Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
N
ngraph
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
ngraph
Commits
3308f7b2
Commit
3308f7b2
authored
May 22, 2019
by
Adam Rogowiec
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
RNNCell fused operator.
parent
eca45d1c
Hide whitespace changes
Inline
Side-by-side
Showing
7 changed files
with
417 additions
and
0 deletions
+417
-0
CMakeLists.txt
src/ngraph/CMakeLists.txt
+2
-0
ngraph.hpp
src/ngraph/ngraph.hpp
+1
-0
rnn_cell.cpp
src/ngraph/op/fused/rnn_cell.cpp
+222
-0
rnn_cell.hpp
src/ngraph/op/fused/rnn_cell.hpp
+158
-0
fused_op_tbl.hpp
src/ngraph/op/fused_op_tbl.hpp
+1
-0
intelgpu_backend.cpp
src/ngraph/runtime/intelgpu/intelgpu_backend.cpp
+3
-0
serializer.cpp
src/ngraph/serializer.cpp
+30
-0
No files found.
src/ngraph/CMakeLists.txt
View file @
3308f7b2
...
@@ -310,6 +310,8 @@ set (SRC
...
@@ -310,6 +310,8 @@ set (SRC
op/fused/normalize.hpp
op/fused/normalize.hpp
op/fused/prelu.cpp
op/fused/prelu.cpp
op/fused/prelu.hpp
op/fused/prelu.hpp
op/fused/rnn_cell.cpp
op/fused/rnn_cell.hpp
op/fused/rnn_cell_base.cpp
op/fused/rnn_cell_base.cpp
op/fused/rnn_cell_base.hpp
op/fused/rnn_cell_base.hpp
op/fused/scale_shift.cpp
op/fused/scale_shift.cpp
...
...
src/ngraph/ngraph.hpp
View file @
3308f7b2
...
@@ -107,6 +107,7 @@
...
@@ -107,6 +107,7 @@
#include "ngraph/op/fused/mvn.hpp"
#include "ngraph/op/fused/mvn.hpp"
#include "ngraph/op/fused/normalize.hpp"
#include "ngraph/op/fused/normalize.hpp"
#include "ngraph/op/fused/prelu.hpp"
#include "ngraph/op/fused/prelu.hpp"
#include "ngraph/op/fused/rnn_cell.hpp"
#include "ngraph/op/fused/scale_shift.hpp"
#include "ngraph/op/fused/scale_shift.hpp"
#include "ngraph/op/fused/space_to_depth.hpp"
#include "ngraph/op/fused/space_to_depth.hpp"
#include "ngraph/op/fused/split.hpp"
#include "ngraph/op/fused/split.hpp"
...
...
src/ngraph/op/fused/rnn_cell.cpp
0 → 100644
View file @
3308f7b2
//*****************************************************************************
// Copyright 2017-2019 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#include <algorithm>
#include <cmath>
#include <functional>
#include "ngraph/builder/split.hpp"
#include "ngraph/op/add.hpp"
#include "ngraph/op/constant.hpp"
#include "ngraph/op/dot.hpp"
#include "ngraph/op/fused/rnn_cell.hpp"
#include "ngraph/op/util/reshape.hpp"
#include "ngraph/shape.hpp"
#include "ngraph/type/element_type.hpp"
#include "ngraph/util.hpp"
using
namespace
std
;
using
namespace
ngraph
;
op
::
RNNCell
::
RNNCell
(
const
shared_ptr
<
Node
>&
X
,
const
shared_ptr
<
Node
>&
W
,
const
shared_ptr
<
Node
>&
R
,
const
shared_ptr
<
Node
>&
H_t
,
size_t
hidden_size
)
:
RNNCell
(
X
,
W
,
R
,
H_t
,
hidden_size
,
vector
<
string
>
{
"tanh"
},
vector
<
float
>
{},
vector
<
float
>
{},
0.
f
)
{
}
op
::
RNNCell
::
RNNCell
(
const
shared_ptr
<
Node
>&
X
,
const
shared_ptr
<
Node
>&
W
,
const
shared_ptr
<
Node
>&
R
,
const
shared_ptr
<
Node
>&
H_t
,
size_t
hidden_size
,
const
vector
<
string
>&
activations
,
const
vector
<
float
>&
activation_alpha
,
const
vector
<
float
>&
activation_beta
,
float
clip
)
:
FusedOp
(
"RNNCell"
,
{
X
,
W
,
R
,
H_t
})
,
RNNCellBase
(
hidden_size
,
clip
,
activations
,
activation_alpha
,
activation_beta
)
,
m_X
{
X
}
,
m_W
{
W
}
,
m_R
{
R
}
,
m_H_t
{
H_t
}
,
m_activation_f
{
get_activation_function
(
0
)}
{
// Normally we would split B onto Wb an Rb and add them, however here they are all zeros,
// thus just initialize bias with appropriate shape and zeros.
m_bias
=
ngraph
::
op
::
Constant
::
create
(
element
::
f32
,
Shape
{
m_gates_count
*
get_hidden_size
()},
vector
<
float
>
(
m_gates_count
*
get_hidden_size
(),
0.
f
));
constructor_validate_and_infer_types
();
}
op
::
RNNCell
::
RNNCell
(
const
shared_ptr
<
Node
>&
X
,
const
shared_ptr
<
Node
>&
W
,
const
shared_ptr
<
Node
>&
R
,
const
shared_ptr
<
Node
>&
H_t
,
size_t
hidden_size
,
const
shared_ptr
<
Node
>&
B
,
const
vector
<
string
>&
activations
,
const
vector
<
float
>&
activation_alpha
,
const
vector
<
float
>&
activation_beta
,
float
clip
)
:
FusedOp
(
"RNNCell"
,
{
X
,
W
,
R
,
H_t
,
B
})
,
RNNCellBase
(
hidden_size
,
clip
,
activations
,
activation_alpha
,
activation_beta
)
,
m_X
{
X
}
,
m_W
{
W
}
,
m_R
{
R
}
,
m_H_t
{
H_t
}
,
m_activation_f
{
get_activation_function
(
0
)}
{
// Split B onto Wb and Rb and add them.
NODE_VALIDATION_CHECK
(
this
,
(
B
->
get_shape
()
==
Shape
{
2
*
m_gates_count
*
get_hidden_size
()}),
"Input tensor B must have shape ("
,
8
*
get_hidden_size
(),
"). Actual shape is:"
,
B
->
get_shape
(),
"."
);
NodeVector
b_W_R
=
builder
::
split
(
B
,
2
);
m_bias
=
b_W_R
.
at
(
0
)
+
b_W_R
.
at
(
1
);
constructor_validate_and_infer_types
();
}
void
op
::
RNNCell
::
pre_validate_and_infer_types
()
{
const
auto
&
x_shape
=
input
(
0
).
get_shape
();
const
size_t
batch_size
=
x_shape
.
at
(
0
);
const
size_t
input_size
=
x_shape
.
at
(
1
);
const
auto
&
w_shape
=
input
(
1
).
get_shape
();
const
auto
&
r_shape
=
input
(
2
).
get_shape
();
const
auto
&
ht_shape
=
input
(
3
).
get_shape
();
NODE_VALIDATION_CHECK
(
this
,
(
w_shape
==
Shape
{
get_hidden_size
(),
input_size
}),
"Input tensor W must have shape ("
,
get_hidden_size
(),
", "
,
input_size
,
"). Actual shape is:"
,
w_shape
,
"."
);
NODE_VALIDATION_CHECK
(
this
,
(
r_shape
==
Shape
{
get_hidden_size
(),
get_hidden_size
()}),
"Input tensor R must have shape ("
,
get_hidden_size
(),
", "
,
get_hidden_size
(),
"). Actual shape is:"
,
w_shape
,
"."
);
NODE_VALIDATION_CHECK
(
this
,
(
ht_shape
==
Shape
{
batch_size
,
get_hidden_size
()}),
"Input tensor H_t must have shape ("
,
batch_size
,
", "
,
get_hidden_size
(),
"). Actual shape is:"
,
w_shape
,
"."
);
}
NodeVector
op
::
RNNCell
::
decompose_op
()
const
{
// ------ VARIABLE'S NAMES AND ACRONYM DEFINITIONS ------
// The names used below are analogous to the one used in ONNX documentation.
//
// ------ ACRONYMS ------
// i_t - input gate at current time step
// t - time step (t-1 means previous time step)
// W - W parameter weight matrix for input, output, forget, and
// cell gates.
// R - R recurrence weight matrix for input, output, forget, and
// cell gates.
// Wb - W bias vectors for input, output, forget, and cell gates.
// Rb - R bias vectors for input, output, forget, and cell gates.
// ------ VARIABLE NAMES ------
// Xt_W - Input sequence multiplied by weights tensor at current time
// step.
// Ht_R - Hidden state multiplied by weights tensor at current time step.
// (.) - Denotes element-wise multiplication.
// * - Denotes dot product.
// ---- Equations ----
// f - is activation functions.
// Ht = f(Xt*(Wi^T) + Ht-1*(Ri^T) + Wbi + Rbi)
// --------------------
// Xt*(W^T)
auto
Xt_W
=
std
::
make_shared
<
ngraph
::
op
::
Dot
>
(
m_X
,
ngraph
::
op
::
util
::
transpose
(
m_W
));
// Ht-1*(R^T)
auto
Ht_R
=
std
::
make_shared
<
ngraph
::
op
::
Dot
>
(
m_H_t
,
ngraph
::
op
::
util
::
transpose
(
m_R
));
// Xt*(W^T) + Ht-1*(R^T) + Wb + Rb
auto
i_t
=
add
(
Xt_W
,
add
(
Ht_R
,
m_bias
));
// f(Xt*(Wi^T) + Ht-1*(Ri^T) + Wbi + Rbi)
i_t
=
m_activation_f
(
clip
(
i_t
,
get_clip
()));
return
{
i_t
};
}
shared_ptr
<
Node
>
op
::
RNNCell
::
copy_with_new_args
(
const
NodeVector
&
new_args
)
const
{
check_new_args_count
(
this
,
new_args
);
if
(
new_args
.
size
()
==
4
)
{
return
make_shared
<
RNNCell
>
(
new_args
.
at
(
0
),
new_args
.
at
(
1
),
new_args
.
at
(
2
),
new_args
.
at
(
3
),
get_hidden_size
(),
get_activations
(),
get_activation_alpha
(),
get_activation_beta
(),
get_clip
());
}
else
if
(
new_args
.
size
()
==
5
)
{
return
make_shared
<
RNNCell
>
(
new_args
.
at
(
0
),
new_args
.
at
(
1
),
new_args
.
at
(
2
),
new_args
.
at
(
3
),
get_hidden_size
(),
new_args
.
at
(
4
),
get_activations
(),
get_activation_alpha
(),
get_activation_beta
(),
get_clip
());
}
else
{
throw
ngraph_error
(
"Incorrect number of new arguments"
);
}
}
src/ngraph/op/fused/rnn_cell.hpp
0 → 100644
View file @
3308f7b2
//*****************************************************************************
// Copyright 2017-2019 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#pragma once
#include <cstddef>
#include <memory>
#include <string>
#include <vector>
#include "ngraph/node.hpp"
#include "ngraph/op/fused/rnn_cell_base.hpp"
#include "ngraph/op/util/activation_functions.hpp"
#include "ngraph/op/util/fused_op.hpp"
namespace
ngraph
{
namespace
op
{
///
/// \brief Class for RNN cell node.
///
/// \note It follows notation and equations defined as in ONNX standard:
/// https://github.com/onnx/onnx/blob/master/docs/Operators.md#RNN
///
/// Note this class represents only single *cell* and not whole RNN *layer*.
///
class
RNNCell
:
public
util
::
FusedOp
,
public
RNNCellBase
{
public
:
///
/// \brief Constructs RNNCell node.
///
/// \param[in] X The input tensor with shape: [batch_size, input_size].
/// \param[in] W The weight tensor with shape: [hidden_size, input_size].
/// \param[in] R The recurrence weight tensor with shape:
/// [hidden_size, hidden_size].
/// \param[in] H_t The hidden state tensor at current time step with shape:
/// [batch_size, hidden_size].
/// \param[in] hidden_size The number of hidden units for recurrent cell.
///
RNNCell
(
const
std
::
shared_ptr
<
Node
>&
X
,
const
std
::
shared_ptr
<
Node
>&
W
,
const
std
::
shared_ptr
<
Node
>&
R
,
const
std
::
shared_ptr
<
Node
>&
H_t
,
std
::
size_t
hidden_size
);
///
/// \brief Constructs RNNCell node.
///
/// \param[in] X The input tensor with shape: [batch_size, input_size].
/// \param[in] W The weight tensor with shape: [hidden_size, input_size].
/// \param[in] R The recurrence weight tensor with shape:
/// [hidden_size, hidden_size].
/// \param[in] H_t The hidden state tensor at current time step with
/// shape: [batch_size, hidden_size].
/// \param[in] hidden_size The number of hidden units for recurrent cell.
/// \param[in] activations The vector of activation functions used inside
/// recurrent cell.
/// \param[in] activation_alpha The vector of alpha parameters for activation
/// functions in order respective to activation list.
/// \param[in] activation_beta The vector of beta parameters for activation functions
/// in order respective to activation list.
/// \param[in] clip The value defining clipping range [-clip, clip] on
/// input of activation functions.
///
RNNCell
(
const
std
::
shared_ptr
<
Node
>&
X
,
const
std
::
shared_ptr
<
Node
>&
W
,
const
std
::
shared_ptr
<
Node
>&
R
,
const
std
::
shared_ptr
<
Node
>&
H_t
,
std
::
size_t
hidden_size
,
const
std
::
vector
<
std
::
string
>&
activations
,
const
std
::
vector
<
float
>&
activation_alpha
,
const
std
::
vector
<
float
>&
activation_beta
,
float
clip
);
///
/// \brief Constructs RNNCell node.
///
/// \param[in] X The input tensor with shape: [batch_size, input_size].
/// \param[in] W The weight tensor with shape: [hidden_size, input_size].
/// \param[in] R The recurrence weight tensor with shape:
/// [hidden_size, hidden_size].
/// \param[in] H_t The hidden state tensor at current time step with
/// shape: [batch_size, hidden_size].
/// \param[in] hidden_size The number of hidden units for recurrent cell.
/// \param[in] B The bias tensor for input gate with shape: [2*hidden_size].
/// \param[in] activations The vector of activation functions used inside
/// recurrent cell.
/// \param[in] activation_alpha The vector of alpha parameters for activation
/// functions in order respective to activation list.
/// \param[in] activation_beta The vector of beta parameters for activation functions
/// in order respective to activation list.
/// \param[in] clip The value defining clipping range [-clip, clip] on
/// input of activation functions.
///
RNNCell
(
const
std
::
shared_ptr
<
Node
>&
X
,
const
std
::
shared_ptr
<
Node
>&
W
,
const
std
::
shared_ptr
<
Node
>&
R
,
const
std
::
shared_ptr
<
Node
>&
H_t
,
std
::
size_t
hidden_size
,
const
std
::
shared_ptr
<
Node
>&
B
,
const
std
::
vector
<
std
::
string
>&
activations
=
std
::
vector
<
std
::
string
>
{
"tanh"
},
const
std
::
vector
<
float
>&
activation_alpha
=
{},
const
std
::
vector
<
float
>&
activation_beta
=
{},
float
clip
=
0.
f
);
virtual
void
pre_validate_and_infer_types
()
override
;
virtual
NodeVector
decompose_op
()
const
override
;
virtual
std
::
shared_ptr
<
Node
>
copy_with_new_args
(
const
NodeVector
&
new_args
)
const
override
;
private
:
///
/// \brief The input data tensor. Shape: [batch_size, input_size].
///
std
::
shared_ptr
<
Node
>
m_X
;
///
/// \brief The weight tensor. Shape: [hidden_size, input_size].
///
std
::
shared_ptr
<
Node
>
m_W
;
///
/// \brief The recurrence weight tensor. Shape: [hidden_size, hidden_size].
///
std
::
shared_ptr
<
Node
>
m_R
;
///
/// \brief The hidden state tensor at current time step. Shape: [batch_size, hidden_size].
///
std
::
shared_ptr
<
Node
>
m_H_t
;
///
/// \brief The Activation function f.
///
ActivationFunction
m_activation_f
;
static
constexpr
std
::
size_t
m_gates_count
{
1
};
///
/// \brief Sum of biases (weight and recurrence) for input gate.
///
/// Sum of `[Wb, Rb]`.
///
std
::
shared_ptr
<
Node
>
m_bias
;
};
}
}
src/ngraph/op/fused_op_tbl.hpp
View file @
3308f7b2
...
@@ -31,6 +31,7 @@ NGRAPH_OP(LSTMCell, ngraph::op)
...
@@ -31,6 +31,7 @@ NGRAPH_OP(LSTMCell, ngraph::op)
NGRAPH_OP
(
MVN
,
ngraph
::
op
)
NGRAPH_OP
(
MVN
,
ngraph
::
op
)
NGRAPH_OP
(
Normalize
,
ngraph
::
op
)
NGRAPH_OP
(
Normalize
,
ngraph
::
op
)
NGRAPH_OP
(
PRelu
,
ngraph
::
op
)
NGRAPH_OP
(
PRelu
,
ngraph
::
op
)
NGRAPH_OP
(
RNNCell
,
ngraph
::
op
)
NGRAPH_OP
(
ScaleShift
,
ngraph
::
op
)
NGRAPH_OP
(
ScaleShift
,
ngraph
::
op
)
NGRAPH_OP
(
SpaceToDepth
,
ngraph
::
op
)
NGRAPH_OP
(
SpaceToDepth
,
ngraph
::
op
)
NGRAPH_OP
(
SquaredDifference
,
ngraph
::
op
)
NGRAPH_OP
(
SquaredDifference
,
ngraph
::
op
)
...
...
src/ngraph/runtime/intelgpu/intelgpu_backend.cpp
View file @
3308f7b2
...
@@ -88,6 +88,7 @@
...
@@ -88,6 +88,7 @@
#include "ngraph/op/fused/lstm_cell.hpp"
#include "ngraph/op/fused/lstm_cell.hpp"
#include "ngraph/op/fused/mvn.hpp"
#include "ngraph/op/fused/mvn.hpp"
#include "ngraph/op/fused/normalize.hpp"
#include "ngraph/op/fused/normalize.hpp"
#include "ngraph/op/fused/rnn_cell.hpp"
#include "ngraph/op/fused/scale_shift.hpp"
#include "ngraph/op/fused/scale_shift.hpp"
#include "ngraph/op/fused/space_to_depth.hpp"
#include "ngraph/op/fused/space_to_depth.hpp"
#include "ngraph/op/fused/squeeze.hpp"
#include "ngraph/op/fused/squeeze.hpp"
...
@@ -2066,6 +2067,7 @@ shared_ptr<runtime::Executable>
...
@@ -2066,6 +2067,7 @@ shared_ptr<runtime::Executable>
case
OP_TYPEID
:
:
Normalize
:
case
OP_TYPEID
:
:
Normalize
:
case
OP_TYPEID
:
:
PRelu
:
case
OP_TYPEID
:
:
PRelu
:
case
OP_TYPEID
:
:
Passthrough
:
case
OP_TYPEID
:
:
Passthrough
:
case
OP_TYPEID
:
:
RNNCell
:
case
OP_TYPEID
:
:
QuantizedAvgPool
:
case
OP_TYPEID
:
:
QuantizedAvgPool
:
case
OP_TYPEID
:
:
QuantizedConvolution
:
case
OP_TYPEID
:
:
QuantizedConvolution
:
case
OP_TYPEID
:
:
QuantizedConvolutionBias
:
case
OP_TYPEID
:
:
QuantizedConvolutionBias
:
...
@@ -2182,6 +2184,7 @@ bool runtime::intelgpu::IntelGPUBackend::is_supported_impl(const Node& node)
...
@@ -2182,6 +2184,7 @@ bool runtime::intelgpu::IntelGPUBackend::is_supported_impl(const Node& node)
case
OP_TYPEID
:
:
MVN
:
case
OP_TYPEID
:
:
MVN
:
case
OP_TYPEID
:
:
Normalize
:
case
OP_TYPEID
:
:
Normalize
:
case
OP_TYPEID
:
:
PRelu
:
case
OP_TYPEID
:
:
PRelu
:
case
OP_TYPEID
:
:
RNNCell
:
case
OP_TYPEID
:
:
ScaleShift
:
case
OP_TYPEID
:
:
ScaleShift
:
case
OP_TYPEID
:
:
SpaceToDepth
:
case
OP_TYPEID
:
:
SpaceToDepth
:
case
OP_TYPEID
:
:
Split
:
case
OP_TYPEID
:
:
Split
:
...
...
src/ngraph/serializer.cpp
View file @
3308f7b2
...
@@ -78,6 +78,7 @@
...
@@ -78,6 +78,7 @@
#include "ngraph/op/fused/mvn.hpp"
#include "ngraph/op/fused/mvn.hpp"
#include "ngraph/op/fused/normalize.hpp"
#include "ngraph/op/fused/normalize.hpp"
#include "ngraph/op/fused/prelu.hpp"
#include "ngraph/op/fused/prelu.hpp"
#include "ngraph/op/fused/rnn_cell.hpp"
#include "ngraph/op/fused/scale_shift.hpp"
#include "ngraph/op/fused/scale_shift.hpp"
#include "ngraph/op/fused/space_to_depth.hpp"
#include "ngraph/op/fused/space_to_depth.hpp"
#include "ngraph/op/fused/split.hpp"
#include "ngraph/op/fused/split.hpp"
...
@@ -1282,6 +1283,25 @@ static shared_ptr<ngraph::Function>
...
@@ -1282,6 +1283,25 @@ static shared_ptr<ngraph::Function>
node
=
make_shared
<
op
::
Product
>
(
args
[
0
],
reduction_axes
);
node
=
make_shared
<
op
::
Product
>
(
args
[
0
],
reduction_axes
);
break
;
break
;
}
}
case
OP_TYPEID
:
:
RNNCell
:
{
auto
hidden_size
=
node_js
.
at
(
"hidden_size"
).
get
<
size_t
>
();
auto
clip
=
node_js
.
at
(
"clip"
).
get
<
float
>
();
auto
activations
=
node_js
.
at
(
"activations"
).
get
<
vector
<
string
>>
();
auto
activation_alpha
=
node_js
.
at
(
"activation_alpha"
).
get
<
vector
<
float
>>
();
auto
activation_beta
=
node_js
.
at
(
"activation_beta"
).
get
<
vector
<
float
>>
();
node
=
make_shared
<
op
::
RNNCell
>
(
args
[
0
],
args
[
1
],
args
[
2
],
args
[
3
],
hidden_size
,
args
[
4
],
activations
,
activation_alpha
,
activation_beta
,
clip
);
break
;
}
case
OP_TYPEID
:
:
Quantize
:
case
OP_TYPEID
:
:
Quantize
:
{
{
auto
type
=
read_element_type
(
node_js
.
at
(
"type"
));
auto
type
=
read_element_type
(
node_js
.
at
(
"type"
));
...
@@ -2125,6 +2145,16 @@ static json write(const Node& n, bool binary_constant_data)
...
@@ -2125,6 +2145,16 @@ static json write(const Node& n, bool binary_constant_data)
}
}
case
OP_TYPEID
:
:
Power
:
{
break
;
case
OP_TYPEID
:
:
Power
:
{
break
;
}
}
case
OP_TYPEID
:
:
RNNCell
:
{
auto
tmp
=
dynamic_cast
<
const
op
::
RNNCell
*>
(
&
n
);
node
[
"hidden_size"
]
=
tmp
->
get_hidden_size
();
node
[
"clip"
]
=
tmp
->
get_clip
();
node
[
"activations"
]
=
tmp
->
get_activations
();
node
[
"activation_alpha"
]
=
tmp
->
get_activation_alpha
();
node
[
"activation_beta"
]
=
tmp
->
get_activation_beta
();
break
;
}
case
OP_TYPEID
:
:
Quantize
:
case
OP_TYPEID
:
:
Quantize
:
{
{
auto
tmp
=
dynamic_cast
<
const
op
::
Quantize
*>
(
&
n
);
auto
tmp
=
dynamic_cast
<
const
op
::
Quantize
*>
(
&
n
);
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment