Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
N
ngraph
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
ngraph
Commits
445c8158
Commit
445c8158
authored
May 29, 2019
by
Robert Kimball
Committed by
Scott Cyphers
May 29, 2019
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
fix broken doc strings (#2981)
parent
1fdf14ae
Show whitespace changes
Inline
Side-by-side
Showing
10 changed files
with
76 additions
and
70 deletions
+76
-70
deprecated.hpp
src/ngraph/deprecated.hpp
+2
-0
argmax.hpp
src/ngraph/op/argmax.hpp
+1
-1
argmin.hpp
src/ngraph/op/argmin.hpp
+1
-1
batch_norm.hpp
src/ngraph/op/batch_norm.hpp
+54
-50
embedding_lookup.hpp
src/ngraph/op/embedding_lookup.hpp
+1
-1
gather.hpp
src/ngraph/op/gather.hpp
+3
-3
gather_nd.hpp
src/ngraph/op/gather_nd.hpp
+2
-2
scatter_add.hpp
src/ngraph/op/scatter_add.hpp
+3
-3
scatter_nd_add.hpp
src/ngraph/op/scatter_nd_add.hpp
+3
-3
backend.hpp
src/ngraph/runtime/backend.hpp
+6
-6
No files found.
src/ngraph/deprecated.hpp
View file @
445c8158
...
...
@@ -31,6 +31,8 @@
//
#ifdef NGRAPH_DEPRECATED_ENABLE
#define NGRAPH_DEPRECATED(msg) __attribute__((deprecated((msg))))
#define NGRAPH_DEPRECATED_DOC /// \deprecated
#else
#define NGRAPH_DEPRECATED(msg)
#define NGRAPH_DEPRECATED_DOC
#endif
src/ngraph/op/argmax.hpp
View file @
445c8158
...
...
@@ -24,7 +24,7 @@ namespace ngraph
{
namespace
op
{
// \brief Computes minimum index along a specified axis for a given tensor
//
/
\brief Computes minimum index along a specified axis for a given tensor
class
ArgMax
:
public
op
::
util
::
IndexReduction
{
public
:
...
...
src/ngraph/op/argmin.hpp
View file @
445c8158
...
...
@@ -24,7 +24,7 @@ namespace ngraph
{
namespace
op
{
// \brief Computes minimum index along a specified axis for a given tensor
//
/
\brief Computes minimum index along a specified axis for a given tensor
class
ArgMin
:
public
op
::
util
::
IndexReduction
{
public
:
...
...
src/ngraph/op/batch_norm.hpp
View file @
445c8158
...
...
@@ -18,6 +18,7 @@
#include <memory>
#include "ngraph/deprecated.hpp"
#include "ngraph/node.hpp"
#include "ngraph/op/op.hpp"
#include "ngraph/util.hpp"
...
...
@@ -26,39 +27,40 @@ namespace ngraph
{
namespace
op
{
// \brief Batchnorm for training operation
//
/
\brief Batchnorm for training operation
class
BatchNormTraining
:
public
Op
{
public
:
// \param input Must have rank >= 2, [., C, ...]
// \param gamma gamma scaling for normalized value. [C]
// \param beta bias added to the scaled normalized value [C]
// \param epsilon Avoids divsion by 0 if input has 0 variance
//
/
\param input Must have rank >= 2, [., C, ...]
//
/
\param gamma gamma scaling for normalized value. [C]
//
/
\param beta bias added to the scaled normalized value [C]
//
/
\param epsilon Avoids divsion by 0 if input has 0 variance
BatchNormTraining
(
std
::
shared_ptr
<
Node
>
input
,
std
::
shared_ptr
<
Node
>
gamma
,
std
::
shared_ptr
<
Node
>
beta
,
double
epsilon
);
// \deprecated
// In this version of BatchNorm:
//
// MEAN AND VARIANCE: computed directly from the content of 'input'.
//
// OUTPUT VALUE: A tuple with the following structure:
// [0] - The normalization of 'input'.
// [1] - The per-channel means of (pre-normalized) 'input'.
// [2] - The per-channel variances of (pre-normalized) 'input'.
//
// AUTODIFF SUPPORT: yes: 'generate_adjoints(...)' works as expected.
//
// SHAPE DETAILS:
// gamma: must have rank 1, with the same span as input's channel axis.
// beta: must have rank 1, with the same span as input's channel axis.
// input: must have rank >= 2. The second dimension represents the channel axis
// and must have a span of at least 1.
// output[0]: shall have the same shape as 'input'.
// output[1]: shall have rank 1, with the same span as input's channel axis.
// output[2]: shall have rank 1, with the same span as input's channel axis.
NGRAPH_DEPRECATED_DOC
/// In this version of BatchNorm:
///
/// MEAN AND VARIANCE: computed directly from the content of 'input'.
///
/// OUTPUT VALUE: A tuple with the following structure:
/// [0] - The normalization of 'input'.
/// [1] - The per-channel means of (pre-normalized) 'input'.
/// [2] - The per-channel variances of (pre-normalized) 'input'.
///
/// AUTODIFF SUPPORT: yes: 'generate_adjoints(...)' works as expected.
///
/// SHAPE DETAILS:
/// gamma: must have rank 1, with the same span as input's channel axis.
/// beta: must have rank 1, with the same span as input's channel axis.
/// input: must have rank >= 2. The second dimension represents the channel axis
/// and must have a span of at least 1.
/// output[0]: shall have the same shape as 'input'.
/// output[1]: shall have rank 1, with the same span as input's channel axis.
/// output[2]: shall have rank 1, with the same span as input's channel axis.
NGRAPH_DEPRECATED
(
"Use another constructor"
)
BatchNormTraining
(
double
eps
,
std
::
shared_ptr
<
Node
>
gamma
,
std
::
shared_ptr
<
Node
>
beta
,
...
...
@@ -85,12 +87,12 @@ namespace ngraph
class
BatchNormInference
:
public
Op
{
public
:
// \param input [., C, ...]
// \param gamma gamma scaling for normalized value. [C]
// \param beta bias added to the scaled normalized value [C]
// \param mean value for mean normalization [C]
// \param variance value for variance normalization [C]
// \param epsilon Avoids divsion by 0 if input has 0 variance
//
/
\param input [., C, ...]
//
/
\param gamma gamma scaling for normalized value. [C]
//
/
\param beta bias added to the scaled normalized value [C]
//
/
\param mean value for mean normalization [C]
//
/
\param variance value for variance normalization [C]
//
/
\param epsilon Avoids divsion by 0 if input has 0 variance
BatchNormInference
(
std
::
shared_ptr
<
ngraph
::
Node
>
input
,
std
::
shared_ptr
<
ngraph
::
Node
>
gamma
,
std
::
shared_ptr
<
ngraph
::
Node
>
beta
,
...
...
@@ -98,24 +100,25 @@ namespace ngraph
std
::
shared_ptr
<
ngraph
::
Node
>
variance
,
double
epsilon
);
// \deprecated
// In this version of BatchNorm:
//
// MEAN AND VARIANCE: provided by the 'mean' and 'variance' parameters.
//
// OUTPUT VALUE: a single tensor with the normalized value of 'input'.
//
// AUTODIFF SUPPORT:
// - 'generate_adjoints(...) may throw an exception.
//
// SHAPE DETAILS:
// gamma: must have rank 1, with the same span as input's channel axis.
// beta: must have rank 1, with the same span as input's channel axis.
// input: must have rank >= 2. The second dimension represents the channel axis and
// must have a span of at least 1.
// mean: must have rank 1, with the same span as input's channel axis.
// variance: must have rank 1, with the same span as input's channel axis.
// output: shall have the same shape as 'input'.
NGRAPH_DEPRECATED_DOC
/// In this version of BatchNorm:
///
/// MEAN AND VARIANCE: provided by the 'mean' and 'variance' parameters.
///
/// OUTPUT VALUE: a single tensor with the normalized value of 'input'.
///
/// AUTODIFF SUPPORT:
/// - 'generate_adjoints(...) may throw an exception.
///
/// SHAPE DETAILS:
/// gamma: must have rank 1, with the same span as input's channel axis.
/// beta: must have rank 1, with the same span as input's channel axis.
/// input: must have rank >= 2. The second dimension represents the channel axis and
/// must have a span of at least 1.
/// mean: must have rank 1, with the same span as input's channel axis.
/// variance: must have rank 1, with the same span as input's channel axis.
/// output: shall have the same shape as 'input'.
NGRAPH_DEPRECATED
(
"Use another constructor"
)
BatchNormInference
(
double
eps
,
std
::
shared_ptr
<
ngraph
::
Node
>
gamma
,
std
::
shared_ptr
<
ngraph
::
Node
>
beta
,
...
...
@@ -157,7 +160,8 @@ namespace ngraph
std
::
shared_ptr
<
Node
>
delta
,
double
epsilon
);
// \deprecated
NGRAPH_DEPRECATED_DOC
NGRAPH_DEPRECATED
(
"Use another constructor"
)
BatchNormTrainingBackprop
(
double
epsilon
,
std
::
shared_ptr
<
Node
>
gamma
,
std
::
shared_ptr
<
Node
>
beta
,
...
...
src/ngraph/op/embedding_lookup.hpp
View file @
445c8158
...
...
@@ -24,7 +24,7 @@ namespace ngraph
{
namespace
op
{
// \brief Returns embeddings for given indices
//
/
\brief Returns embeddings for given indices
class
EmbeddingLookup
:
public
Op
{
public
:
...
...
src/ngraph/op/gather.hpp
View file @
445c8158
...
...
@@ -26,9 +26,9 @@ namespace ngraph
class
Gather
:
public
Op
{
public
:
// \param params The tensor from which slices are gathered
// \param indices Index tensor: Data type must be `element::i32` or `element::i64`
// \param axis Axis in params to gather
//
/
\param params The tensor from which slices are gathered
//
/
\param indices Index tensor: Data type must be `element::i32` or `element::i64`
//
/
\param axis Axis in params to gather
Gather
(
const
std
::
shared_ptr
<
Node
>&
params
,
const
std
::
shared_ptr
<
Node
>&
indices
,
size_t
axis
=
0
)
...
...
src/ngraph/op/gather_nd.hpp
View file @
445c8158
...
...
@@ -26,8 +26,8 @@ namespace ngraph
class
GatherND
:
public
Op
{
public
:
// \param params The tensor from which slices are gathered
// \param indices Index tensor: Data type must be `element::i32` or `element::i64`
//
/
\param params The tensor from which slices are gathered
//
/
\param indices Index tensor: Data type must be `element::i32` or `element::i64`
GatherND
(
const
std
::
shared_ptr
<
Node
>&
params
,
const
std
::
shared_ptr
<
Node
>&
indices
)
:
Op
(
"GatherND"
,
check_single_output_args
({
params
,
indices
}))
{
...
...
src/ngraph/op/scatter_add.hpp
View file @
445c8158
...
...
@@ -26,9 +26,9 @@ namespace ngraph
class
ScatterAdd
:
public
Op
{
public
:
// \param inputs Tensor
// \param indices Index tensor: Data type must be `element::i32` or `element::i64`
//
\param update
Tensor: Must have same type as inputs
//
/
\param inputs Tensor
//
/
\param indices Index tensor: Data type must be `element::i32` or `element::i64`
//
/ \param updates
Tensor: Must have same type as inputs
ScatterAdd
(
const
std
::
shared_ptr
<
Node
>&
inputs
,
const
std
::
shared_ptr
<
Node
>&
indices
,
const
std
::
shared_ptr
<
Node
>&
updates
)
...
...
src/ngraph/op/scatter_nd_add.hpp
View file @
445c8158
...
...
@@ -26,9 +26,9 @@ namespace ngraph
class
ScatterNDAdd
:
public
Op
{
public
:
// \param inputs Tensor
// \param indices Index tensor: Data type must be `element::i32` or `element::i64`
//
\param update
Tensor: Must have same type as inputs
//
/
\param inputs Tensor
//
/
\param indices Index tensor: Data type must be `element::i32` or `element::i64`
//
/ \param updates
Tensor: Must have same type as inputs
ScatterNDAdd
(
const
std
::
shared_ptr
<
Node
>&
inputs
,
const
std
::
shared_ptr
<
Node
>&
indices
,
const
std
::
shared_ptr
<
Node
>&
updates
)
...
...
src/ngraph/runtime/backend.hpp
View file @
445c8158
...
...
@@ -132,11 +132,11 @@ public:
virtual
void
remove_compiled_function
(
std
::
shared_ptr
<
Executable
>
exec
);
// \brief Return a backend specific op (that is not a core ngraph op).
// The string op_name is the requested op, which a backend may or may not implement.
// If unsupported, nullptr is returned, else a backend op is returned.
// The variadic input is used to pass inputs that the op constructor might take
// \param op_name is the name of the backend specific op
// \returns a shared pointer to the op if found, else nullptr
//
/
\brief Return a backend specific op (that is not a core ngraph op).
//
/
The string op_name is the requested op, which a backend may or may not implement.
//
/
If unsupported, nullptr is returned, else a backend op is returned.
//
/
The variadic input is used to pass inputs that the op constructor might take
//
/
\param op_name is the name of the backend specific op
//
/
\returns a shared pointer to the op if found, else nullptr
virtual
std
::
shared_ptr
<
ngraph
::
Node
>
get_backend_op
(
const
std
::
string
&
op_name
,
...);
};
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment