Commit 429776d2 authored by Amy Zhuang's avatar Amy Zhuang Committed by omarkanawi

Fold Constant + ConvertLayout to reduce memory footprint. (#3465)

* Fold Constant + ConvertLayout.

* Address PR Feedback.

* No folding if data layout is padded.

* Add unit test.

* Fix style error.
parent d218ccf9
...@@ -1244,6 +1244,7 @@ void runtime::cpu::CPU_ExternalFunction::register_common_passes( ...@@ -1244,6 +1244,7 @@ void runtime::cpu::CPU_ExternalFunction::register_common_passes(
REGISTER_KNOBBED_PASS_WITH_ARGS( REGISTER_KNOBBED_PASS_WITH_ARGS(
CommonSubexpressionElimination, true, ngraph::pass, runtime::cpu::get_cse_handlers_map()); CommonSubexpressionElimination, true, ngraph::pass, runtime::cpu::get_cse_handlers_map());
REGISTER_KNOBBED_PASS(CPUPostLayoutOptimizations, true, runtime::cpu::pass); REGISTER_KNOBBED_PASS(CPUPostLayoutOptimizations, true, runtime::cpu::pass);
REGISTER_KNOBBED_PASS(CPUConvertLayoutConstantFolding, true, runtime::cpu::pass);
REGISTER_KNOBBED_PASS(CPUMemoryOptimization, true, runtime::cpu::pass); REGISTER_KNOBBED_PASS(CPUMemoryOptimization, true, runtime::cpu::pass);
REGISTER_KNOBBED_PASS(GetOutputElementElimination, false, ngraph::pass); REGISTER_KNOBBED_PASS(GetOutputElementElimination, false, ngraph::pass);
REGISTER_KNOBBED_PASS_WITH_ARGS( REGISTER_KNOBBED_PASS_WITH_ARGS(
......
...@@ -22,6 +22,7 @@ ...@@ -22,6 +22,7 @@
#include "ngraph/log.hpp" #include "ngraph/log.hpp"
#include "ngraph/op/constant.hpp" #include "ngraph/op/constant.hpp"
#include "ngraph/op/convolution.hpp" #include "ngraph/op/convolution.hpp"
#include "ngraph/op/fused/group_conv.hpp"
#include "ngraph/op/parameter.hpp" #include "ngraph/op/parameter.hpp"
#include "ngraph/op/reshape.hpp" #include "ngraph/op/reshape.hpp"
#include "ngraph/op/slice.hpp" #include "ngraph/op/slice.hpp"
...@@ -30,11 +31,14 @@ ...@@ -30,11 +31,14 @@
#include "ngraph/pattern/matcher.hpp" #include "ngraph/pattern/matcher.hpp"
#include "ngraph/pattern/op/label.hpp" #include "ngraph/pattern/op/label.hpp"
#include "ngraph/pattern/op/skip.hpp" #include "ngraph/pattern/op/skip.hpp"
#include "ngraph/runtime/cpu/cpu_executor.hpp"
#include "ngraph/runtime/cpu/cpu_layout_descriptor.hpp" #include "ngraph/runtime/cpu/cpu_layout_descriptor.hpp"
#include "ngraph/runtime/cpu/cpu_op_annotations.hpp" #include "ngraph/runtime/cpu/cpu_op_annotations.hpp"
#include "ngraph/runtime/cpu/mkldnn_utils.hpp" #include "ngraph/runtime/cpu/mkldnn_utils.hpp"
#include "ngraph/runtime/cpu/op/convert_layout.hpp" #include "ngraph/runtime/cpu/op/convert_layout.hpp"
#include "ngraph/runtime/cpu/op/group_conv_bias.hpp"
#include "ngraph/runtime/cpu/pass/cpu_post_layout_optimizations.hpp" #include "ngraph/runtime/cpu/pass/cpu_post_layout_optimizations.hpp"
#include "ngraph/util.hpp"
using namespace ngraph; using namespace ngraph;
using namespace std; using namespace std;
...@@ -267,3 +271,238 @@ void ngraph::runtime::cpu::pass::CPUPostLayoutOptimizations:: ...@@ -267,3 +271,238 @@ void ngraph::runtime::cpu::pass::CPUPostLayoutOptimizations::
cvt_lt, "CPUPostLayoutOptimizations.ConstructReshapeConvertLayoutFusion"); cvt_lt, "CPUPostLayoutOptimizations.ConstructReshapeConvertLayoutFusion");
this->add_matcher(m, callback); this->add_matcher(m, callback);
} }
// fold Constant + ConvertLayout to Constant
template <typename T>
static shared_ptr<ngraph::op::Constant> fold_constant_convertlayout_helper(
const shared_ptr<op::Constant>& input,
const shared_ptr<runtime::cpu::op::ConvertLayout>& convertlayout,
mkldnn::memory::desc& input_desc,
mkldnn::memory::desc& result_desc)
{
std::vector<T> result_vec(convertlayout->output(0).get_tensor().size() /
input->get_element_type().size());
#if MKLDNN_VERSION_MAJOR < 1
if (input_desc.data.format == mkldnn_nchw && result_desc.data.format == mkldnn_goihw)
{
// becomes a copy
input_desc = result_desc;
}
else if ((input_desc.data.format == mkldnn_nchw || input_desc.data.format == mkldnn_nhwc) &&
result_desc.data.format == mkldnn_OIhw4i16o4i_s8s8)
{
input_desc.data.format = mkldnn_oihw;
}
else if (input_desc.data.format == mkldnn_nchw && input_desc.data.ndims == 4 &&
result_desc.data.ndims == 5 && convertlayout->get_users().size() == 1)
{
Shape weights_shape_groups;
if (auto gconv = std::dynamic_pointer_cast<ngraph::op::GroupConvolution>(
convertlayout->get_users()[0]))
{
weights_shape_groups = gconv->get_weights_dimensions();
}
else if (auto gconvb = std::dynamic_pointer_cast<ngraph::op::GroupConvolutionBias>(
convertlayout->get_users()[0]))
{
weights_shape_groups = gconvb->get_weights_dimensions();
}
else
{
throw ngraph_error("Incompatible input/output shape in ConvertLayout op");
}
input_desc = mkldnn::memory::desc(
mkldnn::memory::dims(weights_shape_groups.begin(), weights_shape_groups.end()),
runtime::cpu::mkldnn_utils::get_mkldnn_data_type(input->get_element_type()),
mkldnn::memory::format::goihw);
}
// build mkldnn primitive and execute
mkldnn::memory in{{input_desc, runtime::cpu::executor::global_cpu_engine},
const_cast<void*>(input->get_data_ptr())};
mkldnn::memory out{{result_desc, runtime::cpu::executor::global_cpu_engine}, result_vec.data()};
mkldnn::reorder reorder{in, out};
mkldnn::stream s(mkldnn::stream::kind::eager);
try
{
s.submit({reorder}).wait();
}
catch (const mkldnn::error& e)
{
throw ngraph_error("Could not run mkdnn primitive " + e.message);
}
#else
bool input_format_is_nchw = mkldnn_utils::mkldnn_md_matches_format_tag(
input_desc.data, mkldnn::memory::format_tag::nchw);
if (input_format_is_nchw && mkldnn_utils::mkldnn_md_matches_format_tag(
result_desc.data, mkldnn::memory::format_tag::goihw))
{
// becomes a copy
input_desc = result_desc;
}
else if ((input_format_is_nchw || mkldnn_utils::mkldnn_md_matches_format_tag(
input_desc.data, mkldnn::memory::format_tag::nhwc)) &&
(cpu::mkldnn_utils::mkldnn_md_matches_format_tag(
result_desc.data, mkldnn::memory::format_tag::OIhw4i16o4i) &&
// check if compensation is conv_s8s8(1U)
result_desc.data.extra.flags & 0x1U))
{
auto arg0_shape = output.get_shape();
input_desc =
mkldnn::memory::desc(mkldnn::memory::dims(arg0_shape.begin(), arg0_shape.end()),
mkldnn_utils::get_mkldnn_data_type(output.get_element_type()),
mkldnn::memory::format_tag::oihw);
}
else if (input_format_is_nchw && input_desc.data.ndims == 4 && result_desc.data.ndims == 5 &&
node->get_users().size() == 1)
{
Shape weights_shape_groups;
if (auto gconv =
std::dynamic_pointer_cast<ngraph::op::GroupConvolution>(node->get_users()[0]))
{
weights_shape_groups = gconv->get_weights_dimensions();
}
else if (auto gconvb = std::dynamic_pointer_cast<ngraph::op::GroupConvolutionBias>(
node->get_users()[0]))
{
weights_shape_groups = gconvb->get_weights_dimensions();
}
else
{
throw ngraph_error("Incompatible input/output shape in ConvertLayout op");
}
input_desc = mkldnn::memory::desc(
mkldnn::memory::dims(weights_shape_groups.begin(), weights_shape_groups.end()),
runtime::cpu::mkldnn_utils::get_mkldnn_data_type(input->get_element_type()),
mkldnn::memory::format_tag::goihw);
}
// build mkldnn primitive and execute
mkldnn::memory in{input_desc,
runtime::cpu::executor::global_cpu_engine,
const_cast<void*>(input->get_data_ptr())};
mkldnn::memory out{result_desc, runtime::cpu::executor::global_cpu_engine, result_vec.data()};
mkldnn::reorder reorder{in, out};
mkldnn::stream s(mkldnn::stream::kind::eager);
auto exec_args = {{MKLDNN_ARG_SRC, in}, {MKLDNN_ARG_DST, out}};
mkldnn::stream s(ngraph::cpu::executor::global_cpu_engine);
try
{
reorder.execute(s, exec_args);
s.wait();
}
catch (const mkldnn::error& e)
{
throw ngraph_error("Could not run mkdnn primitive " + std::string(e.message));
}
#endif
return make_shared<ngraph::op::Constant>(
convertlayout->get_output_element_type(0), convertlayout->get_output_shape(0), result_vec);
}
bool ngraph::runtime::cpu::pass::CPUConvertLayoutConstantFolding::run_on_function(
std::shared_ptr<ngraph::Function> function)
{
auto replace = false;
for (auto n : function->get_ordered_ops())
{
if (dynamic_pointer_cast<runtime::cpu::op::ConvertLayout>(n))
{
auto m_convertlayout = static_pointer_cast<runtime::cpu::op::ConvertLayout>(n);
auto output_md = mkldnn_utils::get_output_mkldnn_md(m_convertlayout.get(), 0);
// do not do constant folding if the output is padded data layout
if (mkldnn_utils::is_mkldnn_padded_layout(
output_md, ngraph::get_default_order(m_convertlayout->get_output_shape(0))))
{
continue;
}
auto arg = m_convertlayout->input(0).get_source_output().get_node_shared_ptr();
if (dynamic_pointer_cast<ngraph::op::Constant>(arg))
{
auto m_input = static_pointer_cast<ngraph::op::Constant>(arg);
auto input_md = mkldnn_utils::get_input_mkldnn_md(m_convertlayout.get(), 0);
std::shared_ptr<ngraph::op::Constant> replacement;
switch (m_input->get_element_type())
{
case element::Type_t::undefined:
NGRAPH_CHECK(
false,
"Encountered 'undefined' element type in construct_constant_convertlayout");
break;
case element::Type_t::dynamic:
NGRAPH_CHECK(
false,
"Encountered 'dynamic' element type in construct_constant_convertlayout");
break;
case element::Type_t::boolean:
replacement = fold_constant_convertlayout_helper<char>(
m_input, m_convertlayout, input_md, output_md);
break;
case element::Type_t::bf16:
replacement = fold_constant_convertlayout_helper<bfloat16>(
m_input, m_convertlayout, input_md, output_md);
break;
case element::Type_t::f16:
replacement = fold_constant_convertlayout_helper<float16>(
m_input, m_convertlayout, input_md, output_md);
break;
case element::Type_t::f32:
replacement = fold_constant_convertlayout_helper<float>(
m_input, m_convertlayout, input_md, output_md);
break;
case element::Type_t::f64:
replacement = fold_constant_convertlayout_helper<double>(
m_input, m_convertlayout, input_md, output_md);
break;
case element::Type_t::i8:
replacement = fold_constant_convertlayout_helper<int8_t>(
m_input, m_convertlayout, input_md, output_md);
break;
case element::Type_t::i16:
replacement = fold_constant_convertlayout_helper<int16_t>(
m_input, m_convertlayout, input_md, output_md);
break;
case element::Type_t::i32:
replacement = fold_constant_convertlayout_helper<int32_t>(
m_input, m_convertlayout, input_md, output_md);
break;
case element::Type_t::i64:
replacement = fold_constant_convertlayout_helper<int64_t>(
m_input, m_convertlayout, input_md, output_md);
break;
case element::Type_t::u8:
replacement = fold_constant_convertlayout_helper<uint8_t>(
m_input, m_convertlayout, input_md, output_md);
break;
case element::Type_t::u16:
replacement = fold_constant_convertlayout_helper<uint16_t>(
m_input, m_convertlayout, input_md, output_md);
break;
case element::Type_t::u32:
replacement = fold_constant_convertlayout_helper<uint32_t>(
m_input, m_convertlayout, input_md, output_md);
break;
case element::Type_t::u64:
replacement = fold_constant_convertlayout_helper<uint64_t>(
m_input, m_convertlayout, input_md, output_md);
break;
}
auto tv = replacement->get_output_tensor_ptr(0);
auto layout = std::make_shared<ngraph::runtime::cpu::LayoutDescriptor>(*tv);
layout->set_mkldnn_md(output_md);
tv->set_tensor_layout(layout);
replace_node(n, replacement);
replace = true;
}
}
}
return replace;
}
...@@ -27,6 +27,7 @@ namespace ngraph ...@@ -27,6 +27,7 @@ namespace ngraph
namespace pass namespace pass
{ {
class CPUPostLayoutOptimizations; class CPUPostLayoutOptimizations;
class CPUConvertLayoutConstantFolding;
} }
} }
} }
...@@ -47,3 +48,11 @@ public: ...@@ -47,3 +48,11 @@ public:
void construct_slice_convertLayout_fusion(); void construct_slice_convertLayout_fusion();
void construct_reshape_convertLayout_fusion(); void construct_reshape_convertLayout_fusion();
}; };
class CPU_BACKEND_API ngraph::runtime::cpu::pass::CPUConvertLayoutConstantFolding
: public ngraph::pass::FunctionPass
{
public:
CPUConvertLayoutConstantFolding() {}
virtual bool run_on_function(std::shared_ptr<ngraph::Function> function) override;
};
...@@ -1051,6 +1051,29 @@ TEST(cpu_test, thread_safe_calls_convolution_2d_2items) ...@@ -1051,6 +1051,29 @@ TEST(cpu_test, thread_safe_calls_convolution_2d_2items)
unset_environment("NGRAPH_CPU_CONCURRENCY"); unset_environment("NGRAPH_CPU_CONCURRENCY");
} }
TEST(cpu_test, constant_convertlayout)
{
Shape data_shape{1, 64, 56, 56};
auto data = make_shared<op::Parameter>(element::f32, data_shape);
Shape weights_shape{64, 64, 3, 3};
test::Uniform<float> rng(-100.0f, 100.0f);
vector<float> values_in(shape_size(weights_shape));
rng.initialize(values_in);
auto weights = make_shared<op::Constant>(element::f32, weights_shape, values_in);
Shape bias_shape{64};
auto bias = make_shared<op::Parameter>(element::f32, bias_shape);
auto conv = std::make_shared<op::Convolution>(data, weights, Strides{1, 1}, Strides{1, 1});
auto convbias = make_shared<op::ConvolutionBias>(conv, bias);
auto f = make_shared<Function>(convbias, ParameterVector{data, bias});
auto backend = runtime::Backend::create("CPU");
auto handle = backend->compile(f);
size_t convert_layout = count_ops_of_type<runtime::cpu::op::ConvertLayout>(f);
ASSERT_EQ(convert_layout, 1);
}
TEST(cpu_test, constant_reshape) TEST(cpu_test, constant_reshape)
{ {
Shape shape_in{2, 4}; Shape shape_in{2, 4};
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment