Unverified Commit 34499001 authored by Scott Cyphers's avatar Scott Cyphers Committed by GitHub

Quantization conversion from nodes to outputs (#3316)

parent 8eb63379
......@@ -33,27 +33,27 @@ namespace ngraph
{
namespace builder
{
shared_ptr<Node> ScaledQuantize(const shared_ptr<Node>& input,
const shared_ptr<Node>& min,
const shared_ptr<Node>& max,
shared_ptr<Node> ScaledQuantize(const Output<Node>& input,
const Output<Node>& min,
const Output<Node>& max,
const ngraph::element::Type& quant_type,
const ngraph::AxisSet& axes,
op::Quantize::RoundMode round_mode)
{
auto real_type = input->get_element_type();
auto real_type = input.get_element_type();
if (min->get_element_type() != real_type)
if (min.get_element_type() != real_type)
{
throw ngraph_error("ScaledQuantize: min must match input type");
}
if (max->get_element_type() != real_type)
if (max.get_element_type() != real_type)
{
throw ngraph_error("ScaledQuantize: max must match input type");
}
auto shape = min->get_shape();
if (shape != max->get_shape())
auto shape = min.get_shape();
if (shape != max.get_shape())
{
throw ngraph_error("ScaledQuantize: min and max must have same shape");
}
......@@ -63,26 +63,26 @@ namespace ngraph
return make_shared<op::Quantize>(input, scale, zero, quant_type, axes, round_mode);
}
shared_ptr<Node> ScaledDequantize(const shared_ptr<Node>& input,
const shared_ptr<Node>& min,
const shared_ptr<Node>& max,
shared_ptr<Node> ScaledDequantize(const Output<Node>& input,
const Output<Node>& min,
const Output<Node>& max,
const ngraph::element::Type& real_type,
const ngraph::AxisSet& axes)
{
auto quant_type = input->get_element_type();
auto quant_type = input.get_element_type();
if (min->get_element_type() != real_type)
if (min.get_element_type() != real_type)
{
throw ngraph_error("ScaledDequantize: min must match output type");
}
if (max->get_element_type() != real_type)
if (max.get_element_type() != real_type)
{
throw ngraph_error("ScaledDequantize: max must match output type");
}
auto shape = min->get_shape();
if (shape != max->get_shape())
auto shape = min.get_shape();
if (shape != max.get_shape())
{
throw ngraph_error("ScaledDequantize: min and max must have same shape");
}
......@@ -127,14 +127,14 @@ namespace ngraph
return make_shared<op::QuantizedConcat>(rescaled_args, concatenation_axis);
}
shared_ptr<Node> ScaledQuantizedAvgPool(const shared_ptr<Node>& input,
shared_ptr<Node> ScaledQuantizedAvgPool(const Output<Node>& input,
const Shape& window_shape,
const Strides& window_movement_strides,
const Shape& padding_below,
const Shape& padding_above,
bool include_padding_in_avg_computation,
const shared_ptr<Node>& min,
const shared_ptr<Node>& max)
const Output<Node>& min,
const Output<Node>& max)
{
return make_shared<op::QuantizedAvgPool>(input,
window_shape,
......@@ -144,20 +144,20 @@ namespace ngraph
include_padding_in_avg_computation);
}
shared_ptr<Node> ScaledQuantizedConvolutionBias(const shared_ptr<Node>& input,
const shared_ptr<Node>& filters,
const shared_ptr<Node>& bias,
shared_ptr<Node> ScaledQuantizedConvolutionBias(const Output<Node>& input,
const Output<Node>& filters,
const Output<Node>& bias,
const Strides& window_movement_strides,
const Strides& window_dilation_strides,
const CoordinateDiff& padding_below,
const CoordinateDiff& padding_above,
const Strides& data_dilation_strides,
const shared_ptr<Node>& min_input,
const shared_ptr<Node>& max_input,
const shared_ptr<Node>& min_filter,
const shared_ptr<Node>& max_filter,
const shared_ptr<Node>& min_output,
const shared_ptr<Node>& max_output,
const Output<Node>& min_input,
const Output<Node>& max_input,
const Output<Node>& min_filter,
const Output<Node>& max_filter,
const Output<Node>& min_output,
const Output<Node>& max_output,
const bool with_relu)
{
auto output_et = with_relu ? element::u8 : element::i8;
......@@ -165,9 +165,9 @@ namespace ngraph
min_input, max_input, min_filter, max_filter, min_output, max_output, output_et);
auto mybias = bias;
if (bias->get_element_type() != element::i32)
if (bias.get_element_type() != element::i32)
{
auto zero = make_constant(element::i32, min_input->get_shape(), 0);
auto zero = make_constant(element::i32, min_input.get_shape(), 0);
AxisSet quantization_axes;
auto bias_scale =
quantization_util::get_bias_scale(min_input, max_input, min_filter, max_filter);
......@@ -190,19 +190,19 @@ namespace ngraph
with_relu);
}
shared_ptr<Node> ScaledQuantizedConvolutionRelu(const shared_ptr<Node>& input,
const shared_ptr<Node>& filters,
shared_ptr<Node> ScaledQuantizedConvolutionRelu(const Output<Node>& input,
const Output<Node>& filters,
const Strides& window_movement_strides,
const Strides& window_dilation_strides,
const CoordinateDiff& padding_below,
const CoordinateDiff& padding_above,
const Strides& data_dilation_strides,
const shared_ptr<Node>& min_input,
const shared_ptr<Node>& max_input,
const shared_ptr<Node>& min_filter,
const shared_ptr<Node>& max_filter,
const shared_ptr<Node>& min_output,
const shared_ptr<Node>& max_output)
const Output<Node>& min_input,
const Output<Node>& max_input,
const Output<Node>& min_filter,
const Output<Node>& max_filter,
const Output<Node>& min_output,
const Output<Node>& max_output)
{
auto requantization_scale = quantization_util::get_scale(
min_input, max_input, min_filter, max_filter, min_output, max_output, element::u8);
......@@ -217,35 +217,35 @@ namespace ngraph
requantization_scale);
}
shared_ptr<Node> ScaledQuantizedMaxPool(const shared_ptr<Node>& input,
shared_ptr<Node> ScaledQuantizedMaxPool(const Output<Node>& input,
const Shape& window_shape,
const Strides& window_movement_strides,
const Shape& padding_below,
const Shape& padding_above,
const shared_ptr<Node>& min,
const shared_ptr<Node>& max)
const Output<Node>& min,
const Output<Node>& max)
{
return make_shared<op::QuantizedMaxPool>(
input, window_shape, window_movement_strides, padding_below, padding_above);
}
shared_ptr<Node> ScaledQuantizedConvolutionBiasAdd(const shared_ptr<Node>& input,
const shared_ptr<Node>& filters,
const shared_ptr<Node>& bias,
const shared_ptr<Node>& sum_input,
shared_ptr<Node> ScaledQuantizedConvolutionBiasAdd(const Output<Node>& input,
const Output<Node>& filters,
const Output<Node>& bias,
const Output<Node>& sum_input,
const Strides& window_movement_strides,
const Strides& window_dilation_strides,
const CoordinateDiff& padding_below,
const CoordinateDiff& padding_above,
const Strides& data_dilation_strides,
const shared_ptr<Node>& min_input,
const shared_ptr<Node>& max_input,
const shared_ptr<Node>& min_filter,
const shared_ptr<Node>& max_filter,
const shared_ptr<Node>& min_output,
const shared_ptr<Node>& max_output,
const shared_ptr<Node>& min_sum_input,
const shared_ptr<Node>& max_sum_input,
const Output<Node>& min_input,
const Output<Node>& max_input,
const Output<Node>& min_filter,
const Output<Node>& max_filter,
const Output<Node>& min_output,
const Output<Node>& max_output,
const Output<Node>& min_sum_input,
const Output<Node>& max_sum_input,
const bool with_relu)
{
auto output_et = with_relu ? element::u8 : element::i8;
......@@ -256,9 +256,9 @@ namespace ngraph
min_output, max_output, min_sum_input, max_sum_input);
auto mybias = bias;
if (bias->get_element_type() != element::i32)
if (bias.get_element_type() != element::i32)
{
auto zero = make_constant(element::i32, min_input->get_shape(), 0);
auto zero = make_constant(element::i32, min_input.get_shape(), 0);
AxisSet quantization_axes;
auto bias_scale =
quantization_util::get_bias_scale(min_input, max_input, min_filter, max_filter);
......@@ -284,23 +284,23 @@ namespace ngraph
}
shared_ptr<Node>
ScaledQuantizedConvolutionBiasSignedAdd(const shared_ptr<Node>& input,
const shared_ptr<Node>& filters,
const shared_ptr<Node>& bias,
const shared_ptr<Node>& sum_input,
ScaledQuantizedConvolutionBiasSignedAdd(const Output<Node>& input,
const Output<Node>& filters,
const Output<Node>& bias,
const Output<Node>& sum_input,
const Strides& window_movement_strides,
const Strides& window_dilation_strides,
const CoordinateDiff& padding_below,
const CoordinateDiff& padding_above,
const Strides& data_dilation_strides,
const shared_ptr<Node>& min_input,
const shared_ptr<Node>& max_input,
const shared_ptr<Node>& min_filter,
const shared_ptr<Node>& max_filter,
const shared_ptr<Node>& min_output,
const shared_ptr<Node>& max_output,
const shared_ptr<Node>& min_sum_input,
const shared_ptr<Node>& max_sum_input,
const Output<Node>& min_input,
const Output<Node>& max_input,
const Output<Node>& min_filter,
const Output<Node>& max_filter,
const Output<Node>& min_output,
const Output<Node>& max_output,
const Output<Node>& min_sum_input,
const Output<Node>& max_sum_input,
const bool with_relu)
{
auto output_et = with_relu ? element::u8 : element::i8;
......@@ -317,9 +317,9 @@ namespace ngraph
}
auto mybias = bias;
if (bias->get_element_type() != element::i32)
if (bias.get_element_type() != element::i32)
{
auto zero = make_constant(element::i32, min_input->get_shape(), 0);
auto zero = make_constant(element::i32, min_input.get_shape(), 0);
AxisSet quantization_axes;
auto bias_scale =
quantization_util::get_bias_scale(min_input, max_input, min_filter, max_filter);
......@@ -344,15 +344,15 @@ namespace ngraph
return make_shared<op::Convert>(qconv, element::u8);
}
shared_ptr<Node> ScaledQuantizedDotBias(const shared_ptr<Node>& input,
const shared_ptr<Node>& filters,
const shared_ptr<Node>& bias,
const shared_ptr<Node>& min_input,
const shared_ptr<Node>& max_input,
const shared_ptr<Node>& min_filter,
const shared_ptr<Node>& max_filter,
const shared_ptr<Node>& min_output,
const shared_ptr<Node>& max_output,
shared_ptr<Node> ScaledQuantizedDotBias(const Output<Node>& input,
const Output<Node>& filters,
const Output<Node>& bias,
const Output<Node>& min_input,
const Output<Node>& max_input,
const Output<Node>& min_filter,
const Output<Node>& max_filter,
const Output<Node>& min_output,
const Output<Node>& max_output,
const bool requantize,
const bool with_relu)
{
......@@ -363,14 +363,14 @@ namespace ngraph
max_filter,
min_output,
max_output,
input->get_element_type(),
input.get_element_type(),
with_relu ? element::u8 : element::i8,
requantize);
auto mybias = bias;
if (bias->get_element_type() != element::i32)
if (bias.get_element_type() != element::i32)
{
auto zero = make_constant(element::i32, min_input->get_shape(), 0);
auto zero = make_constant(element::i32, min_input.get_shape(), 0);
AxisSet quantization_axes;
auto bias_scale =
quantization_util::get_bias_scale(min_input, max_input, min_filter, max_filter);
......@@ -384,14 +384,14 @@ namespace ngraph
input, filters, mybias, requantization_scale, requantize, with_relu);
}
shared_ptr<Node> ScaledQuantizedDot(const shared_ptr<Node>& input,
const shared_ptr<Node>& filters,
const shared_ptr<Node>& min_input,
const shared_ptr<Node>& max_input,
const shared_ptr<Node>& min_filter,
const shared_ptr<Node>& max_filter,
const shared_ptr<Node>& min_output,
const shared_ptr<Node>& max_output,
shared_ptr<Node> ScaledQuantizedDot(const Output<Node>& input,
const Output<Node>& filters,
const Output<Node>& min_input,
const Output<Node>& max_input,
const Output<Node>& min_filter,
const Output<Node>& max_filter,
const Output<Node>& min_output,
const Output<Node>& max_output,
const bool requantize,
const bool with_relu)
{
......@@ -402,7 +402,7 @@ namespace ngraph
max_filter,
min_output,
max_output,
input->get_element_type(),
input.get_element_type(),
with_relu ? element::u8 : element::i8,
requantize);
return make_shared<op::QuantizedDot>(
......
......@@ -32,16 +32,16 @@ namespace ngraph
{
namespace builder
{
std::shared_ptr<Node> ScaledQuantize(const std::shared_ptr<Node>& input,
const std::shared_ptr<Node>& min,
const std::shared_ptr<Node>& max,
std::shared_ptr<Node> ScaledQuantize(const Output<Node>& input,
const Output<Node>& min,
const Output<Node>& max,
const ngraph::element::Type& type,
const ngraph::AxisSet& axes,
op::Quantize::RoundMode round_mode);
std::shared_ptr<Node> ScaledDequantize(const std::shared_ptr<Node>& input,
const std::shared_ptr<Node>& min,
const std::shared_ptr<Node>& max,
std::shared_ptr<Node> ScaledDequantize(const Output<Node>& input,
const Output<Node>& min,
const Output<Node>& max,
const ngraph::element::Type& type,
const ngraph::AxisSet& axes);
......@@ -50,115 +50,113 @@ namespace ngraph
const NodeVector& mins,
const NodeVector& maxes);
std::shared_ptr<Node> ScaledQuantizedAvgPool(const std::shared_ptr<Node>& input,
std::shared_ptr<Node> ScaledQuantizedAvgPool(const Output<Node>& input,
const Shape& window_shape,
const Strides& window_movement_strides,
const Shape& padding_below,
const Shape& padding_above,
bool include_padding_in_avg_computation,
const std::shared_ptr<Node>& min,
const std::shared_ptr<Node>& max);
const Output<Node>& min,
const Output<Node>& max);
std::shared_ptr<Node>
ScaledQuantizedConvolutionBias(const std::shared_ptr<Node>& input,
const std::shared_ptr<Node>& filters,
const std::shared_ptr<Node>& bias,
std::shared_ptr<Node> ScaledQuantizedConvolutionBias(const Output<Node>& input,
const Output<Node>& filters,
const Output<Node>& bias,
const Strides& window_movement_strides,
const Strides& window_dilation_strides,
const CoordinateDiff& padding_below,
const CoordinateDiff& padding_above,
const Strides& data_dilation_strides,
const std::shared_ptr<Node>& min_input,
const std::shared_ptr<Node>& max_input,
const std::shared_ptr<Node>& min_filter,
const std::shared_ptr<Node>& max_filter,
const std::shared_ptr<Node>& min_output,
const std::shared_ptr<Node>& max_output,
const Output<Node>& min_input,
const Output<Node>& max_input,
const Output<Node>& min_filter,
const Output<Node>& max_filter,
const Output<Node>& min_output,
const Output<Node>& max_output,
const bool with_relu = false);
std::shared_ptr<Node>
ScaledQuantizedConvolutionRelu(const std::shared_ptr<Node>& input,
const std::shared_ptr<Node>& filters,
std::shared_ptr<Node> ScaledQuantizedConvolutionRelu(const Output<Node>& input,
const Output<Node>& filters,
const Strides& window_movement_strides,
const Strides& window_dilation_strides,
const CoordinateDiff& padding_below,
const CoordinateDiff& padding_above,
const Strides& data_dilation_strides,
const std::shared_ptr<Node>& min_input,
const std::shared_ptr<Node>& max_input,
const std::shared_ptr<Node>& min_filter,
const std::shared_ptr<Node>& max_filter,
const std::shared_ptr<Node>& min_output,
const std::shared_ptr<Node>& max_output);
const Output<Node>& min_input,
const Output<Node>& max_input,
const Output<Node>& min_filter,
const Output<Node>& max_filter,
const Output<Node>& min_output,
const Output<Node>& max_output);
std::shared_ptr<Node> ScaledQuantizedMaxPool(const std::shared_ptr<Node>& input,
std::shared_ptr<Node> ScaledQuantizedMaxPool(const Output<Node>& input,
const Shape& window_shape,
const Strides& window_movement_strides,
const Shape& padding_below,
const Shape& padding_above,
const std::shared_ptr<Node>& min,
const std::shared_ptr<Node>& max);
const Output<Node>& min,
const Output<Node>& max);
std::shared_ptr<Node>
ScaledQuantizedConvolutionBiasAdd(const std::shared_ptr<Node>& input,
const std::shared_ptr<Node>& filters,
const std::shared_ptr<Node>& bias,
const std::shared_ptr<Node>& sum_input,
ScaledQuantizedConvolutionBiasAdd(const Output<Node>& input,
const Output<Node>& filters,
const Output<Node>& bias,
const Output<Node>& sum_input,
const Strides& window_movement_strides,
const Strides& window_dilation_strides,
const CoordinateDiff& padding_below,
const CoordinateDiff& padding_above,
const Strides& data_dilation_strides,
const std::shared_ptr<Node>& min_input,
const std::shared_ptr<Node>& max_input,
const std::shared_ptr<Node>& min_filter,
const std::shared_ptr<Node>& max_filter,
const std::shared_ptr<Node>& min_output,
const std::shared_ptr<Node>& max_output,
const std::shared_ptr<Node>& min_sum_input,
const std::shared_ptr<Node>& max_sum_input,
const Output<Node>& min_input,
const Output<Node>& max_input,
const Output<Node>& min_filter,
const Output<Node>& max_filter,
const Output<Node>& min_output,
const Output<Node>& max_output,
const Output<Node>& min_sum_input,
const Output<Node>& max_sum_input,
const bool with_relu = false);
std::shared_ptr<Node>
ScaledQuantizedConvolutionBiasSignedAdd(const std::shared_ptr<Node>& input,
const std::shared_ptr<Node>& filters,
const std::shared_ptr<Node>& bias,
const std::shared_ptr<Node>& sum_input,
ScaledQuantizedConvolutionBiasSignedAdd(const Output<Node>& input,
const Output<Node>& filters,
const Output<Node>& bias,
const Output<Node>& sum_input,
const Strides& window_movement_strides,
const Strides& window_dilation_strides,
const CoordinateDiff& padding_below,
const CoordinateDiff& padding_above,
const Strides& data_dilation_strides,
const std::shared_ptr<Node>& min_input,
const std::shared_ptr<Node>& max_input,
const std::shared_ptr<Node>& min_filter,
const std::shared_ptr<Node>& max_filter,
const std::shared_ptr<Node>& min_output,
const std::shared_ptr<Node>& max_output,
const std::shared_ptr<Node>& min_sum_input,
const std::shared_ptr<Node>& max_sum_input,
const Output<Node>& min_input,
const Output<Node>& max_input,
const Output<Node>& min_filter,
const Output<Node>& max_filter,
const Output<Node>& min_output,
const Output<Node>& max_output,
const Output<Node>& min_sum_input,
const Output<Node>& max_sum_input,
const bool with_relu = false);
std::shared_ptr<Node> ScaledQuantizedDotBias(const std::shared_ptr<Node>& input,
const std::shared_ptr<Node>& filters,
const std::shared_ptr<Node>& bias,
const std::shared_ptr<Node>& min_input,
const std::shared_ptr<Node>& max_input,
const std::shared_ptr<Node>& min_filter,
const std::shared_ptr<Node>& max_filter,
const std::shared_ptr<Node>& min_output,
const std::shared_ptr<Node>& max_output,
std::shared_ptr<Node> ScaledQuantizedDotBias(const Output<Node>& input,
const Output<Node>& filters,
const Output<Node>& bias,
const Output<Node>& min_input,
const Output<Node>& max_input,
const Output<Node>& min_filter,
const Output<Node>& max_filter,
const Output<Node>& min_output,
const Output<Node>& max_output,
const bool requantize = true,
const bool with_relu = false);
std::shared_ptr<Node> ScaledQuantizedDot(const std::shared_ptr<Node>& input,
const std::shared_ptr<Node>& filters,
const std::shared_ptr<Node>& min_input,
const std::shared_ptr<Node>& max_input,
const std::shared_ptr<Node>& min_filter,
const std::shared_ptr<Node>& max_filter,
const std::shared_ptr<Node>& min_output,
const std::shared_ptr<Node>& max_output,
std::shared_ptr<Node> ScaledQuantizedDot(const Output<Node>& input,
const Output<Node>& filters,
const Output<Node>& min_input,
const Output<Node>& max_input,
const Output<Node>& min_filter,
const Output<Node>& max_filter,
const Output<Node>& min_output,
const Output<Node>& max_output,
const bool requantize = true,
const bool with_relu = false);
......
......@@ -36,25 +36,25 @@ namespace ngraph
{
namespace quantization
{
shared_ptr<Node> QuantizedLinearConvolutionBias(const shared_ptr<Node>& input,
const shared_ptr<Node>& filter,
const shared_ptr<Node>& bias,
shared_ptr<Node> QuantizedLinearConvolutionBias(const Output<Node>& input,
const Output<Node>& filter,
const Output<Node>& bias,
const Strides& window_movement_strides,
const Strides& window_dilation_strides,
const CoordinateDiff& padding_below,
const CoordinateDiff& padding_above,
const Strides& data_dilation_strides,
const shared_ptr<Node>& input_scale,
const shared_ptr<Node>& filter_scale,
const shared_ptr<Node>& output_scale)
const Output<Node>& input_scale,
const Output<Node>& filter_scale,
const Output<Node>& output_scale)
{
// TODO: need to establish cross-nGraph view of scale (mult or div)
auto requantization_scale = (input_scale * filter_scale) / output_scale;
auto mybias = bias;
if (bias->get_element_type() != element::i32)
if (bias.get_element_type() != element::i32)
{
const auto zero = make_constant(element::i32, input_scale->get_shape(), 0);
const auto zero = make_constant(element::i32, input_scale.get_shape(), 0);
const AxisSet quantization_axes;
const auto bias_scale = input_scale * filter_scale;
op::Quantize::RoundMode round_mode =
......
......@@ -26,17 +26,17 @@ namespace ngraph
namespace quantization
{
std::shared_ptr<Node>
QuantizedLinearConvolutionBias(const std::shared_ptr<Node>& input,
const std::shared_ptr<Node>& filter,
const std::shared_ptr<Node>& bias,
QuantizedLinearConvolutionBias(const Output<Node>& input,
const Output<Node>& filter,
const Output<Node>& bias,
const Strides& window_movement_strides,
const Strides& window_dilation_strides,
const CoordinateDiff& padding_below,
const CoordinateDiff& padding_above,
const Strides& data_dilation_strides,
const std::shared_ptr<Node>& input_scale,
const std::shared_ptr<Node>& filter_scale,
const std::shared_ptr<Node>& output_scale);
const Output<Node>& input_scale,
const Output<Node>& filter_scale,
const Output<Node>& output_scale);
}
}
}
......@@ -39,14 +39,14 @@ namespace ngraph
{
// TODO: this code is falling back to fp32 dot
// 1) add support in reference kernel for zero point
shared_ptr<Node> QuantizedLinearMatmul(const shared_ptr<Node>& input0,
const shared_ptr<Node>& input1,
const shared_ptr<Node>& input0_scale,
const shared_ptr<Node>& input0_zero_point,
const shared_ptr<Node>& input1_scale,
const shared_ptr<Node>& input1_zero_point,
const shared_ptr<Node>& output_scale,
const shared_ptr<Node>& output_zero_point)
shared_ptr<Node> QuantizedLinearMatmul(const Output<Node>& input0,
const Output<Node>& input1,
const Output<Node>& input0_scale,
const Output<Node>& input0_zero_point,
const Output<Node>& input1_scale,
const Output<Node>& input1_zero_point,
const Output<Node>& output_scale,
const Output<Node>& output_zero_point)
{
// Check if zero point is constant and zero
if (ngraph::is_zero(input0_zero_point) && ngraph::is_zero(input1_zero_point) &&
......@@ -62,13 +62,13 @@ namespace ngraph
auto dq_input0 = make_shared<op::Dequantize>(input0,
input0_scale,
input0_zero_point,
input0_scale->get_element_type(),
input0_scale.get_element_type(),
axes);
auto dq_input1 = make_shared<op::Dequantize>(input1,
input1_scale,
input1_zero_point,
input1_scale->get_element_type(),
input1_scale.get_element_type(),
axes);
auto dot = make_shared<op::Dot>(dq_input0, dq_input1, 1);
......@@ -76,24 +76,23 @@ namespace ngraph
dot,
output_scale,
output_zero_point,
output_zero_point->get_element_type(),
output_zero_point.get_element_type(),
axes,
op::Quantize::RoundMode::ROUND_NEAREST_TOWARD_EVEN);
}
}
shared_ptr<Node> QuantizedLinearMatmulInteger(const shared_ptr<Node>& input0,
const shared_ptr<Node>& input1)
shared_ptr<Node> QuantizedLinearMatmulInteger(const Output<Node>& input0,
const Output<Node>& input1)
{
auto output_scale = make_constant(element::f32, Shape{}, 1);
return make_shared<op::QuantizedDot>(input0, input1, output_scale, false, false);
}
shared_ptr<Node>
QuantizedLinearMatmulInteger(const std::shared_ptr<Node>& input0,
const std::shared_ptr<Node>& input1,
const std::shared_ptr<Node>& input0_zero_point,
const std::shared_ptr<Node>& input1_zero_point)
shared_ptr<Node> QuantizedLinearMatmulInteger(const Output<Node>& input0,
const Output<Node>& input1,
const Output<Node>& input0_zero_point,
const Output<Node>& input1_zero_point)
{
// Check if zero points are constant and zero
if (ngraph::is_zero(input0_zero_point) && ngraph::is_zero(input1_zero_point))
......
......@@ -25,24 +25,23 @@ namespace ngraph
{
namespace quantization
{
std::shared_ptr<Node>
QuantizedLinearMatmul(const std::shared_ptr<Node>& input0,
const std::shared_ptr<Node>& input1,
const std::shared_ptr<Node>& input0_scale,
const std::shared_ptr<Node>& input0_zero_point,
const std::shared_ptr<Node>& input1_scale,
const std::shared_ptr<Node>& input1_zero_point,
const std::shared_ptr<Node>& output_scale,
const std::shared_ptr<Node>& output_zero_point);
std::shared_ptr<Node> QuantizedLinearMatmul(const Output<Node>& input0,
const Output<Node>& input1,
const Output<Node>& input0_scale,
const Output<Node>& input0_zero_point,
const Output<Node>& input1_scale,
const Output<Node>& input1_zero_point,
const Output<Node>& output_scale,
const Output<Node>& output_zero_point);
std::shared_ptr<Node> QuantizedLinearMatmulInteger(const std::shared_ptr<Node>& input0,
const std::shared_ptr<Node>& input1);
std::shared_ptr<Node> QuantizedLinearMatmulInteger(const Output<Node>& input0,
const Output<Node>& input1);
std::shared_ptr<Node>
QuantizedLinearMatmulInteger(const std::shared_ptr<Node>& input0,
const std::shared_ptr<Node>& input1,
const std::shared_ptr<Node>& input0_zero_point,
const std::shared_ptr<Node>& input1_zero_point);
QuantizedLinearMatmulInteger(const Output<Node>& input0,
const Output<Node>& input1,
const Output<Node>& input0_zero_point,
const Output<Node>& input1_zero_point);
}
}
}
......@@ -37,7 +37,7 @@ namespace ngraph
{
namespace quantization_util
{
std::shared_ptr<Node> max_abs(std::shared_ptr<Node> a, std::shared_ptr<Node> b)
std::shared_ptr<Node> max_abs(Output<Node> a, Output<Node> b)
{
auto abs_a = std::make_shared<op::Abs>(a);
auto abs_b = std::make_shared<op::Abs>(b);
......@@ -45,22 +45,22 @@ namespace ngraph
}
std::pair<std::shared_ptr<Node>, std::shared_ptr<Node>>
quantization_range_for_multiplication(std::shared_ptr<Node> min_a,
std::shared_ptr<Node> max_a,
std::shared_ptr<Node> min_b,
std::shared_ptr<Node> max_b)
quantization_range_for_multiplication(Output<Node> min_a,
Output<Node> max_a,
Output<Node> min_b,
Output<Node> max_b)
{
auto type = min_a->get_element_type();
if (type != max_a->get_element_type() || type != min_b->get_element_type() ||
type != max_b->get_element_type())
auto type = min_a.get_element_type();
if (type != max_a.get_element_type() || type != min_b.get_element_type() ||
type != max_b.get_element_type())
{
throw ngraph_error(
"quantization_range_for_multiplication: min and max must have same type");
}
auto shape = min_a->get_shape();
if (shape != max_a->get_shape() || shape != min_b->get_shape() ||
shape != max_b->get_shape())
auto shape = min_a.get_shape();
if (shape != max_a.get_shape() || shape != min_b.get_shape() ||
shape != max_b.get_shape())
{
throw ngraph_error(
"quantization_range_for_multiplication: min and max must have same shape");
......@@ -87,28 +87,27 @@ namespace ngraph
return std::pair<std::shared_ptr<Node>, std::shared_ptr<Node>>(min_c, max_c);
}
std::shared_ptr<Node> get_scale(std::shared_ptr<Node> min_input,
std::shared_ptr<Node> max_input,
std::shared_ptr<Node> min_filter,
std::shared_ptr<Node> max_filter,
std::shared_ptr<Node> min_freezed_output,
std::shared_ptr<Node> max_freezed_output,
std::shared_ptr<Node> get_scale(Output<Node> min_input,
Output<Node> max_input,
Output<Node> min_filter,
Output<Node> max_filter,
Output<Node> min_freezed_output,
Output<Node> max_freezed_output,
const ngraph::element::Type& output_type)
{
auto type = min_input->get_element_type();
if (type != max_input->get_element_type() ||
type != min_filter->get_element_type() ||
type != max_filter->get_element_type() ||
type != min_freezed_output->get_element_type() ||
type != max_freezed_output->get_element_type())
auto type = min_input.get_element_type();
if (type != max_input.get_element_type() || type != min_filter.get_element_type() ||
type != max_filter.get_element_type() ||
type != min_freezed_output.get_element_type() ||
type != max_freezed_output.get_element_type())
{
throw ngraph_error("get_scale: min and max must have same type");
}
auto shape = min_input->get_shape();
if (shape != max_input->get_shape() || shape != min_filter->get_shape() ||
shape != max_filter->get_shape() || shape != min_freezed_output->get_shape() ||
shape != max_freezed_output->get_shape())
auto shape = min_input.get_shape();
if (shape != max_input.get_shape() || shape != min_filter.get_shape() ||
shape != max_filter.get_shape() || shape != min_freezed_output.get_shape() ||
shape != max_freezed_output.get_shape())
{
throw ngraph_error("get_scale: min and max must have same shape");
}
......@@ -147,22 +146,21 @@ namespace ngraph
(max_abs32 / max_abs8);
}
std::shared_ptr<Node> get_bias_scale(std::shared_ptr<Node> min_input,
std::shared_ptr<Node> max_input,
std::shared_ptr<Node> min_filter,
std::shared_ptr<Node> max_filter)
std::shared_ptr<Node> get_bias_scale(Output<Node> min_input,
Output<Node> max_input,
Output<Node> min_filter,
Output<Node> max_filter)
{
auto type = min_input->get_element_type();
if (type != max_input->get_element_type() ||
type != min_filter->get_element_type() ||
type != max_filter->get_element_type())
auto type = min_input.get_element_type();
if (type != max_input.get_element_type() || type != min_filter.get_element_type() ||
type != max_filter.get_element_type())
{
throw ngraph_error("get_bias_scale: min and max must have same type");
}
auto shape = min_input->get_shape();
if (shape != max_input->get_shape() || shape != min_filter->get_shape() ||
shape != max_filter->get_shape())
auto shape = min_input.get_shape();
if (shape != max_input.get_shape() || shape != min_filter.get_shape() ||
shape != max_filter.get_shape())
{
throw ngraph_error("get_bias_scale: min and max must have same shape");
}
......@@ -178,23 +176,23 @@ namespace ngraph
return (max_abs_input_range * max_abs_filter_range) / range;
}
std::shared_ptr<Node> get_sum_scale(std::shared_ptr<Node> min_freezed_output_conv_1,
std::shared_ptr<Node> max_freezed_output_conv_1,
std::shared_ptr<Node> min_freezed_output_conv_2,
std::shared_ptr<Node> max_freezed_output_conv_2)
std::shared_ptr<Node> get_sum_scale(Output<Node> min_freezed_output_conv_1,
Output<Node> max_freezed_output_conv_1,
Output<Node> min_freezed_output_conv_2,
Output<Node> max_freezed_output_conv_2)
{
auto type = min_freezed_output_conv_1->get_element_type();
if (type != max_freezed_output_conv_1->get_element_type() ||
type != min_freezed_output_conv_2->get_element_type() ||
type != max_freezed_output_conv_2->get_element_type())
auto type = min_freezed_output_conv_1.get_element_type();
if (type != max_freezed_output_conv_1.get_element_type() ||
type != min_freezed_output_conv_2.get_element_type() ||
type != max_freezed_output_conv_2.get_element_type())
{
throw ngraph_error("get_sum_scale: min and max must have same type");
}
auto shape = min_freezed_output_conv_1->get_shape();
if (shape != max_freezed_output_conv_1->get_shape() ||
shape != min_freezed_output_conv_2->get_shape() ||
shape != max_freezed_output_conv_2->get_shape())
auto shape = min_freezed_output_conv_1.get_shape();
if (shape != max_freezed_output_conv_1.get_shape() ||
shape != min_freezed_output_conv_2.get_shape() ||
shape != max_freezed_output_conv_2.get_shape())
{
throw ngraph_error("get_sum_scale: min and max must have same shape");
}
......@@ -204,19 +202,19 @@ namespace ngraph
return max_abs_conv_2 / max_abs_conv_1;
}
std::shared_ptr<Node> get_scale(std::shared_ptr<Node> input_min_range,
std::shared_ptr<Node> input_max_range,
std::shared_ptr<Node> get_scale(Output<Node> input_min_range,
Output<Node> input_max_range,
const ngraph::element::Type& quant_type,
bool bump_by_eps = false)
{
auto type = input_min_range->get_element_type();
if (type != input_max_range->get_element_type())
auto type = input_min_range.get_element_type();
if (type != input_max_range.get_element_type())
{
throw ngraph_error("get_scale: min and max must have same type");
}
auto shape = input_min_range->get_shape();
if (shape != input_max_range->get_shape())
auto shape = input_min_range.get_shape();
if (shape != input_max_range.get_shape())
{
throw ngraph_error("get_scale: min and max must have same shape");
}
......@@ -277,30 +275,29 @@ namespace ngraph
}
}
std::shared_ptr<Node> get_dot_scale(std::shared_ptr<Node> min_input,
std::shared_ptr<Node> max_input,
std::shared_ptr<Node> min_filter,
std::shared_ptr<Node> max_filter,
std::shared_ptr<Node> min_freezed_output,
std::shared_ptr<Node> max_freezed_output,
std::shared_ptr<Node> get_dot_scale(Output<Node> min_input,
Output<Node> max_input,
Output<Node> min_filter,
Output<Node> max_filter,
Output<Node> min_freezed_output,
Output<Node> max_freezed_output,
const ngraph::element::Type& input_type,
const ngraph::element::Type& output_type,
const bool requantize = true)
{
auto type = min_input->get_element_type();
if (type != max_input->get_element_type() ||
type != min_filter->get_element_type() ||
type != max_filter->get_element_type() ||
type != min_freezed_output->get_element_type() ||
type != max_freezed_output->get_element_type())
auto type = min_input.get_element_type();
if (type != max_input.get_element_type() || type != min_filter.get_element_type() ||
type != max_filter.get_element_type() ||
type != min_freezed_output.get_element_type() ||
type != max_freezed_output.get_element_type())
{
throw ngraph_error("get_dot_scale: min and max must have same type");
}
auto shape = min_input->get_shape();
if (shape != max_input->get_shape() || shape != min_filter->get_shape() ||
shape != max_filter->get_shape() || shape != min_freezed_output->get_shape() ||
shape != max_freezed_output->get_shape())
auto shape = min_input.get_shape();
if (shape != max_input.get_shape() || shape != min_filter.get_shape() ||
shape != max_filter.get_shape() || shape != min_freezed_output.get_shape() ||
shape != max_freezed_output.get_shape())
{
throw ngraph_error("get_dot_scale: min and max must have same shape");
}
......
......@@ -22,26 +22,26 @@ namespace ngraph
{
namespace quantization_utils
{
std::shared_ptr<Node> max_abs(std::shared_ptr<Node> a, std::shared_ptr<Node> b)
std::shared_ptr<Node> max_abs(const Output<Node>& a, const Output<Node>& b)
{
auto abs_a = std::make_shared<op::Abs>(a);
auto abs_b = std::make_shared<op::Abs>(b);
return std::make_shared<op::Maximum>(abs_a, abs_b);
}
std::shared_ptr<Node> get_scale(std::shared_ptr<Node> input_min_range,
std::shared_ptr<Node> input_max_range,
std::shared_ptr<Node> get_scale(const Output<Node>& input_min_range,
const Output<Node>& input_max_range,
const ngraph::element::Type& quant_type,
bool bump_by_eps)
{
auto type = input_min_range->get_element_type();
if (type != input_max_range->get_element_type())
auto type = input_min_range.get_element_type();
if (type != input_max_range.get_element_type())
{
throw ngraph_error("get_scale: min and max must have same type");
}
auto shape = input_min_range->get_shape();
if (shape != input_max_range->get_shape())
auto shape = input_min_range.get_shape();
if (shape != input_max_range.get_shape())
{
throw ngraph_error("get_scale: min and max must have same shape");
}
......
......@@ -37,10 +37,10 @@ namespace ngraph
{
namespace quantization_utils
{
std::shared_ptr<Node> max_abs(std::shared_ptr<Node> a, std::shared_ptr<Node> b);
std::shared_ptr<Node> max_abs(const Output<Node>& a, const Output<Node>& b);
std::shared_ptr<Node> get_scale(std::shared_ptr<Node> input_min_range,
std::shared_ptr<Node> input_max_range,
std::shared_ptr<Node> get_scale(const Output<Node>& input_min_range,
const Output<Node>& input_max_range,
const ngraph::element::Type& quant_type,
bool bump_by_eps = false);
}
......
......@@ -26,35 +26,34 @@ namespace ngraph
{
namespace builder
{
shared_ptr<Node> QuantizedConvolutionBuilder(const shared_ptr<Node>& input,
const shared_ptr<Node>& filters,
shared_ptr<Node> QuantizedConvolutionBuilder(const Output<Node>& input,
const Output<Node>& filters,
const Strides& window_movement_strides,
const Strides& window_dilation_strides,
const CoordinateDiff& padding_below,
const CoordinateDiff& padding_above,
const Strides& data_dilation_strides,
const shared_ptr<Node>& min_input,
const shared_ptr<Node>& max_input,
const shared_ptr<Node>& min_filter,
const shared_ptr<Node>& max_filter,
const shared_ptr<Node>& min_output,
const shared_ptr<Node>& max_output,
const Output<Node>& min_input,
const Output<Node>& max_input,
const Output<Node>& min_filter,
const Output<Node>& max_filter,
const Output<Node>& min_output,
const Output<Node>& max_output,
const ngraph::element::Type& output_type,
const ngraph::AxisSet& input_axes,
const ngraph::AxisSet& filter_axes,
const ngraph::AxisSet& output_axes)
{
auto input_scale =
quantization_utils::get_scale(min_input, max_input, input->get_element_type());
quantization_utils::get_scale(min_input, max_input, input.get_element_type());
auto filter_scale =
quantization_utils::get_scale(min_filter, max_filter, filters->get_element_type());
quantization_utils::get_scale(min_filter, max_filter, filters.get_element_type());
auto output_scale = quantization_utils::get_scale(min_output, max_output, output_type);
// TODO: Check for this later
// For Builders the zero point is assumed to be zero (for now)
auto input_zero_point = op::Constant::create(input->get_element_type(), Shape{}, {0});
auto filter_zero_point =
op::Constant::create(filters->get_element_type(), Shape{}, {0});
auto input_zero_point = op::Constant::create(input.get_element_type(), Shape{}, {0});
auto filter_zero_point = op::Constant::create(filters.get_element_type(), Shape{}, {0});
return make_shared<op::QuantizedConvolution>(
input,
......
......@@ -26,19 +26,19 @@ namespace ngraph
namespace builder
{
std::shared_ptr<Node>
QuantizedConvolutionBuilder(const std::shared_ptr<Node>& input,
const std::shared_ptr<Node>& filters,
QuantizedConvolutionBuilder(const Output<Node>& input,
const Output<Node>& filters,
const Strides& window_movement_strides,
const Strides& window_dilation_strides,
const CoordinateDiff& padding_below,
const CoordinateDiff& padding_above,
const Strides& data_dilation_strides,
const std::shared_ptr<Node>& min_input,
const std::shared_ptr<Node>& max_input,
const std::shared_ptr<Node>& min_filter,
const std::shared_ptr<Node>& max_filter,
const std::shared_ptr<Node>& min_output,
const std::shared_ptr<Node>& max_output,
const Output<Node>& min_input,
const Output<Node>& max_input,
const Output<Node>& min_filter,
const Output<Node>& max_filter,
const Output<Node>& min_output,
const Output<Node>& max_output,
const ngraph::element::Type& output_type,
const ngraph::AxisSet& input_axes = ngraph::AxisSet{},
const ngraph::AxisSet& filter_axes = ngraph::AxisSet{},
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment