
::
cpu
::
mkldnn_utils
::
get_mkldnn_data_type
(
const
ngraph
::
element
::
Type
&
type
)
mkldnn
::
memory
::
data_type
runtime
::
cpu
::
mkldnn_utils
::
get_mkldnn_data_type
(
const
ngraph
::
element
::
Type
&
type
)
{
{
auto
it
=
s_mkldnn_data_type_map
.
find
(
type
);
auto
it
=
s_mkldnn_data_type_map
.
find
(
type
);
if
(
it
==
s_mkldnn_data_type_map
.
end
()
||
it
->
second
==
memory
::
data_type
::
data_undef
)
if
(
it
==
s_mkldnn_data_type_map
.
end
()
||
it
->
second
==
memory
::
data_type
::
data_undef
)
...
@@ -146,3 +151,38 @@ const std::string& runtime::cpu::mkldnn_utils::get_mkldnn_format_string(memory::
...
@@ -146,3 +151,38 @@ const std::string& runtime::cpu::mkldnn_utils::get_mkldnn_format_string(memory::
std
::
to_string
(
fmt
));
std
::
to_string
(
fmt
));
return
it
->
second
;
return
it
->
second
;
}
}
mkldnn
::
memory
::
format
runtime
::
cpu
::
mkldnn_utils
::
get_input_mkldnn_format
(
const
Node
*
node
,
int
index
)
{
auto
tvl
=
node
->
get_inputs
()[
index
].
get_output
().
get_tensor_view
()
->
get_tensor_view_layout
();
return
dynamic_cast
<
runtime
::
cpu
::
LayoutDescriptor
&>
(
*
tvl
).
get_mkldnn_format
();
}
mkldnn
::
memory
::
format
runtime
::
cpu
::
mkldnn_utils
::
get_output_mkldnn_format
(
const
Node
*
node
,
int
index
)
{
auto
tvl
=
node
->
get_output_tensor_view
(
0
)
->
get_tensor_view_layout
();
return
dynamic_cast
<
runtime
::
cpu
::
LayoutDescriptor
&>
(
*
tvl
).
get_mkldnn_format
();
}
bool
runtime
::
cpu
::
mkldnn_utils
::
use_mkldnn_kernel
(
const
ngraph
::
Node
*
node
)
{
auto
op_annotations
=
static_cast
<
const
ngraph
::
op
::
Op
*>
(
node
)
->
get_op_annotations
();
return
(
op_annotations
&&
static_pointer_cast
<
ngraph
::
runtime
::
cpu
::
CPUOpAnnotations
>
(
op_annotations
)
->
is_mkldnn_op
());
}
bool
runtime
::
cpu
::
mkldnn_utils
::
compare_mkldnn_formats
(
mkldnn
::
memory
::
format
fmt1
,
mkldnn
::
memory
::
format
fmt2
)
{
set
<
mkldnn
::
memory
::
format
>
similar_4d_formats
{
mkldnn
::
memory
::
format
::
nchw
,
mkldnn
::
memory
::
format
::
oihw
};
if
((
fmt1
==
fmt2
)
||
(
similar_4d_formats
.
find
(
fmt1
)
!=
similar_4d_formats
.
end
()
&&
similar_4d_formats
.
find
(
fmt2
)
!=
similar_4d_formats
.
end
()))
{
return
true
;
}
return
false
;
}
\ No newline at end of file
src/ngraph/runtime/cpu/mkldnn_utils.hpp
View file @
46e0dea7
...
@@ -38,6 +38,12 @@ namespace ngraph
...
@@ -38,6 +38,12 @@ namespace ngraph
const
std
::
string
&
get_mkldnn_data_type_string
(
const
ngraph
::
element
::
Type
&
type
);
const
std
::
string
&
get_mkldnn_data_type_string
(
const
ngraph
::
element
::
Type
&
type
);
mkldnn
::
memory
::
data_type
get_mkldnn_data_type
(
const
ngraph
::
element
::
Type
&
type
);
mkldnn
::
memory
::
data_type
get_mkldnn_data_type
(
const
ngraph
::
element
::
Type
&
type
);
const
std
::
string
&
get_mkldnn_format_string
(
mkldnn
::
memory
::
format
fmt
);
const
std
::
string
&
get_mkldnn_format_string
(
mkldnn
::
memory
::
format
fmt
);
mkldnn
::
memory
::
format
get_input_mkldnn_format
(
const
Node
*
node
,
int
index
);
mkldnn
::
memory
::
format
get_output_mkldnn_format
(
const
Node
*
node
,
int
index
);
bool
use_mkldnn_kernel
(
const
ngraph
::
Node
*
node
);
bool
compare_mkldnn_formats
(
mkldnn
::
memory
::
format
fmt1
,
mkldnn
::
memory
::
format
fmt2
);
}
}
}
}
}
}
...
...
src/ngraph/runtime/cpu/pass/cpu_assignment.cpp
View file @
46e0dea7
...
@@ -66,6 +66,60 @@ namespace ngraph
...
@@ -66,6 +66,60 @@ namespace ngraph
convolution
->
set_op_annotations
(
op_annotations
);
convolution
->
set_op_annotations
(
op_annotations
);
}
}
}
}
template
<>
void
CPUAssignment
::
ASSIGN_DECL
(
ngraph
::
op
::
ConvolutionBackpropData
)
{
auto
convolution
=
static_cast
<
op
::
ConvolutionBackpropData
*>
(
node
);
auto
arg0_shape
=
node
->
get_input_shape
(
0
);
auto
arg1_shape
=
node
->
get_input_shape
(
1
);
auto
result_shape
=
node
->
get_output_shape
(
0
);
auto
arg0_rank
=
arg0_shape
.
size
();
auto
arg1_rank
=
arg1_shape
.
size
();
bool
data_dilated
=
false
;
for
(
size_t
s
:
convolution
->
get_data_dilation_strides_forward
())
{
data_dilated
=
data_dilated
||
(
s
!=
1
);
}
if
(
!
data_dilated
&&
arg0_rank
==
4
&&
arg1_rank
==
4
&&
node
->
get_input_element_type
(
0
)
==
element
::
f32
)
{
auto
op_annotations
=
std
::
make_shared
<
ngraph
::
runtime
::
cpu
::
CPUOpAnnotations
>
();
op_annotations
->
set_mkldnn_op
(
true
);
convolution
->
set_op_annotations
(
op_annotations
);
}
}
template
<>
void
CPUAssignment
::
ASSIGN_DECL
(
ngraph
::
op
::
ConvolutionBackpropFilters
)
{
auto
convolution
=
static_cast
<
op
::
ConvolutionBackpropFilters
*>
(
node
);
auto
arg0_shape
=
node
->
get_input_shape
(
0
);
auto
arg1_shape
=
node
->
get_input_shape
(
1
);
auto
result_shape
=
node
->
get_output_shape
(
0
);
auto
arg0_rank
=
arg0_shape
.
size
();
auto
arg1_rank
=
arg1_shape
.
size
();
bool
data_dilated
=
false
;
for
(
size_t
s
:
convolution
->
get_data_dilation_strides_forward
())
{
data_dilated
=
data_dilated
||
(
s
!=
1
);
}
if
(
!
data_dilated
&&
arg0_rank
==
4
&&
arg1_rank
==
4
&&
node
->
get_input_element_type
(
0
)
==
element
::
f32
)
{
auto
op_annotations
=
std
::
make_shared
<
ngraph
::
runtime
::
cpu
::
CPUOpAnnotations
>
();
op_annotations
->
set_mkldnn_op
(
true
);
convolution
->
set_op_annotations
(
op_annotations
);
}
}
}
}
}
}
}
}
...
@@ -76,6 +130,10 @@ namespace ngraph
...
@@ -76,6 +130,10 @@ namespace ngraph
static
const
runtime
::
cpu
::
pass
::
AssignOpMap
s_dispatcher
{
static
const
runtime
::
cpu
::
pass
::
AssignOpMap
s_dispatcher
{
{
TI
(
ngraph
::
op
::
Convolution
),
{
TI
(
ngraph
::
op
::
Convolution
),
&
runtime
::
cpu
::
pass
::
CPUAssignment
::
assign
<
ngraph
::
op
::
Convolution
>
},
&
runtime
::
cpu
::
pass
::
CPUAssignment
::
assign
<
ngraph
::
op
::
Convolution
>
},
{
TI
(
ngraph
::
op
::
ConvolutionBackpropData
),
&
runtime
::
cpu
::
pass
::
CPUAssignment
::
assign
<
ngraph
::
op
::
ConvolutionBackpropData
>
},
{
TI
(
ngraph
::
op
::
ConvolutionBackpropFilters
),
&
runtime
::
cpu
::
pass
::
CPUAssignment
::
assign
<
ngraph
::
op
::
ConvolutionBackpropFilters
>
},
};
};
bool
runtime
::
cpu
::
pass
::
CPUAssignment
::
run_on_call_graph
(
bool
runtime
::
cpu
::
pass
::
CPUAssignment
::
run_on_call_graph
(
...
...
src/ngraph/runtime/cpu/pass/cpu_layout.cpp
View file @
46e0dea7
...
@@ -36,6 +36,95 @@ using namespace std;
...
@@ -36,6 +36,95 @@ using namespace std;
using
namespace
mkldnn
;
using
namespace
mkldnn
;
using
namespace
ngraph
;
using
namespace
ngraph
;
shared_ptr
<
Node
>
runtime
::
cpu
::
pass
::
CPULayout
::
insert_input_conversions
(
runtime
::
cpu
::
CPU_ExternalFunction
*
external_function
,
shared_ptr
<
Node
>&
node
,
const
vector
<
memory
::
format
>&
required_formats
)
{
vector
<
shared_ptr
<
Node
>>
new_args
;
bool
replace_node
=
false
;
uint
index
=
0
;
for
(
const
descriptor
::
Input
&
input
:
node
->
get_inputs
())
{
const
auto
&
output
=
input
.
get_output
();
auto
tv
=
output
.
get_tensor_view
();
auto
tvt
=
tv
->
get_tensor_view_type
();
auto
rank
=
tvt
->
get_shape
().
size
();
auto
tvl
=
tv
->
get_tensor_view_layout
();
auto
mkldnn_tvl
=
dynamic_cast
<
runtime
::
cpu
::
LayoutDescriptor
*>
(
tvl
.
get
());
if
(
!
mkldnn_tvl
||
!
runtime
::
cpu
::
mkldnn_utils
::
compare_mkldnn_formats
(
mkldnn_tvl
->
get_mkldnn_format
(),
required_formats
[
index
]))
{
auto
native_axis_order
=
ngraph
::
runtime
::
cpu
::
LayoutDescriptor
::
create_native_axis_order
(
rank
);
auto
layout
=
std
::
make_shared
<
ngraph
::
runtime
::
cpu
::
LayoutDescriptor
>
(
*
tv
,
native_axis_order
);
layout
->
set_mkldnn_format
(
required_formats
[
index
]);
auto
new_node
=
std
::
shared_ptr
<
Node
>
(
new
runtime
::
cpu
::
op
::
ConvertLayout
(
output
.
get_node
(),
output
.
get_index
(),
layout
));
new_args
.
push_back
(
new_node
);
replace_node
=
true
;
NGRAPH_DEBUG
<<
"Inserted conversion node "
<<
new_node
->
get_name
()
<<
" between "
<<
output
.
get_node
()
->
get_name
()
<<
"(layout: "
<<
mkldnn_tvl
->
get_mkldnn_format
()
<<
") and "
<<
node
->
get_name
()
<<
"(layout: "
<<
required_formats
[
index
]
<<
")"
;
}
else
{
new_args
.
push_back
(
node
->
get_input_op
(
index
));
}
index
++
;
}
shared_ptr
<
Node
>
new_node
;
if
(
replace_node
)
{
new_node
=
node
->
copy_with_new_args
(
new_args
);
if
(
node
->
is_output
())
{
external_function
->
get_function
()
->
replace_node
(
node
,
new_node
);
}
else
{
ngraph
::
replace_node
(
node
,
new_node
);
}
NGRAPH_DEBUG
<<
"Replaced "
<<
node
->
get_name
()
<<
" with "
<<
new_node
->
get_name
();
auto
old_op_annotations
=
static_pointer_cast
<
ngraph
::
op
::
Op
>
(
node
)
->
get_op_annotations
();
static_pointer_cast
<
ngraph
::
op
::
Op
>
(
new_node
)
->
set_op_annotations
(
old_op_annotations
);
node
=
new_node
;
}
return
node
;
}
void
runtime
::
cpu
::
pass
::
CPULayout
::
set_output_layouts
(
shared_ptr
<
Node
>&
node
,
const
vector
<
memory
::
format
>&
output_formats
)
{
for
(
size_t
i
=
0
;
i
<
node
->
get_output_size
();
++
i
)
{
auto
tv
=
node
->
get_output_tensor_view
(
i
);
auto
tvt
=
tv
->
get_tensor_view_type
();
auto
rank
=
tvt
->
get_shape
().
size
();
auto
tvl
=
tv
->
get_tensor_view_layout
();
if
(
tvl
)
{
throw
ngraph_error
(
"Node output layout already set"
);
}
auto
native_axis_order
=
ngraph
::
runtime
::
cpu
::
LayoutDescriptor
::
create_native_axis_order
(
rank
);
auto
layout
=
std
::
make_shared
<
ngraph
::
runtime
::
cpu
::
LayoutDescriptor
>
(
*
tv
,
native_axis_order
);
layout
->
set_mkldnn_format
(
output_formats
[
i
]);
tv
->
set_tensor_view_layout
(
layout
);
NGRAPH_DEBUG
<<
"Setting Node: "
<<
node
->
get_name
()
<<
" output layout: "
<<
output_formats
[
i
]
<<
endl
;
}
}
void
runtime
::
cpu
::
pass
::
CPULayout
::
set_default_layouts
(
void
runtime
::
cpu
::
pass
::
CPULayout
::
set_default_layouts
(
runtime
::
cpu
::
CPU_ExternalFunction
*
external_function
,
std
::
shared_ptr
<
Node
>
node
)
runtime
::
cpu
::
CPU_ExternalFunction
*
external_function
,
std
::
shared_ptr
<
Node
>
node
)
{
{
...
@@ -51,8 +140,9 @@ void runtime::cpu::pass::CPULayout::set_default_layouts(
...
@@ -51,8 +140,9 @@ void runtime::cpu::pass::CPULayout::set_default_layouts(
auto
tvl
=
tv
->
get_tensor_view_layout
();
auto
tvl
=
tv
->
get_tensor_view_layout
();
auto
cpu_tvl
=
dynamic_cast
<
runtime
::
cpu
::
LayoutDescriptor
*>
(
tvl
.
get
());
auto
cpu_tvl
=
dynamic_cast
<
runtime
::
cpu
::
LayoutDescriptor
*>
(
tvl
.
get
());
if
(
cpu_tvl
&&
cpu_tvl
->
get_mkldnn_format
()
!=
memory
::
format
::
format_undef
&&
if
(
cpu_tvl
&&
cpu_tvl
->
get_mkldnn_format
()
!=
memory
::
format
::
format_undef
&&
cpu_tvl
->
get_mkldnn_format
()
!=
!
runtime
::
cpu
::
mkldnn_utils
::
compare_mkldnn_formats
(
runtime
::
cpu
::
mkldnn_utils
::
CreateNativeDataFormat
(
*
cpu_tvl
))
cpu_tvl
->
get_mkldnn_format
(),
runtime
::
cpu
::
mkldnn_utils
::
CreateNativeDataFormat
(
*
cpu_tvl
)))
{
{
auto
native_axis_order
=
auto
native_axis_order
=
ngraph
::
runtime
::
cpu
::
LayoutDescriptor
::
create_native_axis_order
(
rank
);
ngraph
::
runtime
::
cpu
::
LayoutDescriptor
::
create_native_axis_order
(
rank
);
...
@@ -127,11 +217,7 @@ namespace ngraph
...
@@ -127,11 +217,7 @@ namespace ngraph
template
<>
template
<>
void
CPULayout
::
LAYOUT_DECL
(
ngraph
::
op
::
Convolution
)
void
CPULayout
::
LAYOUT_DECL
(
ngraph
::
op
::
Convolution
)
{
{
auto
op_annotations
=
if
(
runtime
::
cpu
::
mkldnn_utils
::
use_mkldnn_kernel
(
node
.
get
()))
static_pointer_cast
<
ngraph
::
op
::
Op
>
(
node
)
->
get_op_annotations
();
if
(
op_annotations
&&
static_pointer_cast
<
ngraph
::
runtime
::
cpu
::
CPUOpAnnotations
>
(
op_annotations
)
->
is_mkldnn_op
())
{
{
auto
convolution
=
static_cast
<
const
ngraph
::
op
::
Convolution
*>
(
node
.
get
());
auto
convolution
=
static_cast
<
const
ngraph
::
op
::
Convolution
*>
(
node
.
get
());
...
@@ -181,100 +267,194 @@ namespace ngraph
...
@@ -181,100 +267,194 @@ namespace ngraph
mkldnn_padding_above
,
mkldnn_padding_above
,
padding_kind
::
zero
);
padding_kind
::
zero
);
convolution_forward
::
primitive_desc
prim_desc
(
fwd_desc
,
cpu_engine
);
convolution_forward
::
primitive_desc
prim_desc
(
fwd_desc
,
cpu_engine
);
memory
::
format
prim_input_formats
[
2
];
vector
<
memory
::
format
>
prim_input_formats
;
memory
::
format
prim_output_formats
[
1
];
vector
<
memory
::
format
>
prim_output_formats
;
prim_input_formats
[
0
]
=
static_cast
<
memory
::
format
>
(
prim_input_formats
.
push_back
(
static_cast
<
memory
::
format
>
(
prim_desc
.
src_primitive_desc
().
desc
().
data
.
format
);
prim_desc
.
src_primitive_desc
().
desc
().
data
.
format
));
prim_output_formats
[
0
]
=
static_cast
<
memory
::
format
>
(
prim_input_formats
.
push_back
(
static_cast
<
memory
::
format
>
(
prim_desc
.
dst_primitive_desc
().
desc
().
data
.
format
);
prim_desc
.
weights_primitive_desc
().
desc
().
data
.
format
));
prim_input_formats
[
1
]
=
static_cast
<
memory
::
format
>
(
prim_output_formats
.
push_back
(
static_cast
<
memory
::
format
>
(
prim_desc
.
weights_primitive_desc
().
desc
().
data
.
format
);
prim_desc
.
dst_primitive_desc
().
desc
().
data
.
format
));
std
::
vector
<
shared_ptr
<
Node
>>
new_args
;
bool
replace_node
=
false
;
uint
index
=
0
;
for
(
const
descriptor
::
Input
&
input
:
node
->
get_inputs
())
{
const
auto
&
output
=
input
.
get_output
();
auto
tv
=
output
.
get_tensor_view
();
auto
tvt
=
tv
->
get_tensor_view_type
();
auto
rank
=
tvt
->
get_shape
().
size
();
auto
tvl
=
tv
->
get_tensor_view_layout
();
auto
mkldnn_tvl
=
dynamic_cast
<
runtime
::
cpu
::
LayoutDescriptor
*>
(
tvl
.
get
());
if
(
!
mkldnn_tvl
||
mkldnn_tvl
->
get_mkldnn_format
()
!=
prim_input_formats
[
index
])
{
auto
native_axis_order
=
ngraph
::
runtime
::
cpu
::
LayoutDescriptor
::
create_native_axis_order
(
rank
);
auto
layout
=
std
::
make_shared
<
ngraph
::
runtime
::
cpu
::
LayoutDescriptor
>
(
*
tv
,
native_axis_order
);
layout
->
set_mkldnn_format
(
prim_input_formats
[
index
]);
auto
new_node
=
std
::
shared_ptr
<
Node
>
(
new
runtime
::
cpu
::
op
::
ConvertLayout
(
output
.
get_node
(),
output
.
get_index
(),
layout
));
new_args
.
push_back
(
new_node
);
replace_node
=
true
;
NGRAPH_DEBUG
<<
"Inserted conversion node "
<<
new_node
->
get_name
()
<<
" between "
<<
output
.
get_node
()
->
get_name
()
<<
"(layout: "
<<
mkldnn_tvl
->
get_mkldnn_format
()
<<
") and "
<<
node
->
get_name
()
<<
"(layout: "
<<
prim_input_formats
[
index
]
<<
")"
;
}
else
{
new_args
.
push_back
(
node
->
get_input_op
(
index
));
}
index
++
;
}
shared_ptr
<
Node
>
new_node
;
node
=
if
(
replace_node
)
insert_input_conversions
(
external_function
,
node
,
prim_input_formats
);
set_output_layouts
(
node
,
prim_output_formats
);
}
else
{
set_default_layouts
(
external_function
,
node
);
}
}
template
<>
void
CPULayout
::
LAYOUT_DECL
(
ngraph
::
op
::
ConvolutionBackpropData
)
{
if
(
runtime
::
cpu
::
mkldnn_utils
::
use_mkldnn_kernel
(
node
.
get
()))
{
auto
convolution
=
static_cast
<
const
ngraph
::
op
::
ConvolutionBackpropData
*>
(
node
.
get
());
auto
arg0_shape
=
node
->
get_input_shape
(
0
);
auto
arg1_shape
=
node
->
get_input_shape
(
1
);
auto
result_shape
=
node
->
get_output_shape
(
0
);
auto
filter_strides
=
convolution
->
get_window_movement_strides_forward
();
auto
padding_below
=
convolution
->
get_padding_below_forward
();
auto
padding_above
=
convolution
->
get_padding_above_forward
();
Strides
window_dilation_strides_adjusted
;
for
(
size_t
s
:
convolution
->
get_window_dilation_strides_forward
())
{
{
new_node
=
node
->
copy_with_new_args
(
new_args
);
window_dilation_strides_adjusted
.
push_back
(
s
-
1
);
if
(
node
->
is_output
())
{
external_function
->
get_function
()
->
replace_node
(
node
,
new_node
);
}
else
{
ngraph
::
replace_node
(
node
,
new_node
);
}
NGRAPH_DEBUG
<<
"Replaced "
<<
node
->
get_name
()
<<
" with "
<<
new_node
->
get_name
();
auto
old_op_annotations
=
static_pointer_cast
<
ngraph
::
op
::
Op
>
(
node
)
->
get_op_annotations
();
static_pointer_cast
<
ngraph
::
op
::
Op
>
(
new_node
)
->
set_op_annotations
(
old_op_annotations
);
node
=
new_node
;
}
}
// Set convolution output format
memory
::
data_type
et
=
runtime
::
cpu
::
mkldnn_utils
::
get_mkldnn_data_type
(
for
(
size_t
i
=
0
;
i
<
node
->
get_output_size
();
++
i
)
node
->
get_input_element_type
(
0
));
engine
cpu_engine
(
engine
::
cpu
,
0
);
memory
::
dims
mkldnn_arg0_shape
(
arg0_shape
.
begin
(),
arg0_shape
.
end
());
memory
::
dims
mkldnn_arg1_shape
(
arg1_shape
.
begin
(),
arg1_shape
.
end
());
memory
::
dims
mkldnn_result_shape
(
result_shape
.
begin
(),
result_shape
.
end
());
memory
::
dims
mkldnn_filter_strides
(
filter_strides
.
begin
(),
filter_strides
.
end
());
memory
::
dims
mkldnn_dilated_strides
(
window_dilation_strides_adjusted
.
begin
(),
window_dilation_strides_adjusted
.
end
());
memory
::
dims
mkldnn_padding_below
(
padding_below
.
begin
(),
padding_below
.
end
());
memory
::
dims
mkldnn_padding_above
(
padding_above
.
begin
(),
padding_above
.
end
());
const
memory
::
desc
weights_desc
(
mkldnn_arg0_shape
,
et
,
memory
::
format
::
any
);
const
memory
::
desc
delta_desc
(
mkldnn_arg1_shape
,
et
,
memory
::
format
::
any
);
const
memory
::
desc
result_desc
(
mkldnn_result_shape
,
et
,
memory
::
format
::
any
);
convolution_backward_data
::
desc
bwd_desc
(
algorithm
::
convolution_direct
,
result_desc
,
weights_desc
,
delta_desc
,
mkldnn_filter_strides
,
mkldnn_dilated_strides
,
mkldnn_padding_below
,
mkldnn_padding_above
,
padding_kind
::
zero
);
convolution_forward
::
desc
fwd_desc
(
prop_kind
::
forward
,
algorithm
::
convolution_direct
,
result_desc
,
weights_desc
,
delta_desc
,
mkldnn_filter_strides
,
mkldnn_dilated_strides
,
mkldnn_padding_below
,
mkldnn_padding_above
,
padding_kind
::
zero
);
convolution_forward
::
primitive_desc
fwd_prim_desc
(
fwd_desc
,
cpu_engine
);
convolution_backward_data
::
primitive_desc
prim_desc
(
bwd_desc
,
cpu_engine
,
fwd_prim_desc
);
vector
<
memory
::
format
>
prim_input_formats
;
vector
<
memory
::
format
>
prim_output_formats
;
prim_input_formats
.
push_back
(
static_cast
<
memory
::
format
>
(
prim_desc
.
weights_primitive_desc
().
desc
().
data
.
format
));
prim_input_formats
.
push_back
(
static_cast
<
memory
::
format
>
(
prim_desc
.
diff_dst_primitive_desc
().
desc
().
data
.
format
));
prim_output_formats
.
push_back
(
static_cast
<
memory
::
format
>
(
prim_desc
.
diff_src_primitive_desc
().
desc
().
data
.
format
));
node
=
insert_input_conversions
(
external_function
,
node
,
prim_input_formats
);
set_output_layouts
(
node
,
prim_output_formats
);
}
else
{
set_default_layouts
(
external_function
,
node
);
}
}
template
<>
void
CPULayout
::
LAYOUT_DECL
(
ngraph
::
op
::
ConvolutionBackpropFilters
)
{
if
(
runtime
::
cpu
::
mkldnn_utils
::
use_mkldnn_kernel
(
node
.
get
()))
{
auto
convolution
=
static_cast
<
const
ngraph
::
op
::
ConvolutionBackpropFilters
*>
(
node
.
get
());
auto
arg0_shape
=
node
->
get_input_shape
(
0
);
auto
arg1_shape
=
node
->
get_input_shape
(
1
);
auto
result_shape
=
node
->
get_output_shape
(
0
);
auto
filter_strides
=
convolution
->
get_window_movement_strides_forward
();
auto
padding_below
=
convolution
->
get_padding_below_forward
();
auto
padding_above
=
convolution
->
get_padding_above_forward
();
Strides
window_dilation_strides_adjusted
;
for
(
size_t
s
:
convolution
->
get_window_dilation_strides_forward
())
{
{
auto
tv
=
node
->
get_output_tensor_view
(
i
);
window_dilation_strides_adjusted
.
push_back
(
s
-
1
);
auto
tvt
=
tv
->
get_tensor_view_type
();
auto
rank
=
tvt
->
get_shape
().
size
();
auto
tvl
=
tv
->
get_tensor_view_layout
();
if
(
tvl
)
{
throw
ngraph_error
(
"Convolution output layout already set"
);
}
auto
native_axis_order
=
ngraph
::
runtime
::
cpu
::
LayoutDescriptor
::
create_native_axis_order
(
rank
);
auto
layout
=
std
::
make_shared
<
ngraph
::
runtime
::
cpu
::
LayoutDescriptor
>
(
*
tv
,
native_axis_order
);
layout
->
set_mkldnn_format
(
prim_output_formats
[
i
]);
tv
->
set_tensor_view_layout
(
layout
);
NGRAPH_DEBUG
<<
"Setting Node: "
<<
node
->
get_name
()
<<
" output layout: "
<<
prim_output_formats
[
i
]
<<
endl
;
}
}
memory
::
data_type
et
=
runtime
::
cpu
::
mkldnn_utils
::
get_mkldnn_data_type
(
node
->
get_input_element_type
(
0
));
engine
cpu_engine
(
engine
::
cpu
,
0
);
memory
::
dims
mkldnn_arg0_shape
(
arg0_shape
.
begin
(),
arg0_shape
.
end
());
memory
::
dims
mkldnn_arg1_shape
(
arg1_shape
.
begin
(),
arg1_shape
.
end
());
memory
::
dims
mkldnn_result_shape
(
result_shape
.
begin
(),
result_shape
.
end
());
memory
::
dims
mkldnn_filter_strides
(
filter_strides
.
begin
(),
filter_strides
.
end
());
memory
::
dims
mkldnn_dilated_strides
(
window_dilation_strides_adjusted
.
begin
(),
window_dilation_strides_adjusted
.
end
());
memory
::
dims
mkldnn_padding_below
(
padding_below
.
begin
(),
padding_below
.
end
());
memory
::
dims
mkldnn_padding_above
(
padding_above
.
begin
(),
padding_above
.
end
());
const
memory
::
desc
data_desc
(
mkldnn_arg0_shape
,
et
,
memory
::
format
::
any
);
const
memory
::
desc
delta_desc
(
mkldnn_arg1_shape
,
et
,
memory
::
format
::
any
);
const
memory
::
desc
result_desc
(
mkldnn_result_shape
,
et
,
memory
::
format
::
any
);
convolution_backward_weights
::
desc
bwd_desc
(
algorithm
::
convolution_direct
,
data_desc
,
result_desc
,
delta_desc
,
mkldnn_filter_strides
,
mkldnn_dilated_strides
,
mkldnn_padding_below
,
mkldnn_padding_above
,
padding_kind
::
zero
);
convolution_forward
::
desc
fwd_desc
(
prop_kind
::
forward
,
algorithm
::
convolution_direct
,
data_desc
,
result_desc
,
delta_desc
,
mkldnn_filter_strides
,
mkldnn_dilated_strides
,
mkldnn_padding_below
,
mkldnn_padding_above
,
padding_kind
::
zero
);
convolution_forward
::
primitive_desc
fwd_prim_desc
(
fwd_desc
,
cpu_engine
);
convolution_backward_weights
::
primitive_desc
prim_desc
(
bwd_desc
,
cpu_engine
,
fwd_prim_desc
);
vector
<
memory
::
format
>
prim_input_formats
;
vector
<
memory
::
format
>
prim_output_formats
;
prim_input_formats
.
push_back
(
static_cast
<
memory
::
format
>
(
prim_desc
.
src_primitive_desc
().
desc
().
data
.
format
));
prim_input_formats
.
push_back
(
static_cast
<
memory
::
format
>
(
prim_desc
.
diff_dst_primitive_desc
().
desc
().
data
.
format
));
prim_output_formats
.
push_back
(
static_cast
<
memory
::
format
>
(
prim_desc
.
diff_weights_primitive_desc
().
desc
().
data
.
format
));
node
=
insert_input_conversions
(
external_function
,
node
,
prim_input_formats
);
set_output_layouts
(
node
,
prim_output_formats
);
}
}
else
else
{
{
...
@@ -290,6 +470,10 @@ namespace ngraph
...
@@ -290,6 +470,10 @@ namespace ngraph
static
const
runtime
::
cpu
::
pass
::
LayoutOpMap
s_dispatcher
{
static
const
runtime
::
cpu
::
pass
::
LayoutOpMap
s_dispatcher
{
{
TI
(
ngraph
::
op
::
Convolution
),
&
runtime
::
cpu
::
pass
::
CPULayout
::
layout
<
ngraph
::
op
::
Convolution
>
},
{
TI
(
ngraph
::
op
::
Convolution
),
&
runtime
::
cpu
::
pass
::
CPULayout
::
layout
<
ngraph
::
op
::
Convolution
>
},
{
TI
(
ngraph
::
op
::
ConvolutionBackpropData
),
&
runtime
::
cpu
::
pass
::
CPULayout
::
layout
<
ngraph
::
op
::
ConvolutionBackpropData
>
},
{
TI
(
ngraph
::
op
::
ConvolutionBackpropFilters
),
&
runtime
::
cpu
::
pass
::
CPULayout
::
layout
<
ngraph
::
op
::
ConvolutionBackpropFilters
>
},
};
};
bool
runtime
::
cpu
::
pass
::
CPULayout
::
run_on_call_graph
(
const
std
::
list
<
std
::
shared_ptr
<
Node
>>&
nodes
)
bool
runtime
::
cpu
::
pass
::
CPULayout
::
run_on_call_graph
(
const
std
::
list
<
std
::
shared_ptr
<
Node
>>&
nodes
)
...
...
src/ngraph/runtime/cpu/pass/cpu_layout.hpp
View file @
46e0dea7
...
@@ -53,6 +53,13 @@ namespace ngraph
...
@@ -53,6 +53,13 @@ namespace ngraph
private
:
private
:
std
::
shared_ptr
<
CPU_ExternalFunction
>
m_external_function
;
std
::
shared_ptr
<
CPU_ExternalFunction
>
m_external_function
;
static
std
::
shared_ptr
<
Node
>
insert_input_conversions
(
CPU_ExternalFunction
*
external_function
,
std
::
shared_ptr
<
Node
>&
node
,
const
std
::
vector
<
mkldnn
::
memory
::
format
>&
required_formats
);
static
void
set_output_layouts
(
std
::
shared_ptr
<
Node
>&
node
,
const
std
::
vector
<
mkldnn
::
memory
::
format
>&
output_formats
);
static
void
set_default_layouts
(
CPU_ExternalFunction
*
external_function
,
static
void
set_default_layouts
(
CPU_ExternalFunction
*
external_function
,
std
::
shared_ptr
<
Node
>
node
);
std
::
shared_ptr
<
Node
>
node
);
};
};
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment