Commit 34ae1ee4 authored by Robert Kimball's avatar Robert Kimball Committed by Scott Cyphers

Move binary and unary element op tests to individual files (#3387)

* Unit tests to individual files

* rename obsolete file
parent b69d3fd6
......@@ -215,23 +215,32 @@ add_subdirectory(util)
# such as ${BACKEND_NAME} with their values, such as CPU, GPU, or INTERPRETER.
set(MULTI_TEST_SRC
backend/abc.in.cpp
backend/abs.in.cpp
backend/acos.in.cpp
backend/add.in.cpp
backend/aliased_output.in.cpp
backend/all.in.cpp
backend/any.in.cpp
backend/api.in.cpp
backend/arg_reduce.in.cpp
backend/asin.in.cpp
backend/atan.in.cpp
backend/auto_broadcast.in.cpp
backend/autodiff.in.cpp
backend/batch_mat_mul.in.cpp
backend/batch_norm.in.cpp
backend/binary_elementwise.in.cpp
backend/broadcast.in.cpp
backend/ceiling.in.cpp
backend/comparison.in.cpp
backend/computation_reuse.in.cpp
backend/concat.in.cpp
backend/constant.in.cpp
backend/convert.in.cpp
backend/convolution.in.cpp
backend/convolution_reference.in.cpp
backend/convolution.in.cpp
backend/cos.in.cpp
backend/cosh.in.cpp
backend/divide.in.cpp
backend/dot.in.cpp
backend/dyn_broadcast.in.cpp
backend/dyn_replace_slice_reference.in.cpp
......@@ -239,24 +248,35 @@ set(MULTI_TEST_SRC
backend/dyn_slice_reference.in.cpp
backend/dynamic.in.cpp
backend/embedding_lookup.in.cpp
backend/erf.in.cpp
backend/exp.in.cpp
backend/floor.in.cpp
backend/function_name.in.cpp
backend/fused_op.in.cpp
backend/gather.in.cpp
backend/gelu.in.cpp
backend/generate_mask.in.cpp
backend/log.in.cpp
backend/logical_and.in.cpp
backend/logical_or.in.cpp
backend/logical_xor.in.cpp
backend/lrn.in.cpp
backend/max.in.cpp
backend/maximum.in.cpp
backend/min.in.cpp
backend/minimum.in.cpp
backend/multiple_backends.in.cpp
backend/multiple_result.in.cpp
backend/multiply.in.cpp
backend/negative.in.cpp
backend/node_name.in.cpp
backend/not.in.cpp
backend/numeric.in.cpp
backend/one_hot.in.cpp
backend/pad.in.cpp
backend/parameter_as_output.in.cpp
backend/pool.in.cpp
backend/power.in.cpp
backend/product.in.cpp
backend/quantize_dequantize.in.cpp
backend/quantized_convolution.in.cpp
......@@ -264,20 +284,26 @@ set(MULTI_TEST_SRC
backend/relu.in.cpp
backend/replace_slice.in.cpp
backend/reshape.in.cpp
backend/reverse.in.cpp
backend/reverse_sequence.in.cpp
backend/reverse.in.cpp
backend/scatter.in.cpp
backend/select.in.cpp
backend/shape_of.in.cpp
backend/sigmoid.in.cpp
backend/sign.in.cpp
backend/sin.in.cpp
backend/sinh.in.cpp
backend/slice.in.cpp
backend/softmax.in.cpp
backend/sqrt.in.cpp
backend/subtract.in.cpp
backend/sum.in.cpp
backend/tan.in.cpp
backend/tanh.in.cpp
backend/tensorview_custom_mem.in.cpp
backend/topk.in.cpp
backend/transpose.in.cpp
backend/unhandled_op.in.cpp
backend/unary_elementwise.in.cpp
backend/validate_call.in.cpp
backend/zero_sized.in.cpp
)
......
//*****************************************************************************
// Copyright 2017-2019 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#include <algorithm>
#include <cinttypes>
#include <cmath>
#include <cstdlib>
#include <random>
#include <string>
// clang-format off
#ifdef ${BACKEND_NAME}_FLOAT_TOLERANCE_BITS
#define DEFAULT_FLOAT_TOLERANCE_BITS ${BACKEND_NAME}_FLOAT_TOLERANCE_BITS
#endif
#ifdef ${BACKEND_NAME}_DOUBLE_TOLERANCE_BITS
#define DEFAULT_DOUBLE_TOLERANCE_BITS ${BACKEND_NAME}_DOUBLE_TOLERANCE_BITS
#endif
// clang-format on
#include "gtest/gtest.h"
#include "ngraph/ngraph.hpp"
#include "util/all_close.hpp"
#include "util/all_close_f.hpp"
#include "util/ndarray.hpp"
#include "util/test_control.hpp"
#include "util/test_tools.hpp"
using namespace std;
using namespace ngraph;
static string s_manifest = "${MANIFEST}";
NGRAPH_TEST(${BACKEND_NAME}, abs)
{
Shape shape{2, 2};
auto A = make_shared<op::Parameter>(element::f32, shape);
auto f = make_shared<Function>(make_shared<op::Abs>(A), ParameterVector{A});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::f32, shape);
copy_data(a, vector<float>{1, -2, 0, -4.75f});
auto result = backend->create_tensor(element::f32, shape);
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a});
EXPECT_TRUE(test::all_close_f(
(vector<float>{1, 2, 0, 4.75f}), read_vector<float>(result), MIN_FLOAT_TOLERANCE_BITS));
}
//*****************************************************************************
// Copyright 2017-2019 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#include <algorithm>
#include <cinttypes>
#include <cmath>
#include <cstdlib>
#include <random>
#include <string>
// clang-format off
#ifdef ${BACKEND_NAME}_FLOAT_TOLERANCE_BITS
#define DEFAULT_FLOAT_TOLERANCE_BITS ${BACKEND_NAME}_FLOAT_TOLERANCE_BITS
#endif
#ifdef ${BACKEND_NAME}_DOUBLE_TOLERANCE_BITS
#define DEFAULT_DOUBLE_TOLERANCE_BITS ${BACKEND_NAME}_DOUBLE_TOLERANCE_BITS
#endif
// clang-format on
#include "gtest/gtest.h"
#include "ngraph/ngraph.hpp"
#include "util/all_close.hpp"
#include "util/all_close_f.hpp"
#include "util/ndarray.hpp"
#include "util/test_control.hpp"
#include "util/test_tools.hpp"
using namespace std;
using namespace ngraph;
static string s_manifest = "${MANIFEST}";
NGRAPH_TEST(${BACKEND_NAME}, acos)
{
Shape shape{11};
auto A = make_shared<op::Parameter>(element::f32, shape);
auto f = make_shared<Function>(make_shared<op::Acos>(A), ParameterVector{A});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::f32, shape);
vector<float> input{-1.f, -0.75f, -0.5f, -0.25f, -0.125f, 0.f, 0.125f, 0.25f, 0.5f, 0.75f, 1.f};
copy_data(a, input);
auto result = backend->create_tensor(element::f32, shape);
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a});
EXPECT_TRUE(test::all_close_f(vector<float>{3.14159265f,
2.41885841f,
2.09439510f,
1.82347658f,
1.69612416f,
1.57079633f,
1.44546850f,
1.31811607f,
1.04719755f,
0.72273425f,
0.00000000f},
read_vector<float>(result)));
}
//*****************************************************************************
// Copyright 2017-2019 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#include <algorithm>
#include <cinttypes>
#include <cmath>
#include <cstdlib>
#include <random>
#include <string>
// clang-format off
#ifdef ${BACKEND_NAME}_FLOAT_TOLERANCE_BITS
#define DEFAULT_FLOAT_TOLERANCE_BITS ${BACKEND_NAME}_FLOAT_TOLERANCE_BITS
#endif
#ifdef ${BACKEND_NAME}_DOUBLE_TOLERANCE_BITS
#define DEFAULT_DOUBLE_TOLERANCE_BITS ${BACKEND_NAME}_DOUBLE_TOLERANCE_BITS
#endif
// clang-format on
#include "gtest/gtest.h"
#include "ngraph/ngraph.hpp"
#include "util/all_close.hpp"
#include "util/all_close_f.hpp"
#include "util/ndarray.hpp"
#include "util/test_control.hpp"
#include "util/test_tools.hpp"
using namespace std;
using namespace ngraph;
static string s_manifest = "${MANIFEST}";
NGRAPH_TEST(${BACKEND_NAME}, add)
{
Shape shape{2, 2};
auto A = make_shared<op::Parameter>(element::f32, shape);
auto B = make_shared<op::Parameter>(element::f32, shape);
auto f = make_shared<Function>(make_shared<op::Add>(A, B), ParameterVector{A, B});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
shared_ptr<runtime::Tensor> a = backend->create_tensor(element::f32, shape);
shared_ptr<runtime::Tensor> b = backend->create_tensor(element::f32, shape);
shared_ptr<runtime::Tensor> result = backend->create_tensor(element::f32, shape);
copy_data(a, test::NDArray<float, 2>({{1, 2}, {3, 4}}).get_vector());
copy_data(b, test::NDArray<float, 2>({{5, 6}, {7, 8}}).get_vector());
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a, b});
EXPECT_TRUE(test::all_close_f(read_vector<float>(result),
(test::NDArray<float, 2>({{6, 8}, {10, 12}})).get_vector()));
}
NGRAPH_TEST(${BACKEND_NAME}, add_overload)
{
Shape shape{2, 2};
auto A = make_shared<op::Parameter>(element::f32, shape);
auto B = make_shared<op::Parameter>(element::f32, shape);
auto f = make_shared<Function>(A + B, ParameterVector{A, B});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
shared_ptr<runtime::Tensor> a = backend->create_tensor(element::f32, shape);
shared_ptr<runtime::Tensor> b = backend->create_tensor(element::f32, shape);
shared_ptr<runtime::Tensor> result = backend->create_tensor(element::f32, shape);
copy_data(a, test::NDArray<float, 2>({{1, 2}, {3, 4}}).get_vector());
copy_data(b, test::NDArray<float, 2>({{5, 6}, {7, 8}}).get_vector());
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a, b});
EXPECT_TRUE(test::all_close_f(read_vector<float>(result),
(test::NDArray<float, 2>({{6, 8}, {10, 12}})).get_vector()));
}
//*****************************************************************************
// Copyright 2017-2019 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#include <algorithm>
#include <cinttypes>
#include <cmath>
#include <cstdlib>
#include <random>
#include <string>
// clang-format off
#ifdef ${BACKEND_NAME}_FLOAT_TOLERANCE_BITS
#define DEFAULT_FLOAT_TOLERANCE_BITS ${BACKEND_NAME}_FLOAT_TOLERANCE_BITS
#endif
#ifdef ${BACKEND_NAME}_DOUBLE_TOLERANCE_BITS
#define DEFAULT_DOUBLE_TOLERANCE_BITS ${BACKEND_NAME}_DOUBLE_TOLERANCE_BITS
#endif
// clang-format on
#include "gtest/gtest.h"
#include "ngraph/ngraph.hpp"
#include "util/all_close.hpp"
#include "util/all_close_f.hpp"
#include "util/ndarray.hpp"
#include "util/test_control.hpp"
#include "util/test_tools.hpp"
using namespace std;
using namespace ngraph;
static string s_manifest = "${MANIFEST}";
NGRAPH_TEST(${BACKEND_NAME}, asin)
{
Shape shape{11};
auto A = make_shared<op::Parameter>(element::f32, shape);
auto f = make_shared<Function>(make_shared<op::Asin>(A), ParameterVector{A});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::f32, shape);
vector<float> input{-1.f, -0.75f, -0.5f, -0.25f, -0.125f, 0.f, 0.125f, 0.25f, 0.5f, 0.75f, 1.f};
copy_data(a, input);
auto result = backend->create_tensor(element::f32, shape);
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a});
EXPECT_TRUE(test::all_close_f(vector<float>{-1.57079633f,
-0.84806208f,
-0.52359878f,
-0.25268026f,
-0.12532783f,
0.00000000f,
0.12532783f,
0.25268026f,
0.52359878f,
0.84806208f,
1.57079633f},
read_vector<float>(result)));
}
//*****************************************************************************
// Copyright 2017-2019 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#include <algorithm>
#include <cinttypes>
#include <cmath>
#include <cstdlib>
#include <random>
#include <string>
// clang-format off
#ifdef ${BACKEND_NAME}_FLOAT_TOLERANCE_BITS
#define DEFAULT_FLOAT_TOLERANCE_BITS ${BACKEND_NAME}_FLOAT_TOLERANCE_BITS
#endif
#ifdef ${BACKEND_NAME}_DOUBLE_TOLERANCE_BITS
#define DEFAULT_DOUBLE_TOLERANCE_BITS ${BACKEND_NAME}_DOUBLE_TOLERANCE_BITS
#endif
// clang-format on
#include "gtest/gtest.h"
#include "ngraph/ngraph.hpp"
#include "util/all_close.hpp"
#include "util/all_close_f.hpp"
#include "util/ndarray.hpp"
#include "util/test_control.hpp"
#include "util/test_tools.hpp"
using namespace std;
using namespace ngraph;
static string s_manifest = "${MANIFEST}";
NGRAPH_TEST(${BACKEND_NAME}, atan)
{
Shape shape{11};
auto A = make_shared<op::Parameter>(element::f32, shape);
auto f = make_shared<Function>(make_shared<op::Atan>(A), ParameterVector{A});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::f32, shape);
vector<float> input{-4.f, -2.f, -1.f, -0.5f, -0.25f, 0.f, 0.25f, 0.5f, 1.f, 2.f, 4.f};
copy_data(a, input);
auto result = backend->create_tensor(element::f32, shape);
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a});
EXPECT_TRUE(test::all_close_f(vector<float>{-1.32581766f,
-1.10714872f,
-0.78539816f,
-0.46364761f,
-0.24497866f,
0.00000000f,
0.24497866f,
0.46364761f,
0.78539816f,
1.10714872f,
1.32581766f},
read_vector<float>(result)));
}
//*****************************************************************************
// Copyright 2017-2019 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#include <algorithm>
#include <cinttypes>
#include <cmath>
#include <cstdlib>
#include <random>
#include <string>
// clang-format off
#ifdef ${BACKEND_NAME}_FLOAT_TOLERANCE_BITS
#define DEFAULT_FLOAT_TOLERANCE_BITS ${BACKEND_NAME}_FLOAT_TOLERANCE_BITS
#endif
#ifdef ${BACKEND_NAME}_DOUBLE_TOLERANCE_BITS
#define DEFAULT_DOUBLE_TOLERANCE_BITS ${BACKEND_NAME}_DOUBLE_TOLERANCE_BITS
#endif
// clang-format on
#include "gtest/gtest.h"
#include "ngraph/ngraph.hpp"
#include "util/all_close.hpp"
#include "util/all_close_f.hpp"
#include "util/ndarray.hpp"
#include "util/test_control.hpp"
#include "util/test_tools.hpp"
using namespace std;
using namespace ngraph;
static string s_manifest = "${MANIFEST}";
template <typename optype, typename itype, typename otype>
void check_auto_bcast(const std::vector<std::vector<itype>>& inputs,
const std::vector<otype> output)
{
auto iet = element::from<itype>();
auto oet = element::from<otype>();
if (std::is_same<itype, char>::value)
{
iet = element::boolean;
}
if (std::is_same<otype, char>::value)
{
oet = element::boolean;
}
auto A = make_shared<op::Parameter>(iet, Shape{2, 3});
auto B = make_shared<op::Parameter>(iet, Shape{3});
auto f = make_shared<Function>(make_shared<optype>(A, B, op::AutoBroadcastType::NUMPY),
ParameterVector{A, B});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
shared_ptr<runtime::Tensor> a = backend->create_tensor(iet, Shape{2, 3});
shared_ptr<runtime::Tensor> b = backend->create_tensor(iet, Shape{3});
shared_ptr<runtime::Tensor> result = backend->create_tensor(oet, Shape{2, 3});
copy_data(a, inputs[0]);
copy_data(b, inputs[1]);
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a, b});
EXPECT_TRUE(test::all_close(read_vector<otype>(result), output));
}
NGRAPH_TEST(${BACKEND_NAME}, auto_bcast_binary_elementwise)
{
check_auto_bcast<op::Add, float, float>({{1, 2, 3, 4, 5, 6}, {5, 6, 7}}, {6, 8, 10, 9, 11, 13});
check_auto_bcast<op::Subtract, float, float>({{1, 2, 3, 4, 5, 6}, {5, 6, 7}},
{-4.f, -4.f, -4.f, -1.f, -1.f, -1.f});
check_auto_bcast<op::Multiply, float, float>({{1, 2, 3, 4, 5, 6}, {5, 6, 7}},
{5, 12, 21, 20, 30, 42});
check_auto_bcast<op::Divide, float, float>({{4, 5, 6, 7, 8, 9}, {1, 2, 3}},
{4, 2.5f, 2, 7, 4, 3});
check_auto_bcast<op::Maximum, float, float>({{1, 2, 3, 4, 5, 6}, {1, 5, 8}},
{1, 5, 8, 4, 5, 8});
check_auto_bcast<op::Minimum, float, float>({{1, 2, 3, 4, 5, 6}, {1, 5, 8}},
{1, 2, 3, 1, 5, 6});
check_auto_bcast<op::Power, float, float>({{1, 2, 3, 4, 5, 6}, {1, 2, 3}},
{1, 4, 27, 4, 25, 216});
check_auto_bcast<op::And, char, char>({{1, 0, 1, 0, 0, 1}, {1, 0, 1}}, {1, 0, 1, 0, 0, 1});
check_auto_bcast<op::Or, char, char>({{1, 0, 1, 0, 1, 1}, {1, 0, 0}}, {1, 0, 1, 1, 1, 1});
check_auto_bcast<op::Equal, uint8_t, char>({{1, 0, 1, 0, 1, 1}, {1, 0, 0}}, {1, 1, 0, 0, 0, 0});
check_auto_bcast<op::Greater, float, char>({{1, 2, 3, 4, 5, 6}, {1, 5, 8}}, {0, 0, 0, 1, 0, 0});
check_auto_bcast<op::GreaterEq, float, char>({{1, 2, 3, 4, 5, 6}, {1, 5, 8}},
{1, 0, 0, 1, 1, 0});
check_auto_bcast<op::Less, uint8_t, char>({{1, 2, 3, 4, 5, 6}, {1, 5, 8}}, {0, 1, 1, 0, 0, 1});
check_auto_bcast<op::LessEq, uint8_t, char>({{1, 2, 3, 4, 5, 6}, {1, 5, 8}},
{1, 1, 1, 0, 1, 1});
check_auto_bcast<op::NotEqual, uint8_t, char>({{1, 2, 3, 4, 5, 6}, {1, 5, 8}},
{0, 1, 1, 1, 0, 1});
}
//*****************************************************************************
// Copyright 2017-2019 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#include <algorithm>
#include <cinttypes>
#include <cmath>
#include <cstdlib>
#include <random>
#include <string>
// clang-format off
#ifdef ${BACKEND_NAME}_FLOAT_TOLERANCE_BITS
#define DEFAULT_FLOAT_TOLERANCE_BITS ${BACKEND_NAME}_FLOAT_TOLERANCE_BITS
#endif
#ifdef ${BACKEND_NAME}_DOUBLE_TOLERANCE_BITS
#define DEFAULT_DOUBLE_TOLERANCE_BITS ${BACKEND_NAME}_DOUBLE_TOLERANCE_BITS
#endif
// clang-format on
#include "gtest/gtest.h"
#include "ngraph/ngraph.hpp"
#include "util/all_close.hpp"
#include "util/all_close_f.hpp"
#include "util/ndarray.hpp"
#include "util/test_control.hpp"
#include "util/test_tools.hpp"
using namespace std;
using namespace ngraph;
static string s_manifest = "${MANIFEST}";
NGRAPH_TEST(${BACKEND_NAME}, ceiling)
{
Shape shape{2, 2};
auto A = make_shared<op::Parameter>(element::f32, shape);
auto f = make_shared<Function>(make_shared<op::Ceiling>(A), ParameterVector{A});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::f32, shape);
copy_data(a, vector<float>{-2.5f, -2.0f, 0.3f, 4.8f});
auto result = backend->create_tensor(element::f32, shape);
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a});
EXPECT_TRUE(test::all_close_f((vector<float>{-2.0f, -2.0f, 1.0f, 5.0f}),
read_vector<float>(result),
MIN_FLOAT_TOLERANCE_BITS));
}
//*****************************************************************************
// Copyright 2017-2019 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#include <algorithm>
#include <cinttypes>
#include <cmath>
#include <cstdlib>
#include <random>
#include <string>
// clang-format off
#ifdef ${BACKEND_NAME}_FLOAT_TOLERANCE_BITS
#define DEFAULT_FLOAT_TOLERANCE_BITS ${BACKEND_NAME}_FLOAT_TOLERANCE_BITS
#endif
#ifdef ${BACKEND_NAME}_DOUBLE_TOLERANCE_BITS
#define DEFAULT_DOUBLE_TOLERANCE_BITS ${BACKEND_NAME}_DOUBLE_TOLERANCE_BITS
#endif
// clang-format on
#include "gtest/gtest.h"
#include "ngraph/ngraph.hpp"
#include "util/all_close.hpp"
#include "util/all_close_f.hpp"
#include "util/ndarray.hpp"
#include "util/test_control.hpp"
#include "util/test_tools.hpp"
using namespace std;
using namespace ngraph;
static string s_manifest = "${MANIFEST}";
NGRAPH_TEST(${BACKEND_NAME}, cos)
{
Shape shape{11};
auto A = make_shared<op::Parameter>(element::f32, shape);
auto f = make_shared<Function>(make_shared<op::Cos>(A), ParameterVector{A});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::f32, shape);
vector<float> input{0.f, 0.25f, -0.25f, 0.5f, -0.5f, 1.f, -1.f, 2.f, -2.f, 4.f, -4.f};
copy_data(a, input);
auto result = backend->create_tensor(element::f32, shape);
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a});
EXPECT_TRUE(test::all_close_f(vector<float>{1.00000000f,
0.96891242f,
0.96891242f,
0.87758256f,
0.87758256f,
0.54030231f,
0.54030231f,
-0.41614684f,
-0.41614684f,
-0.65364362f,
-0.65364362f},
read_vector<float>(result)));
}
//*****************************************************************************
// Copyright 2017-2019 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#include <algorithm>
#include <cinttypes>
#include <cmath>
#include <cstdlib>
#include <random>
#include <string>
// clang-format off
#ifdef ${BACKEND_NAME}_FLOAT_TOLERANCE_BITS
#define DEFAULT_FLOAT_TOLERANCE_BITS ${BACKEND_NAME}_FLOAT_TOLERANCE_BITS
#endif
#ifdef ${BACKEND_NAME}_DOUBLE_TOLERANCE_BITS
#define DEFAULT_DOUBLE_TOLERANCE_BITS ${BACKEND_NAME}_DOUBLE_TOLERANCE_BITS
#endif
// clang-format on
#include "gtest/gtest.h"
#include "ngraph/ngraph.hpp"
#include "util/all_close.hpp"
#include "util/all_close_f.hpp"
#include "util/ndarray.hpp"
#include "util/test_control.hpp"
#include "util/test_tools.hpp"
using namespace std;
using namespace ngraph;
static string s_manifest = "${MANIFEST}";
NGRAPH_TEST(${BACKEND_NAME}, cosh)
{
Shape shape{6};
auto A = make_shared<op::Parameter>(element::f32, shape);
auto f = make_shared<Function>(make_shared<op::Cosh>(A), ParameterVector{A});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::f32, shape);
vector<float> input{1.0f, 0.0f, -0.0f, -1.0f, 5.0f, -5.0f};
copy_data(a, input);
auto result = backend->create_tensor(element::f32, shape);
std::transform(
input.begin(), input.end(), input.begin(), [](float x) -> float { return coshf(x); });
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a});
EXPECT_TRUE(test::all_close_f(input, read_vector<float>(result)));
}
......@@ -44,98 +44,6 @@ using namespace ngraph;
static string s_manifest = "${MANIFEST}";
NGRAPH_TEST(${BACKEND_NAME}, add)
{
Shape shape{2, 2};
auto A = make_shared<op::Parameter>(element::f32, shape);
auto B = make_shared<op::Parameter>(element::f32, shape);
auto f = make_shared<Function>(make_shared<op::Add>(A, B), ParameterVector{A, B});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
shared_ptr<runtime::Tensor> a = backend->create_tensor(element::f32, shape);
shared_ptr<runtime::Tensor> b = backend->create_tensor(element::f32, shape);
shared_ptr<runtime::Tensor> result = backend->create_tensor(element::f32, shape);
copy_data(a, test::NDArray<float, 2>({{1, 2}, {3, 4}}).get_vector());
copy_data(b, test::NDArray<float, 2>({{5, 6}, {7, 8}}).get_vector());
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a, b});
EXPECT_TRUE(test::all_close_f(read_vector<float>(result),
(test::NDArray<float, 2>({{6, 8}, {10, 12}})).get_vector()));
}
NGRAPH_TEST(${BACKEND_NAME}, add_overload)
{
Shape shape{2, 2};
auto A = make_shared<op::Parameter>(element::f32, shape);
auto B = make_shared<op::Parameter>(element::f32, shape);
auto f = make_shared<Function>(A + B, ParameterVector{A, B});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
shared_ptr<runtime::Tensor> a = backend->create_tensor(element::f32, shape);
shared_ptr<runtime::Tensor> b = backend->create_tensor(element::f32, shape);
shared_ptr<runtime::Tensor> result = backend->create_tensor(element::f32, shape);
copy_data(a, test::NDArray<float, 2>({{1, 2}, {3, 4}}).get_vector());
copy_data(b, test::NDArray<float, 2>({{5, 6}, {7, 8}}).get_vector());
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a, b});
EXPECT_TRUE(test::all_close_f(read_vector<float>(result),
(test::NDArray<float, 2>({{6, 8}, {10, 12}})).get_vector()));
}
NGRAPH_TEST(${BACKEND_NAME}, multiply)
{
Shape shape{2, 2};
auto A = make_shared<op::Parameter>(element::f32, shape);
auto B = make_shared<op::Parameter>(element::f32, shape);
auto f = make_shared<Function>(make_shared<op::Multiply>(A, B), ParameterVector{A, B});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
shared_ptr<runtime::Tensor> a = backend->create_tensor(element::f32, shape);
shared_ptr<runtime::Tensor> b = backend->create_tensor(element::f32, shape);
shared_ptr<runtime::Tensor> result = backend->create_tensor(element::f32, shape);
copy_data(a, test::NDArray<float, 2>({{1, 2}, {3, 4}}).get_vector());
copy_data(b, test::NDArray<float, 2>({{5, 6}, {7, 8}}).get_vector());
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a, b});
EXPECT_TRUE(test::all_close_f(read_vector<float>(result),
(test::NDArray<float, 2>({{5, 12}, {21, 32}})).get_vector()));
}
NGRAPH_TEST(${BACKEND_NAME}, multiply_overload)
{
Shape shape{2, 2};
auto A = make_shared<op::Parameter>(element::f32, shape);
auto B = make_shared<op::Parameter>(element::f32, shape);
auto f = make_shared<Function>(A * B, ParameterVector{A, B});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
shared_ptr<runtime::Tensor> a = backend->create_tensor(element::f32, shape);
shared_ptr<runtime::Tensor> b = backend->create_tensor(element::f32, shape);
shared_ptr<runtime::Tensor> result = backend->create_tensor(element::f32, shape);
copy_data(a, test::NDArray<float, 2>({{1, 2}, {3, 4}}).get_vector());
copy_data(b, test::NDArray<float, 2>({{5, 6}, {7, 8}}).get_vector());
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a, b});
EXPECT_TRUE(test::all_close_f(read_vector<float>(result),
(test::NDArray<float, 2>({{5, 12}, {21, 32}})).get_vector()));
}
NGRAPH_TEST(${BACKEND_NAME}, divide)
{
Shape shape{2, 2};
......@@ -320,260 +228,3 @@ NGRAPH_TEST(${BACKEND_NAME}, divide_by_zero_float32)
std::numeric_limits<float>::infinity()}),
read_vector<float>(result));
}
NGRAPH_TEST(${BACKEND_NAME}, maximum)
{
Shape shape{2, 2, 2};
auto A = make_shared<op::Parameter>(element::f32, shape);
auto B = make_shared<op::Parameter>(element::f32, shape);
auto f = make_shared<Function>(make_shared<op::Maximum>(A, B), ParameterVector{A, B});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::f32, shape);
copy_data(a, vector<float>{1, 8, -8, 17, -0.5, 0.5, 2, 1});
auto b = backend->create_tensor(element::f32, shape);
copy_data(b, vector<float>{1, 2, 4, 8, 0, 0, 1, 1.5});
auto result = backend->create_tensor(element::f32, shape);
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a, b});
EXPECT_TRUE(test::all_close_f((vector<float>{1, 8, 4, 17, 0, 0.5, 2, 1.5}),
read_vector<float>(result)));
}
NGRAPH_TEST(${BACKEND_NAME}, minimum)
{
Shape shape{2, 2, 2};
auto A = make_shared<op::Parameter>(element::f32, shape);
auto B = make_shared<op::Parameter>(element::f32, shape);
auto f = make_shared<Function>(make_shared<op::Minimum>(A, B), ParameterVector{A, B});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::f32, shape);
copy_data(a, vector<float>{1, 8, -8, 17, -0.5, 0.5, 2, 1});
auto b = backend->create_tensor(element::f32, shape);
copy_data(b, vector<float>{1, 2, 4, 8, 0, 0, 1, 1.5});
auto result = backend->create_tensor(element::f32, shape);
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a, b});
EXPECT_TRUE(
test::all_close_f((vector<float>{1, 2, -8, 8, -.5, 0, 1, 1}), read_vector<float>(result)));
}
NGRAPH_TEST(${BACKEND_NAME}, minimum_int32)
{
Shape shape{2, 2, 2};
auto A = make_shared<op::Parameter>(element::i32, shape);
auto B = make_shared<op::Parameter>(element::i32, shape);
auto f = make_shared<Function>(make_shared<op::Minimum>(A, B), ParameterVector{A, B});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::i32, shape);
copy_data(a, vector<int32_t>{1, 8, -8, 17, -5, 67635216, 2, 1});
auto b = backend->create_tensor(element::i32, shape);
copy_data(b, vector<int32_t>{1, 2, 4, 8, 0, 18448, 1, 6});
auto result = backend->create_tensor(element::i32, shape);
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a, b});
EXPECT_EQ((vector<int32_t>{1, 2, -8, 8, -5, 18448, 1, 1}), read_vector<int32_t>(result));
}
NGRAPH_TEST(${BACKEND_NAME}, minimum_int64)
{
Shape shape{2, 2, 2};
auto A = make_shared<op::Parameter>(element::i64, shape);
auto B = make_shared<op::Parameter>(element::i64, shape);
auto f = make_shared<Function>(make_shared<op::Minimum>(A, B), ParameterVector{A, B});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::i64, shape);
copy_data(a, vector<int64_t>{1, 8, -8, 17, -5, 67635216, 2, 17179887632});
auto b = backend->create_tensor(element::i64, shape);
copy_data(b, vector<int64_t>{1, 2, 4, 8, 0, 18448, 1, 280592});
auto result = backend->create_tensor(element::i64, shape);
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a, b});
EXPECT_EQ((vector<int64_t>{1, 2, -8, 8, -5, 18448, 1, 280592}), read_vector<int64_t>(result));
}
NGRAPH_TEST(${BACKEND_NAME}, maximum_int32)
{
Shape shape{2, 2};
auto A = make_shared<op::Parameter>(element::i32, shape);
auto B = make_shared<op::Parameter>(element::i32, shape);
auto f = make_shared<Function>(make_shared<op::Maximum>(A, B), ParameterVector{A, B});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::i32, shape);
copy_data(a, vector<int32_t>{0x40000140, 0x40000001, -8, 17});
auto b = backend->create_tensor(element::i32, shape);
copy_data(b, vector<int32_t>{0x40000170, 0x40000000, 4, 8});
auto result = backend->create_tensor(element::i32, shape);
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a, b});
EXPECT_EQ((vector<int32_t>{0x40000170, 0x40000001, 4, 17}), read_vector<int32_t>(result));
}
NGRAPH_TEST(${BACKEND_NAME}, maximum_int64)
{
Shape shape{2, 2, 2};
auto A = make_shared<op::Parameter>(element::i64, shape);
auto B = make_shared<op::Parameter>(element::i64, shape);
auto f = make_shared<Function>(make_shared<op::Maximum>(A, B), ParameterVector{A, B});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::i64, shape);
copy_data(a, vector<int64_t>{1, 8, -8, 17, -5, 67635216, 2, 17179887632});
auto b = backend->create_tensor(element::i64, shape);
copy_data(b, vector<int64_t>{1, 2, 4, 8, 0, 18448, 1, 280592});
auto result = backend->create_tensor(element::i64, shape);
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a, b});
EXPECT_EQ((vector<int64_t>{1, 8, 4, 17, 0, 67635216, 2, 17179887632}),
read_vector<int64_t>(result));
}
NGRAPH_TEST(${BACKEND_NAME}, power)
{
Shape shape{2, 2};
auto A = make_shared<op::Parameter>(element::f32, shape);
auto B = make_shared<op::Parameter>(element::f32, shape);
auto f = make_shared<Function>(make_shared<op::Power>(A, B), ParameterVector{A, B});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::f32, shape);
copy_data(a, vector<float>{1, 2, 3, 5});
auto b = backend->create_tensor(element::f32, shape);
copy_data(b, vector<float>{2, 0, 6, 3});
auto result = backend->create_tensor(element::f32, shape);
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a, b});
EXPECT_TRUE(test::all_close_f(vector<float>{1, 1, 729, 125}, read_vector<float>(result)));
}
NGRAPH_TEST(${BACKEND_NAME}, subtract)
{
Shape shape{2, 2};
auto A = make_shared<op::Parameter>(element::f32, shape);
auto B = make_shared<op::Parameter>(element::f32, shape);
auto f = make_shared<Function>(make_shared<op::Subtract>(A, B), ParameterVector{A, B});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::f32, shape);
copy_data(a, vector<float>{2, 4, 8, 16});
auto b = backend->create_tensor(element::f32, shape);
copy_data(b, vector<float>{1, 2, 4, 8});
auto result = backend->create_tensor(element::f32, shape);
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a, b});
EXPECT_TRUE(test::all_close_f((vector<float>{1, 2, 4, 8}), read_vector<float>(result)));
}
NGRAPH_TEST(${BACKEND_NAME}, subtract_overload)
{
Shape shape{2, 2};
auto A = make_shared<op::Parameter>(element::f32, shape);
auto B = make_shared<op::Parameter>(element::f32, shape);
auto f = make_shared<Function>(A - B, ParameterVector{A, B});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::f32, shape);
copy_data(a, vector<float>{2, 4, 8, 16});
auto b = backend->create_tensor(element::f32, shape);
copy_data(b, vector<float>{1, 2, 4, 8});
auto result = backend->create_tensor(element::f32, shape);
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a, b});
EXPECT_TRUE(test::all_close_f((vector<float>{1, 2, 4, 8}), read_vector<float>(result)));
}
template <typename optype, typename itype, typename otype>
void check_auto_bcast(const std::vector<std::vector<itype>>& inputs,
const std::vector<otype> output)
{
auto iet = element::from<itype>();
auto oet = element::from<otype>();
if (std::is_same<itype, char>::value)
{
iet = element::boolean;
}
if (std::is_same<otype, char>::value)
{
oet = element::boolean;
}
auto A = make_shared<op::Parameter>(iet, Shape{2, 3});
auto B = make_shared<op::Parameter>(iet, Shape{3});
auto f = make_shared<Function>(make_shared<optype>(A, B, op::AutoBroadcastType::NUMPY),
ParameterVector{A, B});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
shared_ptr<runtime::Tensor> a = backend->create_tensor(iet, Shape{2, 3});
shared_ptr<runtime::Tensor> b = backend->create_tensor(iet, Shape{3});
shared_ptr<runtime::Tensor> result = backend->create_tensor(oet, Shape{2, 3});
copy_data(a, inputs[0]);
copy_data(b, inputs[1]);
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a, b});
EXPECT_TRUE(test::all_close(read_vector<otype>(result), output));
}
NGRAPH_TEST(${BACKEND_NAME}, auto_bcast_binary_elementwise)
{
check_auto_bcast<op::Add, float, float>({{1, 2, 3, 4, 5, 6}, {5, 6, 7}}, {6, 8, 10, 9, 11, 13});
check_auto_bcast<op::Subtract, float, float>({{1, 2, 3, 4, 5, 6}, {5, 6, 7}},
{-4.f, -4.f, -4.f, -1.f, -1.f, -1.f});
check_auto_bcast<op::Multiply, float, float>({{1, 2, 3, 4, 5, 6}, {5, 6, 7}},
{5, 12, 21, 20, 30, 42});
check_auto_bcast<op::Divide, float, float>({{4, 5, 6, 7, 8, 9}, {1, 2, 3}},
{4, 2.5f, 2, 7, 4, 3});
check_auto_bcast<op::Maximum, float, float>({{1, 2, 3, 4, 5, 6}, {1, 5, 8}},
{1, 5, 8, 4, 5, 8});
check_auto_bcast<op::Minimum, float, float>({{1, 2, 3, 4, 5, 6}, {1, 5, 8}},
{1, 2, 3, 1, 5, 6});
check_auto_bcast<op::Power, float, float>({{1, 2, 3, 4, 5, 6}, {1, 2, 3}},
{1, 4, 27, 4, 25, 216});
check_auto_bcast<op::And, char, char>({{1, 0, 1, 0, 0, 1}, {1, 0, 1}}, {1, 0, 1, 0, 0, 1});
check_auto_bcast<op::Or, char, char>({{1, 0, 1, 0, 1, 1}, {1, 0, 0}}, {1, 0, 1, 1, 1, 1});
check_auto_bcast<op::Equal, uint8_t, char>({{1, 0, 1, 0, 1, 1}, {1, 0, 0}}, {1, 1, 0, 0, 0, 0});
check_auto_bcast<op::Greater, float, char>({{1, 2, 3, 4, 5, 6}, {1, 5, 8}}, {0, 0, 0, 1, 0, 0});
check_auto_bcast<op::GreaterEq, float, char>({{1, 2, 3, 4, 5, 6}, {1, 5, 8}},
{1, 0, 0, 1, 1, 0});
check_auto_bcast<op::Less, uint8_t, char>({{1, 2, 3, 4, 5, 6}, {1, 5, 8}}, {0, 1, 1, 0, 0, 1});
check_auto_bcast<op::LessEq, uint8_t, char>({{1, 2, 3, 4, 5, 6}, {1, 5, 8}},
{1, 1, 1, 0, 1, 1});
check_auto_bcast<op::NotEqual, uint8_t, char>({{1, 2, 3, 4, 5, 6}, {1, 5, 8}},
{0, 1, 1, 1, 0, 1});
}
//*****************************************************************************
// Copyright 2017-2019 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#include <algorithm>
#include <cinttypes>
#include <cmath>
#include <cstdlib>
#include <random>
#include <string>
// clang-format off
#ifdef ${BACKEND_NAME}_FLOAT_TOLERANCE_BITS
#define DEFAULT_FLOAT_TOLERANCE_BITS ${BACKEND_NAME}_FLOAT_TOLERANCE_BITS
#endif
#ifdef ${BACKEND_NAME}_DOUBLE_TOLERANCE_BITS
#define DEFAULT_DOUBLE_TOLERANCE_BITS ${BACKEND_NAME}_DOUBLE_TOLERANCE_BITS
#endif
// clang-format on
#include "gtest/gtest.h"
#include "ngraph/ngraph.hpp"
#include "util/all_close.hpp"
#include "util/all_close_f.hpp"
#include "util/ndarray.hpp"
#include "util/test_control.hpp"
#include "util/test_tools.hpp"
using namespace std;
using namespace ngraph;
static string s_manifest = "${MANIFEST}";
NGRAPH_TEST(${BACKEND_NAME}, erf)
{
Shape shape{8};
auto A = make_shared<op::Parameter>(element::f32, shape);
auto f = make_shared<Function>(make_shared<op::Erf>(A), ParameterVector{A});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::f32, shape);
copy_data(a, vector<float>{-4.0f, -3.0f, -2.0f, -1.0f, 0.0f, 1.0f, 2.0f, 3.0f});
auto result = backend->create_tensor(element::f32, shape);
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a});
EXPECT_TRUE(test::all_close_f(vector<float>{erf(-4.0f),
erf(-3.0f),
erf(-2.0f),
erf(-1.0f),
erf(0.0f),
erf(1.0f),
erf(2.0f),
erf(3.0f)},
read_vector<float>(result)));
}
//*****************************************************************************
// Copyright 2017-2019 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#include <algorithm>
#include <cinttypes>
#include <cmath>
#include <cstdlib>
#include <random>
#include <string>
// clang-format off
#ifdef ${BACKEND_NAME}_FLOAT_TOLERANCE_BITS
#define DEFAULT_FLOAT_TOLERANCE_BITS ${BACKEND_NAME}_FLOAT_TOLERANCE_BITS
#endif
#ifdef ${BACKEND_NAME}_DOUBLE_TOLERANCE_BITS
#define DEFAULT_DOUBLE_TOLERANCE_BITS ${BACKEND_NAME}_DOUBLE_TOLERANCE_BITS
#endif
// clang-format on
#include "gtest/gtest.h"
#include "ngraph/ngraph.hpp"
#include "util/all_close.hpp"
#include "util/all_close_f.hpp"
#include "util/ndarray.hpp"
#include "util/test_control.hpp"
#include "util/test_tools.hpp"
using namespace std;
using namespace ngraph;
static string s_manifest = "${MANIFEST}";
NGRAPH_TEST(${BACKEND_NAME}, exp)
{
Shape shape{8};
auto A = make_shared<op::Parameter>(element::f32, shape);
auto f = make_shared<Function>(make_shared<op::Exp>(A), ParameterVector{A});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::f32, shape);
copy_data(a, vector<float>{-4, -3, -2, -1, 0, 1, 2, 3});
auto result = backend->create_tensor(element::f32, shape);
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a});
EXPECT_TRUE(test::all_close_f(
vector<float>{expf(-4), expf(-3), expf(-2), expf(-1), expf(0), expf(1), expf(2), expf(3)},
read_vector<float>(result)));
}
//*****************************************************************************
// Copyright 2017-2019 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#include <algorithm>
#include <cinttypes>
#include <cmath>
#include <cstdlib>
#include <random>
#include <string>
// clang-format off
#ifdef ${BACKEND_NAME}_FLOAT_TOLERANCE_BITS
#define DEFAULT_FLOAT_TOLERANCE_BITS ${BACKEND_NAME}_FLOAT_TOLERANCE_BITS
#endif
#ifdef ${BACKEND_NAME}_DOUBLE_TOLERANCE_BITS
#define DEFAULT_DOUBLE_TOLERANCE_BITS ${BACKEND_NAME}_DOUBLE_TOLERANCE_BITS
#endif
// clang-format on
#include "gtest/gtest.h"
#include "ngraph/ngraph.hpp"
#include "util/all_close.hpp"
#include "util/all_close_f.hpp"
#include "util/ndarray.hpp"
#include "util/test_control.hpp"
#include "util/test_tools.hpp"
using namespace std;
using namespace ngraph;
static string s_manifest = "${MANIFEST}";
NGRAPH_TEST(${BACKEND_NAME}, floor)
{
Shape shape{2, 2};
auto A = make_shared<op::Parameter>(element::f32, shape);
auto f = make_shared<Function>(make_shared<op::Floor>(A), ParameterVector{A});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::f32, shape);
copy_data(a, vector<float>{-2.5f, -2.0f, 0.3f, 4.8f});
auto result = backend->create_tensor(element::f32, shape);
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a});
EXPECT_TRUE(test::all_close_f((vector<float>{-3.0f, -2.0f, 0.0f, 4.0f}),
read_vector<float>(result),
MIN_FLOAT_TOLERANCE_BITS));
}
NGRAPH_TEST(${BACKEND_NAME}, floor_int32)
{
Shape shape{2, 2};
auto A = make_shared<op::Parameter>(element::i32, shape);
auto f = make_shared<Function>(make_shared<op::Floor>(A), ParameterVector{A});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::i32, shape);
copy_data(a, vector<int32_t>{-2, -136314888, 0x40000010, 0x40000001});
auto result = backend->create_tensor(element::i32, shape);
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a});
EXPECT_EQ((vector<int32_t>{-2, -136314888, 0x40000010, 0x40000001}),
read_vector<int32_t>(result));
}
//*****************************************************************************
// Copyright 2017-2019 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#include <algorithm>
#include <cinttypes>
#include <cmath>
#include <cstdlib>
#include <random>
#include <string>
// clang-format off
#ifdef ${BACKEND_NAME}_FLOAT_TOLERANCE_BITS
#define DEFAULT_FLOAT_TOLERANCE_BITS ${BACKEND_NAME}_FLOAT_TOLERANCE_BITS
#endif
#ifdef ${BACKEND_NAME}_DOUBLE_TOLERANCE_BITS
#define DEFAULT_DOUBLE_TOLERANCE_BITS ${BACKEND_NAME}_DOUBLE_TOLERANCE_BITS
#endif
// clang-format on
#include "gtest/gtest.h"
#include "ngraph/ngraph.hpp"
#include "util/all_close.hpp"
#include "util/all_close_f.hpp"
#include "util/ndarray.hpp"
#include "util/test_control.hpp"
#include "util/test_tools.hpp"
using namespace std;
using namespace ngraph;
static string s_manifest = "${MANIFEST}";
NGRAPH_TEST(${BACKEND_NAME}, gelu_f32)
{
Shape shape{8};
auto A = make_shared<op::Parameter>(element::f32, shape);
auto f = make_shared<Function>(make_shared<op::Gelu>(A), ParameterVector{A});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::f32, shape);
vector<float> input{-4.0f, -3.0f, -2.0f, -1.0f, 0.0f, 1.0f, 2.0f, 3.0f};
copy_data(a, input);
auto result = backend->create_tensor(element::f32, shape);
std::transform(input.begin(), input.end(), input.begin(), [](float x) -> float {
return 0.5f * x * (1.0f + erf(x / sqrt(2.0f)));
});
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a});
EXPECT_TRUE(test::all_close_f(input, read_vector<float>(result)));
}
NGRAPH_TEST(${BACKEND_NAME}, gelu_f64)
{
Shape shape{8};
auto A = make_shared<op::Parameter>(element::f64, shape);
auto f = make_shared<Function>(make_shared<op::Gelu>(A), ParameterVector{A});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::f64, shape);
vector<double> input{-4.0, -3.0, -2.0, -1.0, 0.0, 1.0, 2.0, 3.0};
copy_data(a, input);
auto result = backend->create_tensor(element::f64, shape);
std::transform(input.begin(), input.end(), input.begin(), [](double x) -> double {
return 0.5 * x * (1.0 + erf(x / sqrt(2.0)));
});
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a});
EXPECT_TRUE(test::all_close_f(input, read_vector<double>(result)));
}
//*****************************************************************************
// Copyright 2017-2019 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#include <algorithm>
#include <cinttypes>
#include <cmath>
#include <cstdlib>
#include <random>
#include <string>
// clang-format off
#ifdef ${BACKEND_NAME}_FLOAT_TOLERANCE_BITS
#define DEFAULT_FLOAT_TOLERANCE_BITS ${BACKEND_NAME}_FLOAT_TOLERANCE_BITS
#endif
#ifdef ${BACKEND_NAME}_DOUBLE_TOLERANCE_BITS
#define DEFAULT_DOUBLE_TOLERANCE_BITS ${BACKEND_NAME}_DOUBLE_TOLERANCE_BITS
#endif
// clang-format on
#include "gtest/gtest.h"
#include "ngraph/ngraph.hpp"
#include "util/all_close.hpp"
#include "util/all_close_f.hpp"
#include "util/ndarray.hpp"
#include "util/test_control.hpp"
#include "util/test_tools.hpp"
using namespace std;
using namespace ngraph;
static string s_manifest = "${MANIFEST}";
NGRAPH_TEST(${BACKEND_NAME}, log)
{
Shape shape{2, 2, 2};
auto A = make_shared<op::Parameter>(element::f32, shape);
auto f = make_shared<Function>(make_shared<op::Log>(A), ParameterVector{A});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::f32, shape);
copy_data(a, vector<float>{0.125f, 0.25f, 0.5f, 1.f, 2.f, 4.f, 8.f, 16.f});
vector<float> loga{-2.07944154f,
-1.38629436f,
-0.69314718f,
0.00000000f,
0.69314718f,
1.38629436f,
2.07944154f,
2.77258872f};
auto result = backend->create_tensor(element::f32, shape);
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a});
EXPECT_TRUE(test::all_close_f(loga, read_vector<float>(result)));
}
//*****************************************************************************
// Copyright 2017-2019 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#include <algorithm>
#include <cinttypes>
#include <cmath>
#include <cstdlib>
#include <random>
#include <string>
// clang-format off
#ifdef ${BACKEND_NAME}_FLOAT_TOLERANCE_BITS
#define DEFAULT_FLOAT_TOLERANCE_BITS ${BACKEND_NAME}_FLOAT_TOLERANCE_BITS
#endif
#ifdef ${BACKEND_NAME}_DOUBLE_TOLERANCE_BITS
#define DEFAULT_DOUBLE_TOLERANCE_BITS ${BACKEND_NAME}_DOUBLE_TOLERANCE_BITS
#endif
// clang-format on
#include "gtest/gtest.h"
#include "ngraph/ngraph.hpp"
#include "util/all_close.hpp"
#include "util/all_close_f.hpp"
#include "util/ndarray.hpp"
#include "util/test_control.hpp"
#include "util/test_tools.hpp"
using namespace std;
using namespace ngraph;
static string s_manifest = "${MANIFEST}";
NGRAPH_TEST(${BACKEND_NAME}, maximum)
{
Shape shape{2, 2, 2};
auto A = make_shared<op::Parameter>(element::f32, shape);
auto B = make_shared<op::Parameter>(element::f32, shape);
auto f = make_shared<Function>(make_shared<op::Maximum>(A, B), ParameterVector{A, B});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::f32, shape);
copy_data(a, vector<float>{1, 8, -8, 17, -0.5, 0.5, 2, 1});
auto b = backend->create_tensor(element::f32, shape);
copy_data(b, vector<float>{1, 2, 4, 8, 0, 0, 1, 1.5});
auto result = backend->create_tensor(element::f32, shape);
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a, b});
EXPECT_TRUE(test::all_close_f((vector<float>{1, 8, 4, 17, 0, 0.5, 2, 1.5}),
read_vector<float>(result)));
}
NGRAPH_TEST(${BACKEND_NAME}, maximum_int32)
{
Shape shape{2, 2};
auto A = make_shared<op::Parameter>(element::i32, shape);
auto B = make_shared<op::Parameter>(element::i32, shape);
auto f = make_shared<Function>(make_shared<op::Maximum>(A, B), ParameterVector{A, B});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::i32, shape);
copy_data(a, vector<int32_t>{0x40000140, 0x40000001, -8, 17});
auto b = backend->create_tensor(element::i32, shape);
copy_data(b, vector<int32_t>{0x40000170, 0x40000000, 4, 8});
auto result = backend->create_tensor(element::i32, shape);
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a, b});
EXPECT_EQ((vector<int32_t>{0x40000170, 0x40000001, 4, 17}), read_vector<int32_t>(result));
}
NGRAPH_TEST(${BACKEND_NAME}, maximum_int64)
{
Shape shape{2, 2, 2};
auto A = make_shared<op::Parameter>(element::i64, shape);
auto B = make_shared<op::Parameter>(element::i64, shape);
auto f = make_shared<Function>(make_shared<op::Maximum>(A, B), ParameterVector{A, B});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::i64, shape);
copy_data(a, vector<int64_t>{1, 8, -8, 17, -5, 67635216, 2, 17179887632});
auto b = backend->create_tensor(element::i64, shape);
copy_data(b, vector<int64_t>{1, 2, 4, 8, 0, 18448, 1, 280592});
auto result = backend->create_tensor(element::i64, shape);
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a, b});
EXPECT_EQ((vector<int64_t>{1, 8, 4, 17, 0, 67635216, 2, 17179887632}),
read_vector<int64_t>(result));
}
//*****************************************************************************
// Copyright 2017-2019 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#include <algorithm>
#include <cinttypes>
#include <cmath>
#include <cstdlib>
#include <random>
#include <string>
// clang-format off
#ifdef ${BACKEND_NAME}_FLOAT_TOLERANCE_BITS
#define DEFAULT_FLOAT_TOLERANCE_BITS ${BACKEND_NAME}_FLOAT_TOLERANCE_BITS
#endif
#ifdef ${BACKEND_NAME}_DOUBLE_TOLERANCE_BITS
#define DEFAULT_DOUBLE_TOLERANCE_BITS ${BACKEND_NAME}_DOUBLE_TOLERANCE_BITS
#endif
// clang-format on
#include "gtest/gtest.h"
#include "ngraph/ngraph.hpp"
#include "util/all_close.hpp"
#include "util/all_close_f.hpp"
#include "util/ndarray.hpp"
#include "util/test_control.hpp"
#include "util/test_tools.hpp"
using namespace std;
using namespace ngraph;
static string s_manifest = "${MANIFEST}";
NGRAPH_TEST(${BACKEND_NAME}, minimum)
{
Shape shape{2, 2, 2};
auto A = make_shared<op::Parameter>(element::f32, shape);
auto B = make_shared<op::Parameter>(element::f32, shape);
auto f = make_shared<Function>(make_shared<op::Minimum>(A, B), ParameterVector{A, B});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::f32, shape);
copy_data(a, vector<float>{1, 8, -8, 17, -0.5, 0.5, 2, 1});
auto b = backend->create_tensor(element::f32, shape);
copy_data(b, vector<float>{1, 2, 4, 8, 0, 0, 1, 1.5});
auto result = backend->create_tensor(element::f32, shape);
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a, b});
EXPECT_TRUE(
test::all_close_f((vector<float>{1, 2, -8, 8, -.5, 0, 1, 1}), read_vector<float>(result)));
}
NGRAPH_TEST(${BACKEND_NAME}, minimum_int32)
{
Shape shape{2, 2, 2};
auto A = make_shared<op::Parameter>(element::i32, shape);
auto B = make_shared<op::Parameter>(element::i32, shape);
auto f = make_shared<Function>(make_shared<op::Minimum>(A, B), ParameterVector{A, B});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::i32, shape);
copy_data(a, vector<int32_t>{1, 8, -8, 17, -5, 67635216, 2, 1});
auto b = backend->create_tensor(element::i32, shape);
copy_data(b, vector<int32_t>{1, 2, 4, 8, 0, 18448, 1, 6});
auto result = backend->create_tensor(element::i32, shape);
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a, b});
EXPECT_EQ((vector<int32_t>{1, 2, -8, 8, -5, 18448, 1, 1}), read_vector<int32_t>(result));
}
NGRAPH_TEST(${BACKEND_NAME}, minimum_int64)
{
Shape shape{2, 2, 2};
auto A = make_shared<op::Parameter>(element::i64, shape);
auto B = make_shared<op::Parameter>(element::i64, shape);
auto f = make_shared<Function>(make_shared<op::Minimum>(A, B), ParameterVector{A, B});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::i64, shape);
copy_data(a, vector<int64_t>{1, 8, -8, 17, -5, 67635216, 2, 17179887632});
auto b = backend->create_tensor(element::i64, shape);
copy_data(b, vector<int64_t>{1, 2, 4, 8, 0, 18448, 1, 280592});
auto result = backend->create_tensor(element::i64, shape);
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a, b});
EXPECT_EQ((vector<int64_t>{1, 2, -8, 8, -5, 18448, 1, 280592}), read_vector<int64_t>(result));
}
//*****************************************************************************
// Copyright 2017-2019 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#include <algorithm>
#include <cinttypes>
#include <cmath>
#include <cstdlib>
#include <random>
#include <string>
// clang-format off
#ifdef ${BACKEND_NAME}_FLOAT_TOLERANCE_BITS
#define DEFAULT_FLOAT_TOLERANCE_BITS ${BACKEND_NAME}_FLOAT_TOLERANCE_BITS
#endif
#ifdef ${BACKEND_NAME}_DOUBLE_TOLERANCE_BITS
#define DEFAULT_DOUBLE_TOLERANCE_BITS ${BACKEND_NAME}_DOUBLE_TOLERANCE_BITS
#endif
// clang-format on
#include "gtest/gtest.h"
#include "ngraph/ngraph.hpp"
#include "util/all_close.hpp"
#include "util/all_close_f.hpp"
#include "util/ndarray.hpp"
#include "util/test_control.hpp"
#include "util/test_tools.hpp"
using namespace std;
using namespace ngraph;
static string s_manifest = "${MANIFEST}";
NGRAPH_TEST(${BACKEND_NAME}, multiply)
{
Shape shape{2, 2};
auto A = make_shared<op::Parameter>(element::f32, shape);
auto B = make_shared<op::Parameter>(element::f32, shape);
auto f = make_shared<Function>(make_shared<op::Multiply>(A, B), ParameterVector{A, B});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
shared_ptr<runtime::Tensor> a = backend->create_tensor(element::f32, shape);
shared_ptr<runtime::Tensor> b = backend->create_tensor(element::f32, shape);
shared_ptr<runtime::Tensor> result = backend->create_tensor(element::f32, shape);
copy_data(a, test::NDArray<float, 2>({{1, 2}, {3, 4}}).get_vector());
copy_data(b, test::NDArray<float, 2>({{5, 6}, {7, 8}}).get_vector());
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a, b});
EXPECT_TRUE(test::all_close_f(read_vector<float>(result),
(test::NDArray<float, 2>({{5, 12}, {21, 32}})).get_vector()));
}
NGRAPH_TEST(${BACKEND_NAME}, multiply_overload)
{
Shape shape{2, 2};
auto A = make_shared<op::Parameter>(element::f32, shape);
auto B = make_shared<op::Parameter>(element::f32, shape);
auto f = make_shared<Function>(A * B, ParameterVector{A, B});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
shared_ptr<runtime::Tensor> a = backend->create_tensor(element::f32, shape);
shared_ptr<runtime::Tensor> b = backend->create_tensor(element::f32, shape);
shared_ptr<runtime::Tensor> result = backend->create_tensor(element::f32, shape);
copy_data(a, test::NDArray<float, 2>({{1, 2}, {3, 4}}).get_vector());
copy_data(b, test::NDArray<float, 2>({{5, 6}, {7, 8}}).get_vector());
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a, b});
EXPECT_TRUE(test::all_close_f(read_vector<float>(result),
(test::NDArray<float, 2>({{5, 12}, {21, 32}})).get_vector()));
}
//*****************************************************************************
// Copyright 2017-2019 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#include <algorithm>
#include <cinttypes>
#include <cmath>
#include <cstdlib>
#include <random>
#include <string>
// clang-format off
#ifdef ${BACKEND_NAME}_FLOAT_TOLERANCE_BITS
#define DEFAULT_FLOAT_TOLERANCE_BITS ${BACKEND_NAME}_FLOAT_TOLERANCE_BITS
#endif
#ifdef ${BACKEND_NAME}_DOUBLE_TOLERANCE_BITS
#define DEFAULT_DOUBLE_TOLERANCE_BITS ${BACKEND_NAME}_DOUBLE_TOLERANCE_BITS
#endif
// clang-format on
#include "gtest/gtest.h"
#include "ngraph/ngraph.hpp"
#include "util/all_close.hpp"
#include "util/all_close_f.hpp"
#include "util/ndarray.hpp"
#include "util/test_control.hpp"
#include "util/test_tools.hpp"
using namespace std;
using namespace ngraph;
static string s_manifest = "${MANIFEST}";
NGRAPH_TEST(${BACKEND_NAME}, negative)
{
Shape shape{2, 3};
auto A = make_shared<op::Parameter>(element::f32, shape);
auto f = make_shared<Function>(make_shared<op::Negative>(A), ParameterVector{A});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::f32, shape);
copy_data(a, vector<float>{1, -2, 0, -4.75f, 8.75f, -8.75f});
auto result = backend->create_tensor(element::f32, shape);
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a});
EXPECT_TRUE(test::all_close_f((vector<float>{-1, 2, 0, 4.75f, -8.75f, 8.75f}),
read_vector<float>(result),
MIN_FLOAT_TOLERANCE_BITS));
}
//*****************************************************************************
// Copyright 2017-2019 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#include <algorithm>
#include <cinttypes>
#include <cmath>
#include <cstdlib>
#include <random>
#include <string>
// clang-format off
#ifdef ${BACKEND_NAME}_FLOAT_TOLERANCE_BITS
#define DEFAULT_FLOAT_TOLERANCE_BITS ${BACKEND_NAME}_FLOAT_TOLERANCE_BITS
#endif
#ifdef ${BACKEND_NAME}_DOUBLE_TOLERANCE_BITS
#define DEFAULT_DOUBLE_TOLERANCE_BITS ${BACKEND_NAME}_DOUBLE_TOLERANCE_BITS
#endif
// clang-format on
#include "gtest/gtest.h"
#include "ngraph/ngraph.hpp"
#include "util/all_close.hpp"
#include "util/all_close_f.hpp"
#include "util/ndarray.hpp"
#include "util/test_control.hpp"
#include "util/test_tools.hpp"
using namespace std;
using namespace ngraph;
static string s_manifest = "${MANIFEST}";
NGRAPH_TEST(${BACKEND_NAME}, not)
{
Shape shape{2, 2};
auto A = make_shared<op::Parameter>(element::boolean, shape);
auto f = make_shared<Function>(make_shared<op::Not>(A), ParameterVector{A});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::boolean, shape);
copy_data(a, vector<char>{1, 0, 2, 0});
auto result = backend->create_tensor(element::boolean, shape);
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a});
EXPECT_EQ((vector<char>{0, 1, 0, 1}), read_vector<char>(result));
}
//*****************************************************************************
// Copyright 2017-2019 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#include <algorithm>
#include <cinttypes>
#include <cmath>
#include <cstdlib>
#include <random>
#include <string>
// clang-format off
#ifdef ${BACKEND_NAME}_FLOAT_TOLERANCE_BITS
#define DEFAULT_FLOAT_TOLERANCE_BITS ${BACKEND_NAME}_FLOAT_TOLERANCE_BITS
#endif
#ifdef ${BACKEND_NAME}_DOUBLE_TOLERANCE_BITS
#define DEFAULT_DOUBLE_TOLERANCE_BITS ${BACKEND_NAME}_DOUBLE_TOLERANCE_BITS
#endif
// clang-format on
#include "gtest/gtest.h"
#include "ngraph/ngraph.hpp"
#include "util/all_close.hpp"
#include "util/all_close_f.hpp"
#include "util/ndarray.hpp"
#include "util/test_control.hpp"
#include "util/test_tools.hpp"
using namespace std;
using namespace ngraph;
static string s_manifest = "${MANIFEST}";
NGRAPH_TEST(${BACKEND_NAME}, power)
{
Shape shape{2, 2};
auto A = make_shared<op::Parameter>(element::f32, shape);
auto B = make_shared<op::Parameter>(element::f32, shape);
auto f = make_shared<Function>(make_shared<op::Power>(A, B), ParameterVector{A, B});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::f32, shape);
copy_data(a, vector<float>{1, 2, 3, 5});
auto b = backend->create_tensor(element::f32, shape);
copy_data(b, vector<float>{2, 0, 6, 3});
auto result = backend->create_tensor(element::f32, shape);
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a, b});
EXPECT_TRUE(test::all_close_f(vector<float>{1, 1, 729, 125}, read_vector<float>(result)));
}
//*****************************************************************************
// Copyright 2017-2019 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#include <algorithm>
#include <cinttypes>
#include <cmath>
#include <cstdlib>
#include <random>
#include <string>
// clang-format off
#ifdef ${BACKEND_NAME}_FLOAT_TOLERANCE_BITS
#define DEFAULT_FLOAT_TOLERANCE_BITS ${BACKEND_NAME}_FLOAT_TOLERANCE_BITS
#endif
#ifdef ${BACKEND_NAME}_DOUBLE_TOLERANCE_BITS
#define DEFAULT_DOUBLE_TOLERANCE_BITS ${BACKEND_NAME}_DOUBLE_TOLERANCE_BITS
#endif
// clang-format on
#include "gtest/gtest.h"
#include "ngraph/ngraph.hpp"
#include "util/all_close.hpp"
#include "util/all_close_f.hpp"
#include "util/ndarray.hpp"
#include "util/test_control.hpp"
#include "util/test_tools.hpp"
using namespace std;
using namespace ngraph;
static string s_manifest = "${MANIFEST}";
NGRAPH_TEST(${BACKEND_NAME}, sign)
{
Shape shape{2, 3};
auto A = make_shared<op::Parameter>(element::f32, shape);
auto f = make_shared<Function>(make_shared<op::Sign>(A), ParameterVector{A});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::f32, shape);
copy_data(a, vector<float>{1, -2, 0, -4.8f, 4.8f, -0.0f});
auto result = backend->create_tensor(element::f32, shape);
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a});
EXPECT_TRUE(test::all_close_f(
(vector<float>{1, -1, 0, -1, 1, 0}), read_vector<float>(result), MIN_FLOAT_TOLERANCE_BITS));
}
//*****************************************************************************
// Copyright 2017-2019 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#include <algorithm>
#include <cinttypes>
#include <cmath>
#include <cstdlib>
#include <random>
#include <string>
// clang-format off
#ifdef ${BACKEND_NAME}_FLOAT_TOLERANCE_BITS
#define DEFAULT_FLOAT_TOLERANCE_BITS ${BACKEND_NAME}_FLOAT_TOLERANCE_BITS
#endif
#ifdef ${BACKEND_NAME}_DOUBLE_TOLERANCE_BITS
#define DEFAULT_DOUBLE_TOLERANCE_BITS ${BACKEND_NAME}_DOUBLE_TOLERANCE_BITS
#endif
// clang-format on
#include "gtest/gtest.h"
#include "ngraph/ngraph.hpp"
#include "util/all_close.hpp"
#include "util/all_close_f.hpp"
#include "util/ndarray.hpp"
#include "util/test_control.hpp"
#include "util/test_tools.hpp"
using namespace std;
using namespace ngraph;
static string s_manifest = "${MANIFEST}";
NGRAPH_TEST(${BACKEND_NAME}, sin)
{
Shape shape{11};
auto A = make_shared<op::Parameter>(element::f32, shape);
auto f = make_shared<Function>(make_shared<op::Sin>(A), ParameterVector{A});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::f32, shape);
vector<float> input{0.f, 0.25f, -0.25f, 0.5f, -0.5f, 1.f, -1.f, 2.f, -2.f, 4.f, -4.f};
copy_data(a, input);
auto result = backend->create_tensor(element::f32, shape);
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a});
EXPECT_TRUE(test::all_close_f(vector<float>{0.00000000f,
0.24740396f,
-0.24740396f,
0.47942554f,
-0.47942554f,
0.84147098f,
-0.84147098f,
0.90929743f,
-0.90929743f,
-0.75680250f,
0.75680250f},
read_vector<float>(result)));
}
//*****************************************************************************
// Copyright 2017-2019 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#include <algorithm>
#include <cinttypes>
#include <cmath>
#include <cstdlib>
#include <random>
#include <string>
// clang-format off
#ifdef ${BACKEND_NAME}_FLOAT_TOLERANCE_BITS
#define DEFAULT_FLOAT_TOLERANCE_BITS ${BACKEND_NAME}_FLOAT_TOLERANCE_BITS
#endif
#ifdef ${BACKEND_NAME}_DOUBLE_TOLERANCE_BITS
#define DEFAULT_DOUBLE_TOLERANCE_BITS ${BACKEND_NAME}_DOUBLE_TOLERANCE_BITS
#endif
// clang-format on
#include "gtest/gtest.h"
#include "ngraph/ngraph.hpp"
#include "util/all_close.hpp"
#include "util/all_close_f.hpp"
#include "util/ndarray.hpp"
#include "util/test_control.hpp"
#include "util/test_tools.hpp"
using namespace std;
using namespace ngraph;
static string s_manifest = "${MANIFEST}";
NGRAPH_TEST(${BACKEND_NAME}, sinh)
{
Shape shape{6};
auto A = make_shared<op::Parameter>(element::f32, shape);
auto f = make_shared<Function>(make_shared<op::Sinh>(A), ParameterVector{A});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::f32, shape);
vector<float> input{1.0f, 0.0f, -0.0f, -1.0f, 5.0f, -5.0f};
copy_data(a, input);
auto result = backend->create_tensor(element::f32, shape);
std::transform(
input.begin(), input.end(), input.begin(), [](float x) -> float { return sinhf(x); });
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a});
EXPECT_TRUE(test::all_close_f(input, read_vector<float>(result)));
}
//*****************************************************************************
// Copyright 2017-2019 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#include <algorithm>
#include <cinttypes>
#include <cmath>
#include <cstdlib>
#include <random>
#include <string>
// clang-format off
#ifdef ${BACKEND_NAME}_FLOAT_TOLERANCE_BITS
#define DEFAULT_FLOAT_TOLERANCE_BITS ${BACKEND_NAME}_FLOAT_TOLERANCE_BITS
#endif
#ifdef ${BACKEND_NAME}_DOUBLE_TOLERANCE_BITS
#define DEFAULT_DOUBLE_TOLERANCE_BITS ${BACKEND_NAME}_DOUBLE_TOLERANCE_BITS
#endif
// clang-format on
#include "gtest/gtest.h"
#include "ngraph/ngraph.hpp"
#include "util/all_close.hpp"
#include "util/all_close_f.hpp"
#include "util/ndarray.hpp"
#include "util/test_control.hpp"
#include "util/test_tools.hpp"
using namespace std;
using namespace ngraph;
static string s_manifest = "${MANIFEST}";
NGRAPH_TEST(${BACKEND_NAME}, sqrt)
{
Shape shape{2, 3};
auto A = make_shared<op::Parameter>(element::f32, shape);
auto f = make_shared<Function>(make_shared<op::Sqrt>(A), ParameterVector{A});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::f32, shape);
copy_data(a, vector<float>{16, 4, 81, 100, 10000, 0});
auto result = backend->create_tensor(element::f32, shape);
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a});
EXPECT_TRUE(test::all_close_f(vector<float>{4, 2, 9, 10, 100, 0}, read_vector<float>(result)));
}
//*****************************************************************************
// Copyright 2017-2019 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#include <algorithm>
#include <cinttypes>
#include <cmath>
#include <cstdlib>
#include <random>
#include <string>
// clang-format off
#ifdef ${BACKEND_NAME}_FLOAT_TOLERANCE_BITS
#define DEFAULT_FLOAT_TOLERANCE_BITS ${BACKEND_NAME}_FLOAT_TOLERANCE_BITS
#endif
#ifdef ${BACKEND_NAME}_DOUBLE_TOLERANCE_BITS
#define DEFAULT_DOUBLE_TOLERANCE_BITS ${BACKEND_NAME}_DOUBLE_TOLERANCE_BITS
#endif
// clang-format on
#include "gtest/gtest.h"
#include "ngraph/ngraph.hpp"
#include "util/all_close.hpp"
#include "util/all_close_f.hpp"
#include "util/ndarray.hpp"
#include "util/test_control.hpp"
#include "util/test_tools.hpp"
using namespace std;
using namespace ngraph;
static string s_manifest = "${MANIFEST}";
NGRAPH_TEST(${BACKEND_NAME}, subtract)
{
Shape shape{2, 2};
auto A = make_shared<op::Parameter>(element::f32, shape);
auto B = make_shared<op::Parameter>(element::f32, shape);
auto f = make_shared<Function>(make_shared<op::Subtract>(A, B), ParameterVector{A, B});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::f32, shape);
copy_data(a, vector<float>{2, 4, 8, 16});
auto b = backend->create_tensor(element::f32, shape);
copy_data(b, vector<float>{1, 2, 4, 8});
auto result = backend->create_tensor(element::f32, shape);
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a, b});
EXPECT_TRUE(test::all_close_f((vector<float>{1, 2, 4, 8}), read_vector<float>(result)));
}
NGRAPH_TEST(${BACKEND_NAME}, subtract_overload)
{
Shape shape{2, 2};
auto A = make_shared<op::Parameter>(element::f32, shape);
auto B = make_shared<op::Parameter>(element::f32, shape);
auto f = make_shared<Function>(A - B, ParameterVector{A, B});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::f32, shape);
copy_data(a, vector<float>{2, 4, 8, 16});
auto b = backend->create_tensor(element::f32, shape);
copy_data(b, vector<float>{1, 2, 4, 8});
auto result = backend->create_tensor(element::f32, shape);
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a, b});
EXPECT_TRUE(test::all_close_f((vector<float>{1, 2, 4, 8}), read_vector<float>(result)));
}
//*****************************************************************************
// Copyright 2017-2019 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#include <algorithm>
#include <cinttypes>
#include <cmath>
#include <cstdlib>
#include <random>
#include <string>
// clang-format off
#ifdef ${BACKEND_NAME}_FLOAT_TOLERANCE_BITS
#define DEFAULT_FLOAT_TOLERANCE_BITS ${BACKEND_NAME}_FLOAT_TOLERANCE_BITS
#endif
#ifdef ${BACKEND_NAME}_DOUBLE_TOLERANCE_BITS
#define DEFAULT_DOUBLE_TOLERANCE_BITS ${BACKEND_NAME}_DOUBLE_TOLERANCE_BITS
#endif
// clang-format on
#include "gtest/gtest.h"
#include "ngraph/ngraph.hpp"
#include "util/all_close.hpp"
#include "util/all_close_f.hpp"
#include "util/ndarray.hpp"
#include "util/test_control.hpp"
#include "util/test_tools.hpp"
using namespace std;
using namespace ngraph;
static string s_manifest = "${MANIFEST}";
NGRAPH_TEST(${BACKEND_NAME}, tan)
{
Shape shape{11};
auto A = make_shared<op::Parameter>(element::f32, shape);
auto f = make_shared<Function>(make_shared<op::Tan>(A), ParameterVector{A});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::f32, shape);
vector<float> input{0.f, 0.25f, -0.25f, 0.5f, -0.5f, 1.f, -1.f, 2.f, -2.f, 4.f, -4.f};
copy_data(a, input);
auto result = backend->create_tensor(element::f32, shape);
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a});
EXPECT_TRUE(test::all_close_f(vector<float>{0.00000000f,
0.25534192f,
-0.25534192f,
0.54630249f,
-0.54630249f,
1.55740772f,
-1.55740772f,
-2.18503986f,
2.18503986f,
1.15782128f,
-1.15782128f},
read_vector<float>(result)));
}
//*****************************************************************************
// Copyright 2017-2019 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#include <algorithm>
#include <cinttypes>
#include <cmath>
#include <cstdlib>
#include <random>
#include <string>
// clang-format off
#ifdef ${BACKEND_NAME}_FLOAT_TOLERANCE_BITS
#define DEFAULT_FLOAT_TOLERANCE_BITS ${BACKEND_NAME}_FLOAT_TOLERANCE_BITS
#endif
#ifdef ${BACKEND_NAME}_DOUBLE_TOLERANCE_BITS
#define DEFAULT_DOUBLE_TOLERANCE_BITS ${BACKEND_NAME}_DOUBLE_TOLERANCE_BITS
#endif
// clang-format on
#include "gtest/gtest.h"
#include "ngraph/ngraph.hpp"
#include "util/all_close.hpp"
#include "util/all_close_f.hpp"
#include "util/ndarray.hpp"
#include "util/test_control.hpp"
#include "util/test_tools.hpp"
using namespace std;
using namespace ngraph;
static string s_manifest = "${MANIFEST}";
NGRAPH_TEST(${BACKEND_NAME}, tanh)
{
Shape shape{6};
auto A = make_shared<op::Parameter>(element::f32, shape);
auto f = make_shared<Function>(make_shared<op::Tanh>(A), ParameterVector{A});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::f32, shape);
vector<float> input{1.0f, 0.0f, -0.0f, -1.0f, 0.5f, -0.5f};
copy_data(a, input);
auto result = backend->create_tensor(element::f32, shape);
std::transform(
input.begin(), input.end(), input.begin(), [](float x) -> float { return tanhf(x); });
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a});
EXPECT_TRUE(test::all_close_f(input, read_vector<float>(result)));
}
//*****************************************************************************
// Copyright 2017-2019 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#include <algorithm>
#include <cinttypes>
#include <cmath>
#include <cstdlib>
#include <random>
#include <string>
// clang-format off
#ifdef ${BACKEND_NAME}_FLOAT_TOLERANCE_BITS
#define DEFAULT_FLOAT_TOLERANCE_BITS ${BACKEND_NAME}_FLOAT_TOLERANCE_BITS
#endif
#ifdef ${BACKEND_NAME}_DOUBLE_TOLERANCE_BITS
#define DEFAULT_DOUBLE_TOLERANCE_BITS ${BACKEND_NAME}_DOUBLE_TOLERANCE_BITS
#endif
// clang-format on
#include "gtest/gtest.h"
#include "ngraph/ngraph.hpp"
#include "util/all_close.hpp"
#include "util/all_close_f.hpp"
#include "util/ndarray.hpp"
#include "util/test_control.hpp"
#include "util/test_tools.hpp"
using namespace std;
using namespace ngraph;
static string s_manifest = "${MANIFEST}";
NGRAPH_TEST(${BACKEND_NAME}, abs)
{
Shape shape{2, 2};
auto A = make_shared<op::Parameter>(element::f32, shape);
auto f = make_shared<Function>(make_shared<op::Abs>(A), ParameterVector{A});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::f32, shape);
copy_data(a, vector<float>{1, -2, 0, -4.75f});
auto result = backend->create_tensor(element::f32, shape);
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a});
EXPECT_TRUE(test::all_close_f(
(vector<float>{1, 2, 0, 4.75f}), read_vector<float>(result), MIN_FLOAT_TOLERANCE_BITS));
}
NGRAPH_TEST(${BACKEND_NAME}, acos)
{
Shape shape{11};
auto A = make_shared<op::Parameter>(element::f32, shape);
auto f = make_shared<Function>(make_shared<op::Acos>(A), ParameterVector{A});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::f32, shape);
vector<float> input{-1.f, -0.75f, -0.5f, -0.25f, -0.125f, 0.f, 0.125f, 0.25f, 0.5f, 0.75f, 1.f};
copy_data(a, input);
auto result = backend->create_tensor(element::f32, shape);
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a});
EXPECT_TRUE(test::all_close_f(vector<float>{3.14159265f,
2.41885841f,
2.09439510f,
1.82347658f,
1.69612416f,
1.57079633f,
1.44546850f,
1.31811607f,
1.04719755f,
0.72273425f,
0.00000000f},
read_vector<float>(result)));
}
NGRAPH_TEST(${BACKEND_NAME}, asin)
{
Shape shape{11};
auto A = make_shared<op::Parameter>(element::f32, shape);
auto f = make_shared<Function>(make_shared<op::Asin>(A), ParameterVector{A});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::f32, shape);
vector<float> input{-1.f, -0.75f, -0.5f, -0.25f, -0.125f, 0.f, 0.125f, 0.25f, 0.5f, 0.75f, 1.f};
copy_data(a, input);
auto result = backend->create_tensor(element::f32, shape);
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a});
EXPECT_TRUE(test::all_close_f(vector<float>{-1.57079633f,
-0.84806208f,
-0.52359878f,
-0.25268026f,
-0.12532783f,
0.00000000f,
0.12532783f,
0.25268026f,
0.52359878f,
0.84806208f,
1.57079633f},
read_vector<float>(result)));
}
NGRAPH_TEST(${BACKEND_NAME}, atan)
{
Shape shape{11};
auto A = make_shared<op::Parameter>(element::f32, shape);
auto f = make_shared<Function>(make_shared<op::Atan>(A), ParameterVector{A});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::f32, shape);
vector<float> input{-4.f, -2.f, -1.f, -0.5f, -0.25f, 0.f, 0.25f, 0.5f, 1.f, 2.f, 4.f};
copy_data(a, input);
auto result = backend->create_tensor(element::f32, shape);
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a});
EXPECT_TRUE(test::all_close_f(vector<float>{-1.32581766f,
-1.10714872f,
-0.78539816f,
-0.46364761f,
-0.24497866f,
0.00000000f,
0.24497866f,
0.46364761f,
0.78539816f,
1.10714872f,
1.32581766f},
read_vector<float>(result)));
}
NGRAPH_TEST(${BACKEND_NAME}, ceiling)
{
Shape shape{2, 2};
auto A = make_shared<op::Parameter>(element::f32, shape);
auto f = make_shared<Function>(make_shared<op::Ceiling>(A), ParameterVector{A});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::f32, shape);
copy_data(a, vector<float>{-2.5f, -2.0f, 0.3f, 4.8f});
auto result = backend->create_tensor(element::f32, shape);
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a});
EXPECT_TRUE(test::all_close_f((vector<float>{-2.0f, -2.0f, 1.0f, 5.0f}),
read_vector<float>(result),
MIN_FLOAT_TOLERANCE_BITS));
}
NGRAPH_TEST(${BACKEND_NAME}, cos)
{
Shape shape{11};
auto A = make_shared<op::Parameter>(element::f32, shape);
auto f = make_shared<Function>(make_shared<op::Cos>(A), ParameterVector{A});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::f32, shape);
vector<float> input{0.f, 0.25f, -0.25f, 0.5f, -0.5f, 1.f, -1.f, 2.f, -2.f, 4.f, -4.f};
copy_data(a, input);
auto result = backend->create_tensor(element::f32, shape);
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a});
EXPECT_TRUE(test::all_close_f(vector<float>{1.00000000f,
0.96891242f,
0.96891242f,
0.87758256f,
0.87758256f,
0.54030231f,
0.54030231f,
-0.41614684f,
-0.41614684f,
-0.65364362f,
-0.65364362f},
read_vector<float>(result)));
}
NGRAPH_TEST(${BACKEND_NAME}, cosh)
{
Shape shape{6};
auto A = make_shared<op::Parameter>(element::f32, shape);
auto f = make_shared<Function>(make_shared<op::Cosh>(A), ParameterVector{A});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::f32, shape);
vector<float> input{1.0f, 0.0f, -0.0f, -1.0f, 5.0f, -5.0f};
copy_data(a, input);
auto result = backend->create_tensor(element::f32, shape);
std::transform(
input.begin(), input.end(), input.begin(), [](float x) -> float { return coshf(x); });
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a});
EXPECT_TRUE(test::all_close_f(input, read_vector<float>(result)));
}
NGRAPH_TEST(${BACKEND_NAME}, erf)
{
Shape shape{8};
auto A = make_shared<op::Parameter>(element::f32, shape);
auto f = make_shared<Function>(make_shared<op::Erf>(A), ParameterVector{A});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::f32, shape);
copy_data(a, vector<float>{-4.0f, -3.0f, -2.0f, -1.0f, 0.0f, 1.0f, 2.0f, 3.0f});
auto result = backend->create_tensor(element::f32, shape);
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a});
EXPECT_TRUE(test::all_close_f(vector<float>{erf(-4.0f),
erf(-3.0f),
erf(-2.0f),
erf(-1.0f),
erf(0.0f),
erf(1.0f),
erf(2.0f),
erf(3.0f)},
read_vector<float>(result)));
}
NGRAPH_TEST(${BACKEND_NAME}, exp)
{
Shape shape{8};
auto A = make_shared<op::Parameter>(element::f32, shape);
auto f = make_shared<Function>(make_shared<op::Exp>(A), ParameterVector{A});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::f32, shape);
copy_data(a, vector<float>{-4, -3, -2, -1, 0, 1, 2, 3});
auto result = backend->create_tensor(element::f32, shape);
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a});
EXPECT_TRUE(test::all_close_f(
vector<float>{expf(-4), expf(-3), expf(-2), expf(-1), expf(0), expf(1), expf(2), expf(3)},
read_vector<float>(result)));
}
NGRAPH_TEST(${BACKEND_NAME}, floor)
{
Shape shape{2, 2};
auto A = make_shared<op::Parameter>(element::f32, shape);
auto f = make_shared<Function>(make_shared<op::Floor>(A), ParameterVector{A});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::f32, shape);
copy_data(a, vector<float>{-2.5f, -2.0f, 0.3f, 4.8f});
auto result = backend->create_tensor(element::f32, shape);
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a});
EXPECT_TRUE(test::all_close_f((vector<float>{-3.0f, -2.0f, 0.0f, 4.0f}),
read_vector<float>(result),
MIN_FLOAT_TOLERANCE_BITS));
}
NGRAPH_TEST(${BACKEND_NAME}, floor_int32)
{
Shape shape{2, 2};
auto A = make_shared<op::Parameter>(element::i32, shape);
auto f = make_shared<Function>(make_shared<op::Floor>(A), ParameterVector{A});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::i32, shape);
copy_data(a, vector<int32_t>{-2, -136314888, 0x40000010, 0x40000001});
auto result = backend->create_tensor(element::i32, shape);
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a});
EXPECT_EQ((vector<int32_t>{-2, -136314888, 0x40000010, 0x40000001}),
read_vector<int32_t>(result));
}
NGRAPH_TEST(${BACKEND_NAME}, gelu_f32)
{
Shape shape{8};
auto A = make_shared<op::Parameter>(element::f32, shape);
auto f = make_shared<Function>(make_shared<op::Gelu>(A), ParameterVector{A});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::f32, shape);
vector<float> input{-4.0f, -3.0f, -2.0f, -1.0f, 0.0f, 1.0f, 2.0f, 3.0f};
copy_data(a, input);
auto result = backend->create_tensor(element::f32, shape);
std::transform(input.begin(), input.end(), input.begin(), [](float x) -> float {
return 0.5f * x * (1.0f + erf(x / sqrt(2.0f)));
});
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a});
EXPECT_TRUE(test::all_close_f(input, read_vector<float>(result)));
}
NGRAPH_TEST(${BACKEND_NAME}, gelu_f64)
{
Shape shape{8};
auto A = make_shared<op::Parameter>(element::f64, shape);
auto f = make_shared<Function>(make_shared<op::Gelu>(A), ParameterVector{A});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::f64, shape);
vector<double> input{-4.0, -3.0, -2.0, -1.0, 0.0, 1.0, 2.0, 3.0};
copy_data(a, input);
auto result = backend->create_tensor(element::f64, shape);
std::transform(input.begin(), input.end(), input.begin(), [](double x) -> double {
return 0.5 * x * (1.0 + erf(x / sqrt(2.0)));
});
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a});
EXPECT_TRUE(test::all_close_f(input, read_vector<double>(result)));
}
NGRAPH_TEST(${BACKEND_NAME}, log)
{
Shape shape{2, 2, 2};
auto A = make_shared<op::Parameter>(element::f32, shape);
auto f = make_shared<Function>(make_shared<op::Log>(A), ParameterVector{A});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::f32, shape);
copy_data(a, vector<float>{0.125f, 0.25f, 0.5f, 1.f, 2.f, 4.f, 8.f, 16.f});
vector<float> loga{-2.07944154f,
-1.38629436f,
-0.69314718f,
0.00000000f,
0.69314718f,
1.38629436f,
2.07944154f,
2.77258872f};
auto result = backend->create_tensor(element::f32, shape);
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a});
EXPECT_TRUE(test::all_close_f(loga, read_vector<float>(result)));
}
NGRAPH_TEST(${BACKEND_NAME}, negative)
{
Shape shape{2, 3};
auto A = make_shared<op::Parameter>(element::f32, shape);
auto f = make_shared<Function>(make_shared<op::Negative>(A), ParameterVector{A});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::f32, shape);
copy_data(a, vector<float>{1, -2, 0, -4.75f, 8.75f, -8.75f});
auto result = backend->create_tensor(element::f32, shape);
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a});
EXPECT_TRUE(test::all_close_f((vector<float>{-1, 2, 0, 4.75f, -8.75f, 8.75f}),
read_vector<float>(result),
MIN_FLOAT_TOLERANCE_BITS));
}
NGRAPH_TEST(${BACKEND_NAME}, not)
{
Shape shape{2, 2};
auto A = make_shared<op::Parameter>(element::boolean, shape);
auto f = make_shared<Function>(make_shared<op::Not>(A), ParameterVector{A});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::boolean, shape);
copy_data(a, vector<char>{1, 0, 2, 0});
auto result = backend->create_tensor(element::boolean, shape);
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a});
EXPECT_EQ((vector<char>{0, 1, 0, 1}), read_vector<char>(result));
}
NGRAPH_TEST(${BACKEND_NAME}, sign)
{
Shape shape{2, 3};
auto A = make_shared<op::Parameter>(element::f32, shape);
auto f = make_shared<Function>(make_shared<op::Sign>(A), ParameterVector{A});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::f32, shape);
copy_data(a, vector<float>{1, -2, 0, -4.8f, 4.8f, -0.0f});
auto result = backend->create_tensor(element::f32, shape);
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a});
EXPECT_TRUE(test::all_close_f(
(vector<float>{1, -1, 0, -1, 1, 0}), read_vector<float>(result), MIN_FLOAT_TOLERANCE_BITS));
}
NGRAPH_TEST(${BACKEND_NAME}, sin)
{
Shape shape{11};
auto A = make_shared<op::Parameter>(element::f32, shape);
auto f = make_shared<Function>(make_shared<op::Sin>(A), ParameterVector{A});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::f32, shape);
vector<float> input{0.f, 0.25f, -0.25f, 0.5f, -0.5f, 1.f, -1.f, 2.f, -2.f, 4.f, -4.f};
copy_data(a, input);
auto result = backend->create_tensor(element::f32, shape);
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a});
EXPECT_TRUE(test::all_close_f(vector<float>{0.00000000f,
0.24740396f,
-0.24740396f,
0.47942554f,
-0.47942554f,
0.84147098f,
-0.84147098f,
0.90929743f,
-0.90929743f,
-0.75680250f,
0.75680250f},
read_vector<float>(result)));
}
NGRAPH_TEST(${BACKEND_NAME}, sinh)
{
Shape shape{6};
auto A = make_shared<op::Parameter>(element::f32, shape);
auto f = make_shared<Function>(make_shared<op::Sinh>(A), ParameterVector{A});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::f32, shape);
vector<float> input{1.0f, 0.0f, -0.0f, -1.0f, 5.0f, -5.0f};
copy_data(a, input);
auto result = backend->create_tensor(element::f32, shape);
std::transform(
input.begin(), input.end(), input.begin(), [](float x) -> float { return sinhf(x); });
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a});
EXPECT_TRUE(test::all_close_f(input, read_vector<float>(result)));
}
NGRAPH_TEST(${BACKEND_NAME}, sqrt)
{
Shape shape{2, 3};
auto A = make_shared<op::Parameter>(element::f32, shape);
auto f = make_shared<Function>(make_shared<op::Sqrt>(A), ParameterVector{A});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::f32, shape);
copy_data(a, vector<float>{16, 4, 81, 100, 10000, 0});
auto result = backend->create_tensor(element::f32, shape);
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a});
EXPECT_TRUE(test::all_close_f(vector<float>{4, 2, 9, 10, 100, 0}, read_vector<float>(result)));
}
NGRAPH_TEST(${BACKEND_NAME}, tan)
{
Shape shape{11};
auto A = make_shared<op::Parameter>(element::f32, shape);
auto f = make_shared<Function>(make_shared<op::Tan>(A), ParameterVector{A});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::f32, shape);
vector<float> input{0.f, 0.25f, -0.25f, 0.5f, -0.5f, 1.f, -1.f, 2.f, -2.f, 4.f, -4.f};
copy_data(a, input);
auto result = backend->create_tensor(element::f32, shape);
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a});
EXPECT_TRUE(test::all_close_f(vector<float>{0.00000000f,
0.25534192f,
-0.25534192f,
0.54630249f,
-0.54630249f,
1.55740772f,
-1.55740772f,
-2.18503986f,
2.18503986f,
1.15782128f,
-1.15782128f},
read_vector<float>(result)));
}
NGRAPH_TEST(${BACKEND_NAME}, tanh)
{
Shape shape{6};
auto A = make_shared<op::Parameter>(element::f32, shape);
auto f = make_shared<Function>(make_shared<op::Tanh>(A), ParameterVector{A});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::f32, shape);
vector<float> input{1.0f, 0.0f, -0.0f, -1.0f, 0.5f, -0.5f};
copy_data(a, input);
auto result = backend->create_tensor(element::f32, shape);
std::transform(
input.begin(), input.end(), input.begin(), [](float x) -> float { return tanhf(x); });
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a});
EXPECT_TRUE(test::all_close_f(input, read_vector<float>(result)));
}
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment