Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
N
ngraph
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
ngraph
Commits
341205cf
Commit
341205cf
authored
Jul 08, 2019
by
Amy Zhuang
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Check broadcast axes instead of broadcast input shape.
Add comments. Add more unit tests.
parent
0ad2a3dd
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
121 additions
and
17 deletions
+121
-17
cpu_fusion.cpp
src/ngraph/runtime/cpu/pass/cpu_fusion.cpp
+50
-14
cpu_fusion.cpp
test/cpu_fusion.cpp
+71
-3
No files found.
src/ngraph/runtime/cpu/pass/cpu_fusion.cpp
View file @
341205cf
...
...
@@ -650,6 +650,29 @@ void ngraph::runtime::cpu::pass::CPUFusion::construct_batch_norm_relu_global_sta
this
->
add_matcher
(
m
,
callback
);
}
// graph before this fusion:
// input mean var gamma beta broadcast1_input broadcast2_input
// \ \ | / / / \
// BatchNormInference Broadcast1 Broadcast2
// \ / /
// Multiply /
// \ /
// Add
// |
// Relu
//
//
// graph after this fusion:
// input mean var gamma broadcast1_input beta broadcast2_input
// \ \ | \ / \ / /
// \ \ | Mulitply1 Multiply2 /
// \ \ | / \ /
// \ \ | / newAdd
// \ \| / /
// BatchNormInferenceRelu
//
// Multiply1, Multiply2, and newAdd operate on vectors while Multiply an Add operate on multi-dimensional matrices.
// Multiply1, Multiply2, and newAdd may be folded away with constant folding pass later.
void
ngraph
::
runtime
::
cpu
::
pass
::
CPUFusion
::
construct_batch_norm_infer_relu_with_multiply_add
()
{
auto
input_shape
=
Shape
{
1
,
3
,
2
,
2
};
...
...
@@ -683,9 +706,17 @@ void ngraph::runtime::cpu::pass::CPUFusion::construct_batch_norm_infer_relu_with
auto
add
=
std
::
make_shared
<
ngraph
::
op
::
Add
>
(
multi_label
,
broadcast2_label
);
auto
prelu
=
std
::
make_shared
<
ngraph
::
op
::
Relu
>
(
add
);
auto
callback
=
[
input
,
mean
,
var
,
gamma
,
beta
,
bn_label
,
multi_label
,
broadcast1_input
,
broadcast2_input
](
pattern
::
Matcher
&
m
)
{
auto
callback
=
[
input
,
mean
,
var
,
gamma
,
beta
,
bn_label
,
multi_label
,
broadcast1_input
,
broadcast2_input
,
broadcast1_label
,
broadcast2_label
](
pattern
::
Matcher
&
m
)
{
NGRAPH_DEBUG
<<
"In callback for construct_batch_norm_infer_relu_with_multi_add against node = "
<<
m
.
get_match_root
()
->
get_name
();
...
...
@@ -704,12 +735,19 @@ void ngraph::runtime::cpu::pass::CPUFusion::construct_batch_norm_infer_relu_with
NGRAPH_DEBUG
<<
"Add isn't the only user of Multiply's output"
;
return
false
;
}
if
(
pattern_map
[
broadcast1_input
]
->
output
(
0
).
get_shape
()
!=
pattern_map
[
gamma
]
->
output
(
0
).
get_shape
()
||
pattern_map
[
broadcast2_input
]
->
output
(
0
).
get_shape
()
!=
pattern_map
[
gamma
]
->
output
(
0
).
get_shape
())
std
::
vector
<
size_t
>
vec
{
0
};
for
(
auto
i
=
2
;
i
<
pattern_map
[
input
]
->
output
(
0
).
get_shape
().
size
();
i
++
)
{
vec
.
push_back
(
i
);
}
AxisSet
axisSet
{
vec
};
if
(
std
::
static_pointer_cast
<
ngraph
::
op
::
Broadcast
>
(
pattern_map
[
broadcast1_label
])
->
get_broadcast_axes
()
!=
axisSet
||
std
::
static_pointer_cast
<
ngraph
::
op
::
Broadcast
>
(
pattern_map
[
broadcast2_label
])
->
get_broadcast_axes
()
!=
axisSet
)
{
NGRAPH_DEBUG
<<
"shapes of Broadcast input and gamma do not match
"
;
NGRAPH_DEBUG
<<
"Broadcast axes is not {0, 2, ...}
"
;
return
false
;
}
...
...
@@ -717,19 +755,17 @@ void ngraph::runtime::cpu::pass::CPUFusion::construct_batch_norm_infer_relu_with
pattern_map
[
broadcast1_input
]);
auto
new_multi
=
std
::
make_shared
<
ngraph
::
op
::
Multiply
>
(
pattern_map
[
beta
],
pattern_map
[
broadcast1_input
]);
auto
new_beta
=
std
::
make_shared
<
ngraph
::
op
::
Add
>
(
new_multi
,
pattern_map
[
broadcast2_input
]);
auto
new_beta
=
std
::
make_shared
<
ngraph
::
op
::
Add
>
(
new_multi
,
pattern_map
[
broadcast2_input
]);
std
::
shared_ptr
<
Node
>
bn_relu
;
if
(
auto
bn_inference
=
std
::
dynamic_pointer_cast
<
ngraph
::
op
::
BatchNormInference
>
(
bn_match
))
if
(
auto
bn_inference
=
std
::
dynamic_pointer_cast
<
ngraph
::
op
::
BatchNormInference
>
(
bn_match
))
{
if
(
!
mkldnn_utils
::
can_use_mkldnn_batchnorm_fprop
(
bn_inference
.
get
()))
{
return
false
;
}
bn_relu
=
std
::
make_shared
<
ngraph
::
op
::
BatchNormInferenceRelu
>
(
bn_inference
->
get_eps_value
(),
bn_relu
=
std
::
make_shared
<
ngraph
::
op
::
BatchNormInferenceRelu
>
(
bn_inference
->
get_eps_value
(),
new_gamma
,
new_beta
,
pattern_map
[
input
],
...
...
test/cpu_fusion.cpp
View file @
341205cf
...
...
@@ -560,9 +560,8 @@ TEST(cpu_fusion, conv_bias_bprop)
ASSERT_EQ
(
ccg
,
1
);
}
TEST
(
cpu_fusion
,
batchnorm_multiply_add_relu
)
static
void
test_batchnorm_multiply_add_relu
(
Shape
input_shape
)
{
auto
input_shape
=
Shape
{
1
,
3
,
2
,
2
};
auto
make_bn_relu_function
=
[
&
]()
{
auto
c_axis
=
input_shape
[
1
];
auto
input
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
input_shape
);
...
...
@@ -602,7 +601,7 @@ TEST(cpu_fusion, batchnorm_multiply_add_relu)
auto
cpu_f
=
make_bn_relu_function
();
auto
int_f
=
make_bn_relu_function
();
test
::
Uniform
<
float
>
rng
(
-
10
.0
f
,
10.0
f
);
test
::
Uniform
<
float
>
rng
(
1
.0
f
,
10.0
f
);
vector
<
vector
<
float
>>
args
;
for
(
shared_ptr
<
op
::
Parameter
>
param
:
int_f
->
get_parameters
())
...
...
@@ -622,6 +621,75 @@ TEST(cpu_fusion, batchnorm_multiply_add_relu)
ASSERT_EQ
(
bn_relu
,
1
);
}
TEST
(
cpu_fusion
,
batchnorm_multiply_add_relu
)
{
test_batchnorm_multiply_add_relu
(
Shape
{
1
,
3
,
2
,
2
});
test_batchnorm_multiply_add_relu
(
Shape
{
1
,
2
,
2
,
2
,
2
});
test_batchnorm_multiply_add_relu
(
Shape
{
2
,
2
,
2
,
4
,
4
});
}
TEST
(
cpu_fusion
,
batchnorm_multiply_add_relu_no_fusion
)
{
auto
input_shape
=
Shape
{
3
,
3
,
2
,
2
};
auto
make_bn_relu_function
=
[
&
]()
{
auto
c_axis
=
input_shape
[
1
];
auto
input
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
input_shape
);
auto
mean_shape
=
Shape
{
c_axis
};
auto
mean
=
std
::
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
mean_shape
);
auto
var_shape
=
Shape
{
c_axis
};
auto
var
=
std
::
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
var_shape
);
auto
gamma_shape
=
Shape
{
c_axis
};
auto
gamma
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
gamma_shape
);
auto
beta_shape
=
Shape
{
c_axis
};
auto
beta
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
beta_shape
);
double
eps
=
0.001
;
auto
bn
=
std
::
make_shared
<
ngraph
::
op
::
BatchNormInference
>
(
eps
,
gamma
,
beta
,
input
,
mean
,
var
);
std
::
vector
<
size_t
>
vec
;
for
(
auto
i
=
1
;
i
<
input_shape
.
size
();
i
++
)
{
vec
.
push_back
(
i
);
}
auto
broadcast1_input
=
std
::
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
Shape
{
3
});
auto
broadcast1
=
std
::
make_shared
<
ngraph
::
op
::
Broadcast
>
(
broadcast1_input
,
input_shape
,
AxisSet
(
vec
));
auto
multiply
=
std
::
make_shared
<
ngraph
::
op
::
Multiply
>
(
bn
,
broadcast1
);
auto
broadcast2_input
=
std
::
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
Shape
{
3
});
auto
broadcast2
=
std
::
make_shared
<
ngraph
::
op
::
Broadcast
>
(
broadcast2_input
,
input_shape
,
AxisSet
(
vec
));
auto
add
=
std
::
make_shared
<
ngraph
::
op
::
Add
>
(
multiply
,
broadcast2
);
auto
relu
=
std
::
make_shared
<
ngraph
::
op
::
Relu
>
(
add
);
auto
f
=
make_shared
<
Function
>
(
relu
,
ParameterVector
{
gamma
,
beta
,
input
,
mean
,
var
,
broadcast1_input
,
broadcast2_input
});
return
f
;
};
auto
cpu_f
=
make_bn_relu_function
();
auto
int_f
=
make_bn_relu_function
();
test
::
Uniform
<
float
>
rng
(
1.0
f
,
10.0
f
);
vector
<
vector
<
float
>>
args
;
for
(
shared_ptr
<
op
::
Parameter
>
param
:
int_f
->
get_parameters
())
{
vector
<
float
>
tensor_val
(
shape_size
(
param
->
get_shape
()));
rng
.
initialize
(
tensor_val
);
args
.
push_back
(
tensor_val
);
}
auto
int_results
=
execute
(
int_f
,
args
,
"INTERPRETER"
);
auto
cpu_results
=
execute
(
cpu_f
,
args
,
"CPU"
);
for
(
size_t
i
=
0
;
i
<
cpu_results
.
size
();
i
++
)
{
EXPECT_TRUE
(
test
::
all_close
(
cpu_results
.
at
(
i
),
int_results
.
at
(
i
),
1.0e-4
f
,
1.0e-4
f
));
}
size_t
bn_relu
=
count_ops_of_type
<
op
::
BatchNormInferenceRelu
>
(
cpu_f
);
ASSERT_EQ
(
bn_relu
,
0
);
}
TEST
(
cpu_fusion
,
batchnorm_fprop_relu_b1c2h2w2
)
{
auto
input_shape
=
Shape
{
1
,
2
,
2
,
2
};
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment