Commit 3f9b5ff1 authored by Robert Kimball's avatar Robert Kimball

cleanup

parent 61d877ff
...@@ -15,13 +15,13 @@ ...@@ -15,13 +15,13 @@
//***************************************************************************** //*****************************************************************************
#include "benchmark.hpp" #include "benchmark.hpp"
#include "benchmark_utils.hpp"
#include "ngraph/file_util.hpp" #include "ngraph/file_util.hpp"
#include "ngraph/runtime/backend.hpp" #include "ngraph/runtime/backend.hpp"
#include "ngraph/runtime/host_tensor.hpp" #include "ngraph/runtime/host_tensor.hpp"
#include "ngraph/runtime/tensor.hpp" #include "ngraph/runtime/tensor.hpp"
#include "ngraph/serializer.hpp" #include "ngraph/serializer.hpp"
#include "ngraph/util.hpp" #include "ngraph/util.hpp"
#include "benchmark_utils.hpp"
using namespace std; using namespace std;
using namespace ngraph; using namespace ngraph;
......
...@@ -78,7 +78,6 @@ static void ...@@ -78,7 +78,6 @@ static void
{ {
while (current_iteration < s_iterations + s_warmup_iterations) while (current_iteration < s_iterations + s_warmup_iterations)
{ {
NGRAPH_INFO;
unique_lock<mutex> lock(s_mutex); unique_lock<mutex> lock(s_mutex);
if ((current_iteration & 1) != pipeline_stage) if ((current_iteration & 1) != pipeline_stage)
{ {
...@@ -102,7 +101,6 @@ vector<runtime::PerformanceCounter> run_benchmark_pipelined(shared_ptr<Function> ...@@ -102,7 +101,6 @@ vector<runtime::PerformanceCounter> run_benchmark_pipelined(shared_ptr<Function>
int warmup_iterations, int warmup_iterations,
bool copy_data) bool copy_data)
{ {
NGRAPH_INFO;
constexpr size_t pipeline_depth = 2; constexpr size_t pipeline_depth = 2;
s_iterations = iterations; s_iterations = iterations;
s_warmup_iterations = warmup_iterations; s_warmup_iterations = warmup_iterations;
...@@ -170,7 +168,6 @@ vector<runtime::PerformanceCounter> run_benchmark_pipelined(shared_ptr<Function> ...@@ -170,7 +168,6 @@ vector<runtime::PerformanceCounter> run_benchmark_pipelined(shared_ptr<Function>
for (size_t i = 0; i < pipeline_depth; i++) for (size_t i = 0; i < pipeline_depth; i++)
{ {
threads[i] = thread(thread_entry, exec.get(), tensor_collections[i], i); threads[i] = thread(thread_entry, exec.get(), tensor_collections[i], i);
// threads[i] = thread(thread_entry, i);
} }
for (size_t i = 0; i < pipeline_depth; i++) for (size_t i = 0; i < pipeline_depth; i++)
...@@ -178,62 +175,6 @@ vector<runtime::PerformanceCounter> run_benchmark_pipelined(shared_ptr<Function> ...@@ -178,62 +175,6 @@ vector<runtime::PerformanceCounter> run_benchmark_pipelined(shared_ptr<Function>
threads[i].join(); threads[i].join();
} }
// // Before we start we write the first iteration's data
// size_t buffer_number = 0;
// auto args = input_tensors_array[buffer_number];
// auto args_data = parameters_data_set[buffer_number];
// for (size_t arg_index = 0; arg_index < args.size(); arg_index++)
// {
// const shared_ptr<runtime::Tensor>& arg = args[arg_index];
// const shared_ptr<runtime::HostTensor>& data = args_data[arg_index];
// arg->begin_write(data->get_data_ptr(),
// data->get_element_count() * data->get_element_type().size(),
// buffer_number);
// }
// const vector<shared_ptr<runtime::Tensor>>& results = output_tensors[buffer_number];
// const vector<shared_ptr<runtime::HostTensor>>& results_data = results_data_set[buffer_number];
// for (size_t i = 0; i < iterations + warmup_iterations; i++)
// {
// if (i == warmup_iterations)
// {
// t1.start();
// }
// future<void> exec_future = exec->begin_execute(results, args);
// if (i > 0)
// {
// for (size_t result_index = 0; result_index < results.size(); result_index++)
// {
// const shared_ptr<runtime::HostTensor>& data = results_data[result_index];
// const shared_ptr<runtime::Tensor>& result = results[result_index];
// result->begin_read(data->get_data_ptr(),
// data->get_element_count() * data->get_element_type().size(),
// (buffer_number - 1) & 1);
// }
// }
// buffer_number = (buffer_number + 1) & 1;
// for (size_t arg_index = 0; arg_index < args.size(); arg_index++)
// {
// const shared_ptr<runtime::Tensor>& arg = args[arg_index];
// const shared_ptr<runtime::HostTensor>& data = args_data[arg_index];
// arg->begin_write(data->get_data_ptr(),
// data->get_element_count() * data->get_element_type().size(),
// buffer_number);
// }
// exec_future.get();
// }
// for (size_t result_index = 0; result_index < results.size(); result_index++)
// {
// const shared_ptr<runtime::HostTensor>& data = results_data[result_index];
// const shared_ptr<runtime::Tensor>& result = results[result_index];
// result->begin_read(data->get_data_ptr(),
// data->get_element_count() * data->get_element_type().size(),
// (buffer_number - 1) & 1);
// }
// t1.stop();
// float time = t1.get_milliseconds();
// cout << time / iterations << "ms per iteration" << endl;
vector<runtime::PerformanceCounter> perf_data = exec->get_performance_data(); vector<runtime::PerformanceCounter> perf_data = exec->get_performance_data();
return perf_data; return perf_data;
} }
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment