Commit 397740fe authored by Rob Earhart's avatar Rob Earhart Committed by Scott Cyphers

Update PlaidML backend for current nGraph (#3030)

* Rename PlaidML_Executable::save -> save_as_format

* Repair regression in PlaidML tensor impl

This was caused by the recent removal of the offset parameter for tensor read/write operations -- we missed a
spot where read/write were being called for synchronization purposes.

* Disable a few more PlaidML tests pending triage

* Skip elision of reshape->reshape

It turns out this doesn't work, because the downstream reshape's input_order axis vector is incorrect if the
upstream reshape is removed.

* Add element type to PlaidML tensor debug output

* Use nGraph booleans for PlaidML boolean data

We'd previously been using i8; that's been deprecated for boolean data now that we have an explicit boolean
element type.

* Set PlaidML convolution output shapes correctly

We weren't transposing the output shape; we were computing the right data, but the incorrect shape metadata
causes validation to fail.

* Add a PlaidML implicit broadcast op

Better nGraph shape validation was tripping up PlaidML's use of a reshape to replace explicit broadcasts with
implicit NumPy-style broadcasts (since the reshape's output shape would be incorrect for the downstream
elementwise operation).  Adding this implicit broadcast operation lets PlaidML tell nGraph something useful
about the shapes, making validation pass (when it's otherwise correct).
parent f0552cc8
...@@ -71,8 +71,7 @@ pass::PrefixReshapeElimination::PrefixReshapeElimination() ...@@ -71,8 +71,7 @@ pass::PrefixReshapeElimination::PrefixReshapeElimination()
element::i8, element::i8,
Shape{}, Shape{},
[](shared_ptr<Node> node) { [](shared_ptr<Node> node) {
return pattern::has_class<op::Reshape>()(node) || return pattern::has_class<op::util::UnaryElementwiseArithmetic>()(node) ||
pattern::has_class<op::util::UnaryElementwiseArithmetic>()(node) ||
pattern::has_class<op::util::BinaryElementwiseArithmetic>()(node); pattern::has_class<op::util::BinaryElementwiseArithmetic>()(node);
}, },
NodeVector{reshape_op}); NodeVector{reshape_op});
......
...@@ -33,6 +33,7 @@ set(SRC ...@@ -33,6 +33,7 @@ set(SRC
plaidml_ops_convolution.cpp plaidml_ops_convolution.cpp
plaidml_ops_dot.cpp plaidml_ops_dot.cpp
plaidml_ops_general.cpp plaidml_ops_general.cpp
plaidml_ops_implicit_broadcast.cpp
plaidml_ops_index_reduction.cpp plaidml_ops_index_reduction.cpp
plaidml_ops_io.cpp plaidml_ops_io.cpp
plaidml_ops_local_response_norm.cpp plaidml_ops_local_response_norm.cpp
......
...@@ -49,13 +49,14 @@ namespace ...@@ -49,13 +49,14 @@ namespace
{ {
ngraph::descriptor::Tensor* tensor = op_input.get_output().get_tensor_ptr().get(); ngraph::descriptor::Tensor* tensor = op_input.get_output().get_tensor_ptr().get();
PLAIDML_DEBUG << "Input: descriptor::Tensor " << tensor << " " PLAIDML_DEBUG << "Input: descriptor::Tensor " << tensor << " "
<< op.get_input_shape(op_input.get_index()); << op.get_input_shape(op_input.get_index())
<< op.get_input_element_type(op_input.get_index());
} }
for (std::size_t out_idx = 0; out_idx < op.get_output_size(); ++out_idx) for (std::size_t out_idx = 0; out_idx < op.get_output_size(); ++out_idx)
{ {
ngraph::descriptor::Tensor* tensor = op.get_output_tensor_ptr(out_idx).get(); ngraph::descriptor::Tensor* tensor = op.get_output_tensor_ptr(out_idx).get();
PLAIDML_DEBUG << "Output: descriptor::Tensor " << tensor << " " PLAIDML_DEBUG << "Output: descriptor::Tensor " << tensor << " "
<< op.get_output_shape(out_idx); << op.get_output_shape(out_idx) << op.get_output_element_type(out_idx);
} }
for (auto* t : op.liveness_new_list) for (auto* t : op.liveness_new_list)
{ {
......
...@@ -129,7 +129,7 @@ std::vector<ngraph::runtime::PerformanceCounter> ...@@ -129,7 +129,7 @@ std::vector<ngraph::runtime::PerformanceCounter>
return std::vector<ngraph::runtime::PerformanceCounter>{}; return std::vector<ngraph::runtime::PerformanceCounter>{};
} }
void ngraph::runtime::plaidml::PlaidML_Executable::save(const std::string& filename, void ngraph::runtime::plaidml::PlaidML_Executable::save_as_format(const std::string& filename,
plaidml_file_format format) const plaidml_file_format format) const
{ {
std::lock_guard<std::mutex> lock{m_mu}; std::lock_guard<std::mutex> lock{m_mu};
......
...@@ -51,7 +51,7 @@ public: ...@@ -51,7 +51,7 @@ public:
std::vector<PerformanceCounter> get_performance_data() const final; std::vector<PerformanceCounter> get_performance_data() const final;
void save(const std::string& filename, plaidml_file_format format) const; void save_as_format(const std::string& filename, plaidml_file_format format) const;
const std::shared_ptr<Function>& src_func() const { return m_src_func; } const std::shared_ptr<Function>& src_func() const { return m_src_func; }
private: private:
......
...@@ -52,7 +52,13 @@ ngraph::runtime::plaidml::op::Convolution::Convolution(std::shared_ptr<ngraph::o ...@@ -52,7 +52,13 @@ ngraph::runtime::plaidml::op::Convolution::Convolution(std::shared_ptr<ngraph::o
void ngraph::runtime::plaidml::op::Convolution::validate_and_infer_types() void ngraph::runtime::plaidml::op::Convolution::validate_and_infer_types()
{ {
set_output_type(0, m_src->get_element_type(), m_src->get_output_partial_shape(0)); auto src_shape = m_src->get_output_shape(0);
Shape out_shape(src_shape.size());
for (std::size_t idx = 0; idx < src_shape.size(); ++idx)
{
out_shape[idx] = src_shape.at(m_output_axes.at(idx));
}
set_output_type(0, m_src->get_element_type(), out_shape);
} }
std::shared_ptr<ngraph::Node> std::shared_ptr<ngraph::Node>
...@@ -83,7 +89,13 @@ ngraph::runtime::plaidml::op::ConvolutionBackpropData::ConvolutionBackpropData( ...@@ -83,7 +89,13 @@ ngraph::runtime::plaidml::op::ConvolutionBackpropData::ConvolutionBackpropData(
void ngraph::runtime::plaidml::op::ConvolutionBackpropData::validate_and_infer_types() void ngraph::runtime::plaidml::op::ConvolutionBackpropData::validate_and_infer_types()
{ {
set_output_type(0, m_src->get_element_type(), m_src->get_output_partial_shape(0)); auto src_shape = m_src->get_output_shape(0);
Shape out_shape(src_shape.size());
for (std::size_t idx = 0; idx < src_shape.size(); ++idx)
{
out_shape[idx] = src_shape.at(m_output_axes.at(idx));
}
set_output_type(0, m_src->get_element_type(), out_shape);
} }
std::shared_ptr<ngraph::Node> std::shared_ptr<ngraph::Node>
...@@ -115,7 +127,13 @@ ngraph::runtime::plaidml::op::ConvolutionBackpropFilters::ConvolutionBackpropFil ...@@ -115,7 +127,13 @@ ngraph::runtime::plaidml::op::ConvolutionBackpropFilters::ConvolutionBackpropFil
void ngraph::runtime::plaidml::op::ConvolutionBackpropFilters::validate_and_infer_types() void ngraph::runtime::plaidml::op::ConvolutionBackpropFilters::validate_and_infer_types()
{ {
set_output_type(0, m_src->get_element_type(), m_src->get_output_partial_shape(0)); auto src_shape = m_src->get_output_shape(0);
Shape out_shape(src_shape.size());
for (std::size_t idx = 0; idx < src_shape.size(); ++idx)
{
out_shape[idx] = src_shape.at(m_output_axes.at(idx));
}
set_output_type(0, m_src->get_element_type(), out_shape);
} }
std::shared_ptr<ngraph::Node> std::shared_ptr<ngraph::Node>
......
//*****************************************************************************
// Copyright 2017-2019 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#include "ngraph/runtime/plaidml/plaidml_ops_implicit_broadcast.hpp"
#include "ngraph/runtime/plaidml/plaidml_impl.hpp"
namespace vp = vertexai::plaidml;
namespace ngraph
{
namespace runtime
{
namespace plaidml
{
NGRAPH_PLAIDML_OP_CLASS(ImplImplicitBroadcast, OpImpl<plaidml::op::ImplicitBroadcast>);
}
}
}
ngraph::runtime::plaidml::op::ImplicitBroadcast::ImplicitBroadcast(std::shared_ptr<Node> input,
const Shape& shape)
: Op{"ImplicitBroadcast", {input}}
, m_shape{shape}
{
constructor_validate_and_infer_types();
}
void ngraph::runtime::plaidml::op::ImplicitBroadcast::validate_and_infer_types()
{
set_output_type(0, input(0).get_element_type(), m_shape);
}
std::shared_ptr<ngraph::Node> ngraph::runtime::plaidml::op::ImplicitBroadcast::copy_with_new_args(
const NodeVector& new_args) const
{
if (new_args.size() != 1)
{
throw ngraph_error{"Implicit broadcast requires a single input"};
}
return std::make_shared<ImplicitBroadcast>(new_args.at(0), m_shape);
}
void ngraph::runtime::plaidml::ImplImplicitBroadcast::Apply()
{
check_inputs(1);
check_outputs(1);
set_output(op_input(0));
}
//*****************************************************************************
// Copyright 2017-2019 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#pragma once
#include <memory>
#include "ngraph/op/op.hpp"
namespace ngraph
{
namespace runtime
{
namespace plaidml
{
namespace op
{
// Implements NumPy-style broadcast semantics by passing its single argument through to its
// output and pretending that this changes the shape. The creator of this node is responsible
// for ensuring that the downstream operation will perform a NumPy-style broadcast.
class ImplicitBroadcast;
}
}
}
}
class ngraph::runtime::plaidml::op::ImplicitBroadcast final : public ngraph::op::Op
{
public:
ImplicitBroadcast(std::shared_ptr<Node> input, const Shape& shape);
void validate_and_infer_types() final;
std::shared_ptr<Node> copy_with_new_args(const NodeVector& new_args) const final;
private:
Shape m_shape;
};
...@@ -84,8 +84,8 @@ void ngraph::runtime::plaidml::pass::ExplicitLogicals::construct_logical_to_data ...@@ -84,8 +84,8 @@ void ngraph::runtime::plaidml::pass::ExplicitLogicals::construct_logical_to_data
"Tile", "Tile",
"function (I) -> (O) { O = as_int(I ? 1 : 0, 8);}", "function (I) -> (O) { O = as_int(I ? 1 : 0, 8);}",
NodeVector{producer}, NodeVector{producer},
std::vector<std::tuple<element::Type, PartialShape>>{ std::vector<std::tuple<element::Type, PartialShape>>{{std::make_tuple(
{std::make_tuple(element::i8, PartialShape{producer->get_output_shape(0)})}})); element::boolean, PartialShape{producer->get_output_shape(0)})}}));
return true; return true;
}; };
......
...@@ -23,30 +23,37 @@ ...@@ -23,30 +23,37 @@
#include "ngraph/pattern/matcher.hpp" #include "ngraph/pattern/matcher.hpp"
#include "ngraph/pattern/op/any_of.hpp" #include "ngraph/pattern/op/any_of.hpp"
#include "ngraph/pattern/op/label.hpp" #include "ngraph/pattern/op/label.hpp"
#include "ngraph/runtime/plaidml/plaidml_ops_implicit_broadcast.hpp"
ngraph::runtime::plaidml::pass::ImplicitBroadcast::ImplicitBroadcast() ngraph::runtime::plaidml::pass::ImplicitBroadcast::ImplicitBroadcast()
{ {
auto src_op = std::make_shared<pattern::op::Label>( auto src_op = std::make_shared<pattern::op::Label>(
element::i8, Shape{}, [](std::shared_ptr<Node>) { return true; }); element::i8, Shape{}, [](std::shared_ptr<Node>) { return true; });
auto broadcast_op = std::make_shared<op::Broadcast>(src_op, Shape{}, AxisSet{}); auto broadcast_op = std::make_shared<ngraph::op::Broadcast>(src_op, Shape{}, AxisSet{});
auto target_op = std::make_shared<pattern::op::AnyOf>( auto target_op = std::make_shared<pattern::op::AnyOf>(
element::i8, element::i8,
Shape{}, Shape{},
[](std::shared_ptr<Node> node) { [](std::shared_ptr<Node> node) {
return pattern::has_class<op::util::UnaryElementwiseArithmetic>()(node) || return pattern::has_class<ngraph::op::util::UnaryElementwiseArithmetic>()(node) ||
pattern::has_class<op::util::BinaryElementwiseArithmetic>()(node); pattern::has_class<ngraph::op::util::BinaryElementwiseArithmetic>()(node);
}, },
NodeVector{broadcast_op}); NodeVector{broadcast_op});
auto callback = [](pattern::Matcher& m) { auto callback = [](pattern::Matcher& m) {
// Since the broadcast is going to an elementwise operation, we // Since the broadcast is going to an elementwise operation, we
// can always replace it with an equivalent reshape that uses ones // can always replace it with an equivalent reshape that uses ones
// for the broadcast axes. // for the broadcast axes, followed by a fake op that fixes up the
// shape.
auto src = m.get_matched_nodes().at(2); auto src = m.get_matched_nodes().at(2);
Shape src_shape = src->get_shape(); Shape src_shape = src->get_shape();
auto broadcast = std::static_pointer_cast<op::Broadcast>(m.get_matched_nodes().at(1)); auto broadcast =
std::static_pointer_cast<ngraph::op::Broadcast>(m.get_matched_nodes().at(1));
if (src_shape.size())
{
// Create a reshape operation to get the right target broadcast shape. (Note that a zero-D tensor
// or constant can be passed directly into the ImplicitBroadcast op).
AxisVector reshape_order; AxisVector reshape_order;
Shape reshape_shape; Shape reshape_shape;
std::size_t input_dim = 0; std::size_t input_dim = 0;
...@@ -63,10 +70,13 @@ ngraph::runtime::plaidml::pass::ImplicitBroadcast::ImplicitBroadcast() ...@@ -63,10 +70,13 @@ ngraph::runtime::plaidml::pass::ImplicitBroadcast::ImplicitBroadcast()
reshape_shape.emplace_back(src_shape.at(input_dim++)); reshape_shape.emplace_back(src_shape.at(input_dim++));
} }
} }
src = std::make_shared<ngraph::op::Reshape>(src, reshape_order, reshape_shape);
}
auto reshape = std::make_shared<op::Reshape>(src, reshape_order, reshape_shape); auto implicit_broadcast =
std::make_shared<plaidml::op::ImplicitBroadcast>(src, broadcast->get_shape());
replace_node(broadcast, reshape); replace_node(broadcast, implicit_broadcast);
return true; return true;
}; };
......
...@@ -118,7 +118,7 @@ void ngraph::runtime::plaidml::PlaidML_Tensor::sync_input() ...@@ -118,7 +118,7 @@ void ngraph::runtime::plaidml::PlaidML_Tensor::sync_input()
return; return;
} }
NGRAPH_DEBUG << "Syncing input for tensor " << this; NGRAPH_DEBUG << "Syncing input for tensor " << this;
write(m_memory, 0, m_memory_size); write(m_memory, m_memory_size);
} }
void ngraph::runtime::plaidml::PlaidML_Tensor::sync_output() void ngraph::runtime::plaidml::PlaidML_Tensor::sync_output()
...@@ -132,5 +132,5 @@ void ngraph::runtime::plaidml::PlaidML_Tensor::sync_output() ...@@ -132,5 +132,5 @@ void ngraph::runtime::plaidml::PlaidML_Tensor::sync_output()
return; return;
} }
NGRAPH_DEBUG << "Syncing output for tensor " << this; NGRAPH_DEBUG << "Syncing output for tensor " << this;
read(m_memory, 0, m_memory_size); read(m_memory, m_memory_size);
} }
...@@ -255,3 +255,6 @@ backwards_softmax_all ...@@ -255,3 +255,6 @@ backwards_softmax_all
backwards_softmax_axis backwards_softmax_axis
backwards_softmax_underflow backwards_softmax_underflow
backwards_softmax_3d backwards_softmax_3d
batch_mat_mul_forward
dot_matrix_2x0_0x2
backwards_batchmatmul_tensor2_tensor2
...@@ -143,7 +143,8 @@ OPTIONS ...@@ -143,7 +143,8 @@ OPTIONS
} }
auto exec = backend->compile(f); auto exec = backend->compile(f);
static_cast<ngraph::runtime::plaidml::PlaidML_Executable*>(exec.get())->save(output, format); static_cast<ngraph::runtime::plaidml::PlaidML_Executable*>(exec.get())
->save_as_format(output, format);
std::cerr << "Wrote output to " << output << "\n"; std::cerr << "Wrote output to " << output << "\n";
return EXIT_SUCCESS; return EXIT_SUCCESS;
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment