Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
N
ngraph
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
ngraph
Commits
36dc8353
Unverified
Commit
36dc8353
authored
Jun 27, 2019
by
Tomasz Dołbniak
Committed by
GitHub
Jun 27, 2019
Browse files
Options
Browse Files
Download
Plain Diff
Merge branch 'master' into ldurka/onnxruntime_ci
parents
d368fcec
d4982dd1
Hide whitespace changes
Inline
Side-by-side
Showing
16 changed files
with
681 additions
and
40 deletions
+681
-40
CMakeLists.txt
src/ngraph/frontend/onnx_import/CMakeLists.txt
+5
-0
exceptions.cpp
src/ngraph/frontend/onnx_import/exceptions.cpp
+38
-0
exceptions.hpp
src/ngraph/frontend/onnx_import/exceptions.hpp
+24
-0
instance_norm.cpp
src/ngraph/frontend/onnx_import/op/instance_norm.cpp
+95
-0
instance_norm.hpp
src/ngraph/frontend/onnx_import/op/instance_norm.hpp
+47
-0
lp_norm.cpp
src/ngraph/frontend/onnx_import/op/lp_norm.cpp
+66
-0
lp_norm.hpp
src/ngraph/frontend/onnx_import/op/lp_norm.hpp
+48
-0
lp_pool.cpp
src/ngraph/frontend/onnx_import/op/lp_pool.cpp
+1
-0
lp_pool.hpp
src/ngraph/frontend/onnx_import/op/lp_pool.hpp
+0
-2
supported_ops.md
src/ngraph/frontend/onnx_import/op/supported_ops.md
+3
-5
ops_bridge.cpp
src/ngraph/frontend/onnx_import/ops_bridge.cpp
+4
-0
instance_norm.prototxt
test/models/onnx/instance_norm.prototxt
+92
-0
lp_norm_default.prototxt
test/models/onnx/lp_norm_default.prototxt
+51
-0
lp_norm_p1.prototxt
test/models/onnx/lp_norm_p1.prototxt
+61
-0
lp_norm_p2.prototxt
test/models/onnx/lp_norm_p2.prototxt
+61
-0
onnx_import.in.cpp
test/onnx/onnx_import.in.cpp
+85
-33
No files found.
src/ngraph/frontend/onnx_import/CMakeLists.txt
View file @
36dc8353
...
...
@@ -37,6 +37,7 @@ add_library(onnx_import STATIC
core/operator_set.hpp
core/tensor.hpp
core/value_info.hpp
exceptions.cpp
exceptions.hpp
op/acos.hpp
op/acosh.cpp
...
...
@@ -103,11 +104,15 @@ add_library(onnx_import STATIC
op/hardmax.cpp
op/hardmax.hpp
op/identity.hpp
op/instance_norm.cpp
op/instance_norm.hpp
op/leaky_relu.cpp
op/leaky_relu.hpp
op/less.hpp
op/log.hpp
op/log_softmax.hpp
op/lp_norm.cpp
op/lp_norm.hpp
op/lp_pool.cpp
op/lp_pool.hpp
op/lrn.cpp
...
...
src/ngraph/frontend/onnx_import/exceptions.cpp
0 → 100644
View file @
36dc8353
//*****************************************************************************
// Copyright 2017-2019 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#include <sstream>
#include "exceptions.hpp"
namespace
ngraph
{
namespace
onnx_import
{
namespace
error
{
namespace
detail
{
std
::
string
get_error_msg_prefix
(
const
Node
&
node
)
{
std
::
stringstream
ss
;
ss
<<
"While validating ONNX node '"
<<
node
<<
"'"
;
return
ss
.
str
();
}
}
}
}
}
src/ngraph/frontend/onnx_import/exceptions.hpp
View file @
36dc8353
...
...
@@ -16,7 +16,11 @@
#pragma once
#include <string>
#include "core/node.hpp"
#include "ngraph/assertion.hpp"
#include "ngraph/check.hpp"
#include "ngraph/except.hpp"
namespace
ngraph
...
...
@@ -25,6 +29,11 @@ namespace ngraph
{
namespace
error
{
namespace
detail
{
std
::
string
get_error_msg_prefix
(
const
Node
&
node
);
}
struct
NotSupported
:
AssertionFailure
{
explicit
NotSupported
(
const
std
::
string
&
what_arg
)
...
...
@@ -41,6 +50,17 @@ namespace ngraph
}
};
class
NodeValidationFailure
:
public
CheckFailure
{
public
:
NodeValidationFailure
(
const
CheckLocInfo
&
check_loc_info
,
const
Node
&
node
,
const
std
::
string
&
explanation
)
:
CheckFailure
(
check_loc_info
,
detail
::
get_error_msg_prefix
(
node
),
explanation
)
{
}
};
}
// namespace error
}
// namespace onnx_import
...
...
@@ -54,3 +74,7 @@ namespace ngraph
NGRAPH_ASSERT_STREAM_DO_NOT_USE_IN_NEW_CODE(ngraph::onnx_import::error::InvalidArgument, \
cond_) \
<< (node_) << " "
#define CHECK_VALID_NODE(node_, cond_, ...) \
NGRAPH_CHECK_HELPER( \
::ngraph::onnx_import::error::NodeValidationFailure, (node_), (cond_), ##__VA_ARGS__)
src/ngraph/frontend/onnx_import/op/instance_norm.cpp
0 → 100644
View file @
36dc8353
//*****************************************************************************
// Copyright 2017-2019 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#include <cmath>
#include <cstddef>
#include "exceptions.hpp"
#include "instance_norm.hpp"
#include "ngraph/axis_set.hpp"
#include "ngraph/builder/reduce_ops.hpp"
#include "ngraph/op/add.hpp"
#include "ngraph/op/broadcast.hpp"
#include "ngraph/op/constant.hpp"
#include "ngraph/op/divide.hpp"
#include "ngraph/op/divide.hpp"
#include "ngraph/op/multiply.hpp"
#include "ngraph/op/sqrt.hpp"
#include "ngraph/op/subtract.hpp"
#include "ngraph/op/util/broadcasting.hpp"
#include "utils/common.hpp"
namespace
ngraph
{
namespace
onnx_import
{
namespace
op
{
namespace
set_1
{
NodeVector
instance_norm
(
const
Node
&
node
)
{
const
std
::
shared_ptr
<
ngraph
::
Node
>
data
{
node
.
get_ng_inputs
().
at
(
0
)};
std
::
shared_ptr
<
ngraph
::
Node
>
scale
{
node
.
get_ng_inputs
().
at
(
1
)};
std
::
shared_ptr
<
ngraph
::
Node
>
bias
{
node
.
get_ng_inputs
().
at
(
2
)};
const
float
epsilon
{
node
.
get_attribute_value
<
float
>
(
"epsilon"
,
1e-5
f
)};
CHECK_VALID_NODE
(
node
,
(
scale
->
get_shape
().
size
()
==
1
&&
scale
->
get_shape
()[
0
]
==
data
->
get_shape
().
at
(
1
)),
"Scale input must be one dimensional vector of number of "
"input data channels size."
);
CHECK_VALID_NODE
(
node
,
(
bias
->
get_shape
().
size
()
==
1
&&
bias
->
get_shape
()[
0
]
==
data
->
get_shape
().
at
(
1
)),
"Bias input must be one dimensional vector of number of "
"input data channels size."
);
// all dimensions except spatial/feature
const
AxisSet
reduction_axes
{
common
::
get_monotonic_range
<
std
::
size_t
>
(
data
->
get_shape
().
size
(),
2
)};
const
std
::
shared_ptr
<
ngraph
::
Node
>
eps_node
=
std
::
make_shared
<
ngraph
::
op
::
Constant
>
(
data
->
get_element_type
(),
data
->
get_shape
(),
std
::
vector
<
float
>
{
epsilon
});
scale
=
ngraph
::
op
::
legacy_style_broadcast_for_binary_operation
(
data
,
scale
,
1
)
.
at
(
1
);
bias
=
ngraph
::
op
::
legacy_style_broadcast_for_binary_operation
(
data
,
bias
,
1
)
.
at
(
1
);
std
::
shared_ptr
<
ngraph
::
Node
>
mean
=
builder
::
mean
(
data
,
reduction_axes
);
mean
=
std
::
make_shared
<
ngraph
::
op
::
Broadcast
>
(
mean
,
data
->
get_shape
(),
reduction_axes
);
std
::
shared_ptr
<
ngraph
::
Node
>
variance
=
builder
::
variance
(
data
,
reduction_axes
);
variance
=
std
::
make_shared
<
ngraph
::
op
::
Broadcast
>
(
variance
,
data
->
get_shape
(),
reduction_axes
);
const
auto
sqrt
=
std
::
make_shared
<
ngraph
::
op
::
Sqrt
>
(
variance
+
eps_node
);
return
{
scale
*
(
data
-
mean
)
/
sqrt
+
bias
};
}
}
// namespace set_1
}
//namespace op
}
// namespace onnx_import
}
// namespace ngraph
src/ngraph/frontend/onnx_import/op/instance_norm.hpp
0 → 100644
View file @
36dc8353
//*****************************************************************************
// Copyright 2017-2019 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#pragma once
#include "core/node.hpp"
#include "ngraph/node.hpp"
namespace
ngraph
{
namespace
onnx_import
{
namespace
op
{
namespace
set_1
{
/// \brief Creates nGraph node representing ONNX InstanceNormalization operator.
///
/// \note The resulting node represents following equation:
/// y = scale * (x - mean) / sqrt(variance + epsilon) + B
/// where mean and variance are computed per instance per channel.
///
/// \param[in] node The input ONNX node representing this operation.
///
/// \return Vector of nodes containting resulting nGraph nodes.
///
NodeVector
instance_norm
(
const
Node
&
node
);
}
// namespace set_1
}
//namespace op
}
// namespace onnx_import
}
// namespace ngraph
src/ngraph/frontend/onnx_import/op/lp_norm.cpp
0 → 100644
View file @
36dc8353
//*****************************************************************************
// Copyright 2017-2019 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#include <cmath>
#include <cstddef>
#include <cstdint>
#include "exceptions.hpp"
#include "lp_norm.hpp"
#include "ngraph/axis_set.hpp"
#include "ngraph/builder/norm.hpp"
#include "ngraph/op/broadcast.hpp"
#include "ngraph/op/divide.hpp"
namespace
ngraph
{
namespace
onnx_import
{
namespace
op
{
namespace
set_1
{
NodeVector
lp_norm
(
const
Node
&
node
)
{
const
std
::
shared_ptr
<
ngraph
::
Node
>
data
{
node
.
get_ng_inputs
().
at
(
0
)};
std
::
int64_t
axis
{
node
.
get_attribute_value
<
std
::
int64_t
>
(
"axis"
,
-
1
)};
const
std
::
int64_t
p_norm
{
node
.
get_attribute_value
<
std
::
int64_t
>
(
"p"
,
2
)};
if
(
axis
<
0
)
{
axis
+=
data
->
get_shape
().
size
();
}
ASSERT_VALID_ARGUMENT
(
node
,
p_norm
==
1
||
p_norm
==
2
)
<<
"Invalid `p` attribute value: "
<<
p_norm
<<
"Only normalization of 1st or 2nd order is supported."
;
const
AxisSet
reduction_axes
{
static_cast
<
std
::
size_t
>
(
axis
)};
std
::
shared_ptr
<
ngraph
::
Node
>
norm
=
ngraph
::
builder
::
lp_norm
(
data
,
reduction_axes
,
static_cast
<
std
::
size_t
>
(
p_norm
));
norm
=
std
::
make_shared
<
ngraph
::
op
::
Broadcast
>
(
norm
,
data
->
get_shape
(),
reduction_axes
);
return
{
data
/
norm
};
}
}
// namespace set_1
}
//namespace op
}
// namespace onnx_import
}
// namespace ngraph
src/ngraph/frontend/onnx_import/op/lp_norm.hpp
0 → 100644
View file @
36dc8353
//*****************************************************************************
// Copyright 2017-2019 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#pragma once
#include "core/node.hpp"
#include "ngraph/node.hpp"
namespace
ngraph
{
namespace
onnx_import
{
namespace
op
{
namespace
set_1
{
/// \brief Creates nGraph node representing ONNX LpNormalization operator.
///
/// Suppose A contains spatial dimensions of input tensor, then
/// for matrix A we have p-norm defined as following double sum over
/// all elements:
/// ||A||_p = ||vec(A)||_p = [sum_{i=1}^m sum_{j=1}^n abs(a_{i,j})^p]^{1/p}
///
/// \param[in] node The input ONNX node representing this operation.
///
/// \return Vector of nodes containting resulting nGraph nodes.
///
NodeVector
lp_norm
(
const
Node
&
node
);
}
// namespace set_1
}
//namespace op
}
// namespace onnx_import
}
// namespace ngraph
src/ngraph/frontend/onnx_import/op/lp_pool.cpp
View file @
36dc8353
...
...
@@ -17,6 +17,7 @@
#include <cmath>
#include <cstddef>
#include <cstdint>
#include <memory>
#include "exceptions.hpp"
#include "lp_pool.hpp"
...
...
src/ngraph/frontend/onnx_import/op/lp_pool.hpp
View file @
36dc8353
...
...
@@ -16,8 +16,6 @@
#pragma once
#include <memory>
#include "core/node.hpp"
#include "ngraph/node.hpp"
...
...
src/ngraph/frontend/onnx_import/op/supported_ops.md
View file @
36dc8353
...
...
@@ -52,12 +52,14 @@ opset versions starting from `1` to `6` and to the latest opset version.
| GlobalMaxPool | 1- |
| Greater | 1-7-9 |
| HardSigmoid | 1-6- |
| Identity | 1- |
| Identity | 1- |
| InstanceNormalization | 1- |
| LRN | 1- |
| LeakyRelu | 1-6- |
| Less | 1-7-9 |
| Log | 1-6- |
| LogSoftmax | 1- |
| LpNormalization | 1- |
| MatMul | 1-9 |
| Max | 1-6-8- |
| MaxPool | 1-8- |
...
...
@@ -153,8 +155,4 @@ opset versions starting from `1` to `6` and to the latest opset version.
|------|-----------------|--------|--------|---------|
| Add, Sub, Mul, Div | 1-6 | | | We currently don't support legacy broadcasting rules for binary ops. |
| Cast | 1-6- | | 427 | Errors while casting to bool |
| EyeLike | (9) | | 439 | Make constant node. |
| Hardmax | - | | 431 | Use make constant and Argmax. See
`test_ops_unary.py::test_hardmax()`
|
| LpNormalization | - | | 436 | Just an equation. Only Lp{1,2} need to be supported. |
| InstanceNormalization | - | | 436 | Just an equation. For per channel computation may _slice/op/concat_ pattern need to be used. |
| Shrink | (9) | | 449 | Just an easy equation. |
src/ngraph/frontend/onnx_import/ops_bridge.cpp
View file @
36dc8353
...
...
@@ -64,10 +64,12 @@
#include "op/hard_sigmoid.hpp"
#include "op/hardmax.hpp"
#include "op/identity.hpp"
#include "op/instance_norm.hpp"
#include "op/leaky_relu.hpp"
#include "op/less.hpp"
#include "op/log.hpp"
#include "op/log_softmax.hpp"
#include "op/lp_norm.hpp"
#include "op/lp_pool.hpp"
#include "op/lrn.hpp"
#include "op/lstm.hpp"
...
...
@@ -273,10 +275,12 @@ namespace ngraph
REGISTER_OPERATOR
(
"Hardmax"
,
1
,
hardmax
);
REGISTER_OPERATOR
(
"HardSigmoid"
,
1
,
hard_sigmoid
);
REGISTER_OPERATOR
(
"Identity"
,
1
,
identity
);
REGISTER_OPERATOR
(
"InstanceNormalization"
,
1
,
instance_norm
);
REGISTER_OPERATOR
(
"LeakyRelu"
,
1
,
leaky_relu
);
REGISTER_OPERATOR
(
"Less"
,
1
,
less
);
REGISTER_OPERATOR
(
"Log"
,
1
,
log
);
REGISTER_OPERATOR
(
"LogSoftmax"
,
1
,
log_softmax
);
REGISTER_OPERATOR
(
"LpNormalization"
,
1
,
lp_norm
);
REGISTER_OPERATOR
(
"LRN"
,
1
,
lrn
);
REGISTER_OPERATOR
(
"LSTM"
,
1
,
lstm
);
REGISTER_OPERATOR
(
"MatMul"
,
1
,
matmul
);
...
...
test/models/onnx/instance_norm.prototxt
0 → 100644
View file @
36dc8353
ir_version: 3
producer_name: "nGraph ONNX Importer"
graph {
node {
input: "x"
input: "scale"
input: "bias"
output: "y"
op_type: "InstanceNormalization"
attribute {
name: "epsilon"
f: 0.01
type: FLOAT
}
}
name: "instance_norm_graph"
input {
name: "x"
type {
tensor_type {
elem_type: 1
shape {
dim {
dim_value: 1
}
dim {
dim_value: 2
}
dim {
dim_value: 3
}
dim {
dim_value: 4
}
}
}
}
}
input {
name: "scale"
type {
tensor_type {
elem_type: 1
shape {
dim {
dim_value: 2
}
}
}
}
}
input {
name: "bias"
type {
tensor_type {
elem_type: 1
shape {
dim {
dim_value: 2
}
}
}
}
}
output {
name: "y"
type {
tensor_type {
elem_type: 1
shape {
dim {
dim_value: 1
}
dim {
dim_value: 2
}
dim {
dim_value: 3
}
dim {
dim_value: 4
}
}
}
}
}
}
opset_import {
version: 1
}
test/models/onnx/lp_norm_default.prototxt
0 → 100644
View file @
36dc8353
ir_version: 3
producer_name: "nGraph ONNX Importer"
graph {
node {
input: "x"
output: "y"
op_type: "LpNormalization"
}
name: "lp_norm_graph"
input {
name: "x"
type {
tensor_type {
elem_type: 1
shape {
dim {
dim_value: 2
}
dim {
dim_value: 3
}
dim {
dim_value: 4
}
}
}
}
}
output {
name: "y"
type {
tensor_type {
elem_type: 1
shape {
dim {
dim_value: 2
}
dim {
dim_value: 3
}
dim {
dim_value: 4
}
}
}
}
}
}
opset_import {
version: 1
}
test/models/onnx/lp_norm_p1.prototxt
0 → 100644
View file @
36dc8353
ir_version: 3
producer_name: "nGraph ONNX Importer"
graph {
node {
input: "x"
output: "y"
op_type: "LpNormalization"
attribute {
name: "axis"
i: 0
type: INT
}
attribute {
name: "p"
i: 1
type: INT
}
}
name: "lp_norm_graph"
input {
name: "x"
type {
tensor_type {
elem_type: 1
shape {
dim {
dim_value: 2
}
dim {
dim_value: 3
}
dim {
dim_value: 4
}
}
}
}
}
output {
name: "y"
type {
tensor_type {
elem_type: 1
shape {
dim {
dim_value: 2
}
dim {
dim_value: 3
}
dim {
dim_value: 4
}
}
}
}
}
}
opset_import {
version: 1
}
test/models/onnx/lp_norm_p2.prototxt
0 → 100644
View file @
36dc8353
ir_version: 3
producer_name: "nGraph ONNX Importer"
graph {
node {
input: "x"
output: "y"
op_type: "LpNormalization"
attribute {
name: "axis"
i: 0
type: INT
}
attribute {
name: "p"
i: 2
type: INT
}
}
name: "lp_norm_graph"
input {
name: "x"
type {
tensor_type {
elem_type: 1
shape {
dim {
dim_value: 2
}
dim {
dim_value: 3
}
dim {
dim_value: 4
}
}
}
}
}
output {
name: "y"
type {
tensor_type {
elem_type: 1
shape {
dim {
dim_value: 2
}
dim {
dim_value: 3
}
dim {
dim_value: 4
}
}
}
}
}
}
opset_import {
version: 1
}
test/onnx/onnx_import.in.cpp
View file @
36dc8353
...
...
@@ -20,6 +20,7 @@
#include <fstream>
#include <iterator>
#include <limits>
#include <numeric>
#include <sstream>
#include <stdexcept>
#include <vector>
...
...
@@ -1483,45 +1484,96 @@ NGRAPH_TEST(onnx_${BACKEND_NAME}, model_shrink_int)
test_case
.
run
();
}
NGRAPH_TEST
(
onnx_
$
{
BACKEND_NAME
},
model_lp_norm_p1
)
{
const
auto
lp_norm_fn
=
onnx_import
::
import_onnx_model
(
file_util
::
path_join
(
SERIALIZED_ZOO
,
"onnx/lp_norm_p1.prototxt"
));
Shape
data_shape
{
2
,
3
,
4
};
std
::
vector
<
float
>
data
(
shape_size
(
data_shape
));
std
::
iota
(
std
::
begin
(
data
),
std
::
end
(
data
),
1
);
auto
test_case
=
ngraph
::
test
::
NgraphTestCase
(
lp_norm_fn
,
"${BACKEND_NAME}"
);
test_case
.
add_input
<
float
>
(
data
);
test_case
.
add_expected_output
<
float
>
(
data_shape
,
{
0.07142857
f
,
0.125
f
,
0.16666667
f
,
0.2
f
,
0.22727273
f
,
0.25
f
,
0.26923078
f
,
0.2857143
f
,
0.3
f
,
0.3125
f
,
0.32352942
f
,
0.33333334
f
,
0.9285714
f
,
0.875
f
,
0.8333333
f
,
0.8
f
,
0.77272725
f
,
0.75
f
,
0.7307692
f
,
0.71428573
f
,
0.7
f
,
0.6875
f
,
0.6764706
f
,
0.6666667
f
});
test_case
.
run
();
}
NGRAPH_TEST
(
onnx_
$
{
BACKEND_NAME
},
model_lp_norm_p2
)
{
const
auto
lp_norm_fn
=
onnx_import
::
import_onnx_model
(
file_util
::
path_join
(
SERIALIZED_ZOO
,
"onnx/lp_norm_p2.prototxt"
));
Shape
data_shape
{
2
,
3
,
4
};
std
::
vector
<
float
>
data
(
shape_size
(
data_shape
));
std
::
iota
(
std
::
begin
(
data
),
std
::
end
(
data
),
1
);
auto
test_case
=
ngraph
::
test
::
NgraphTestCase
(
lp_norm_fn
,
"${BACKEND_NAME}"
);
test_case
.
add_input
<
float
>
(
data
);
test_case
.
add_expected_output
<
float
>
(
data_shape
,
{
0.0766965
f
,
0.14142136
f
,
0.19611613
f
,
0.24253564
f
,
0.28216633
f
,
0.31622776
f
,
0.34570536
f
,
0.37139067
f
,
0.39391932
f
,
0.41380295
f
,
0.4314555
f
,
0.4472136
f
,
0.9970545
f
,
0.98994946
f
,
0.9805807
f
,
0.97014254
f
,
0.9593655
f
,
0.9486833
f
,
0.9383431
f
,
0.9284767
f
,
0.91914505
f
,
0.9103665
f
,
0.9021342
f
,
0.8944272
f
});
test_case
.
run
();
}
NGRAPH_TEST
(
onnx_
$
{
BACKEND_NAME
},
model_lp_norm_default
)
{
const
auto
lp_norm_fn
=
onnx_import
::
import_onnx_model
(
file_util
::
path_join
(
SERIALIZED_ZOO
,
"onnx/lp_norm_default.prototxt"
));
Shape
data_shape
{
2
,
3
,
4
};
std
::
vector
<
float
>
data
(
shape_size
(
data_shape
));
std
::
iota
(
std
::
begin
(
data
),
std
::
end
(
data
),
1
);
auto
test_case
=
ngraph
::
test
::
NgraphTestCase
(
lp_norm_fn
,
"${BACKEND_NAME}"
);
test_case
.
add_input
<
float
>
(
data
);
test_case
.
add_expected_output
<
float
>
(
data_shape
,
{
0.18257418
f
,
0.36514837
f
,
0.5477225
f
,
0.73029673
f
,
0.37904903
f
,
0.45485884
f
,
0.5306686
f
,
0.60647845
f
,
0.42616236
f
,
0.47351375
f
,
0.5208651
f
,
0.5682165
f
,
0.4469492
f
,
0.48132992
f
,
0.51571065
f
,
0.5500913
f
,
0.45862272
f
,
0.48560053
f
,
0.5125783
f
,
0.53955615
f
,
0.46609157
f
,
0.4882864
f
,
0.51048124
f
,
0.5326761
f
});
test_case
.
run
();
}
NGRAPH_TEST
(
onnx_
$
{
BACKEND_NAME
},
model_instance_normalization
)
{
const
auto
instance_norm_fn
=
onnx_import
::
import_onnx_model
(
file_util
::
path_join
(
SERIALIZED_ZOO
,
"onnx/instance_norm.prototxt"
));
Shape
data_shape
{
1
,
2
,
3
,
4
};
std
::
vector
<
float
>
data
(
shape_size
(
data_shape
));
std
::
iota
(
std
::
begin
(
data
),
std
::
end
(
data
),
1
);
auto
test_case
=
ngraph
::
test
::
NgraphTestCase
(
instance_norm_fn
,
"${BACKEND_NAME}"
);
test_case
.
add_input
<
float
>
(
data
);
test_case
.
add_input
<
float
>
(
std
::
vector
<
float
>
{
2.134
f
,
3.256
f
});
test_case
.
add_input
<
float
>
(
std
::
vector
<
float
>
{
0.765
f
,
1.055
f
});
test_case
.
add_expected_output
<
float
>
(
data_shape
,
{
-
2.6335807
f
,
-
2.015657
f
,
-
1.3977331
f
,
-
0.77980936
f
,
-
0.16188562
f
,
0.45603812
f
,
1.0739619
f
,
1.6918856
f
,
2.3098092
f
,
2.927733
f
,
3.5456567
f
,
4.1635804
f
,
-
4.130463
f
,
-
3.1876516
f
,
-
2.2448401
f
,
-
1.3020288
f
,
-
0.35921717
f
,
0.5835942
f
,
1.5264057
f
,
2.469217
f
,
3.4120288
f
,
4.35484
f
,
5.2976513
f
,
6.240463
f
});
test_case
.
run
();
}
NGRAPH_TEST
(
onnx_
$
{
BACKEND_NAME
},
model_eye_like
)
{
const
auto
eye_like_fn
=
onnx_import
::
import_onnx_model
(
file_util
::
path_join
(
SERIALIZED_ZOO
,
"onnx/eye_like.prototxt"
));
auto
test_case
=
ngraph
::
test
::
NgraphTestCase
(
eye_like_fn
,
"${BACKEND_NAME}"
);
test_case
.
add_input
<
float
>
({
0.
f
,
0.
f
,
0.
f
,
0.
f
,
0.
f
,
0.
f
,
0.
f
,
0.
f
,
0.
f
,
0.
f
,
0.
f
,
0.
f
,
});
test_case
.
add_expected_output
<
float
>
(
Shape
{
3
,
4
},
{
0.
f
,
0.
f
,
0.
f
,
0.
f
,
1.
f
,
0.
f
,
0.
f
,
0.
f
,
0.
f
,
1.
f
,
0.
f
,
0.
f
,
});
test_case
.
add_input
<
float
>
({
0.
f
,
0.
f
,
0.
f
,
0.
f
,
0.
f
,
0.
f
,
0.
f
,
0.
f
,
0.
f
,
0.
f
,
0.
f
,
0.
f
});
test_case
.
add_expected_output
<
float
>
(
Shape
{
3
,
4
},
{
0.
f
,
0.
f
,
0.
f
,
0.
f
,
1.
f
,
0.
f
,
0.
f
,
0.
f
,
0.
f
,
1.
f
,
0.
f
,
0.
f
});
test_case
.
run
();
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment