Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
N
ngraph
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
ngraph
Commits
2ebacf5e
Unverified
Commit
2ebacf5e
authored
Nov 15, 2018
by
Artur Wojcik
Committed by
GitHub
Nov 15, 2018
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
onnxifi: add class Tensor (#1997)
Signed-off-by:
Artur Wojcik
<
artur.wojcik@intel.com
>
parent
58f08d6f
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
238 additions
and
1 deletion
+238
-1
CMakeLists.txt
src/ngraph/frontend/onnxifi/CMakeLists.txt
+3
-1
tensor.cpp
src/ngraph/frontend/onnxifi/tensor.cpp
+167
-0
tensor.hpp
src/ngraph/frontend/onnxifi/tensor.hpp
+68
-0
No files found.
src/ngraph/frontend/onnxifi/CMakeLists.txt
View file @
2ebacf5e
...
...
@@ -20,7 +20,9 @@ add_library(onnxifi-ngraph SHARED
backend_manager.hpp
backend_manager.cpp
exceptions.hpp
span.hpp
)
span.hpp
tensor.hpp
tensor.cpp
)
target_link_libraries
(
onnxifi-ngraph PRIVATE ngraph
)
...
...
src/ngraph/frontend/onnxifi/tensor.cpp
0 → 100644
View file @
2ebacf5e
//*****************************************************************************
// Copyright 2017-2018 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#include "tensor.hpp"
#include "exceptions.hpp"
#include "span.hpp"
namespace
ngraph
{
namespace
onnxifi
{
Tensor
::
Tensor
(
const
::
onnxTensorDescriptorV1
&
tensor
)
:
m_tensor
{
&
tensor
}
{
if
(
tensor
.
tag
!=
ONNXIFI_TAG_TENSOR_DESCRIPTOR_V1
)
{
throw
status
::
unsupported_tag
{};
}
if
(
tensor
.
name
==
nullptr
)
{
throw
status
::
invalid_name
{};
}
switch
(
tensor
.
dataType
)
{
case
ONNXIFI_DATATYPE_FLOAT16
:
case
ONNXIFI_DATATYPE_FLOAT32
:
case
ONNXIFI_DATATYPE_FLOAT64
:
case
ONNXIFI_DATATYPE_INT8
:
case
ONNXIFI_DATATYPE_INT16
:
case
ONNXIFI_DATATYPE_INT32
:
case
ONNXIFI_DATATYPE_INT64
:
case
ONNXIFI_DATATYPE_UINT8
:
case
ONNXIFI_DATATYPE_UINT16
:
case
ONNXIFI_DATATYPE_UINT32
:
case
ONNXIFI_DATATYPE_UINT64
:
break
;
case
ONNXIFI_DATATYPE_COMPLEX64
:
case
ONNXIFI_DATATYPE_COMPLEX128
:
throw
status
::
invalid_datatype
{};
default
:
throw
status
::
unsupported_datatype
{};
}
switch
(
tensor
.
memoryType
)
{
case
ONNXIFI_MEMORY_TYPE_CPU
:
break
;
case
ONNXIFI_MEMORY_TYPE_CUDA_BUFFER
:
case
ONNXIFI_MEMORY_TYPE_OPENCL_BUFFER
:
case
ONNXIFI_MEMORY_TYPE_OPENGLES_TEXTURE_2D
:
case
ONNXIFI_MEMORY_TYPE_D3D_RESOURCE
:
throw
status
::
invalid_memory_type
{};
default
:
throw
status
::
unsupported_memory_type
{};
}
if
((
tensor
.
dimensions
!=
0
)
&&
(
tensor
.
shape
==
nullptr
))
{
throw
status
::
null_pointer
{};
}
if
((
tensor
.
shape
!=
nullptr
)
&&
(
tensor
.
dimensions
==
0
))
{
throw
status
::
invalid_size
{};
}
if
(
tensor
.
shape
==
nullptr
)
{
m_shape
=
{
1
};
}
else
{
Span
<
uint64_t
>
shape
{
tensor
.
shape
,
tensor
.
dimensions
};
for
(
const
auto
&
value
:
shape
)
{
if
(
value
==
0
)
{
throw
status
::
invalid_shape
{};
}
m_shape
.
push_back
(
value
);
m_size
*=
value
;
}
}
if
(
tensor
.
buffer
==
0
)
{
throw
status
::
invalid_memory_location
{};
}
}
std
::
shared_ptr
<
runtime
::
Tensor
>
Tensor
::
to_ng
(
runtime
::
Backend
&
backend
)
const
{
std
::
shared_ptr
<
runtime
::
Tensor
>
tensor
;
switch
(
m_tensor
->
dataType
)
{
case
ONNXIFI_DATATYPE_FLOAT16
:
case
ONNXIFI_DATATYPE_FLOAT32
:
tensor
=
backend
.
create_tensor
(
element
::
f32
,
m_shape
);
tensor
->
write
(
data
(),
0
,
sizeof
(
float
)
*
size
());
break
;
case
ONNXIFI_DATATYPE_FLOAT64
:
tensor
=
backend
.
create_tensor
(
element
::
f64
,
m_shape
);
tensor
->
write
(
data
(),
0
,
sizeof
(
double
)
*
size
());
break
;
case
ONNXIFI_DATATYPE_INT8
:
tensor
=
backend
.
create_tensor
(
element
::
i8
,
m_shape
);
tensor
->
write
(
data
(),
0
,
sizeof
(
int8_t
)
*
size
());
break
;
case
ONNXIFI_DATATYPE_INT16
:
tensor
=
backend
.
create_tensor
(
element
::
i16
,
m_shape
);
tensor
->
write
(
data
(),
0
,
sizeof
(
int16_t
)
*
size
());
break
;
case
ONNXIFI_DATATYPE_INT32
:
tensor
=
backend
.
create_tensor
(
element
::
i32
,
m_shape
);
tensor
->
write
(
data
(),
0
,
sizeof
(
int32_t
)
*
size
());
break
;
case
ONNXIFI_DATATYPE_INT64
:
tensor
=
backend
.
create_tensor
(
element
::
i64
,
m_shape
);
tensor
->
write
(
data
(),
0
,
sizeof
(
int64_t
)
*
size
());
break
;
case
ONNXIFI_DATATYPE_UINT8
:
tensor
=
backend
.
create_tensor
(
element
::
u8
,
m_shape
);
tensor
->
write
(
data
(),
0
,
sizeof
(
uint8_t
)
*
size
());
break
;
case
ONNXIFI_DATATYPE_UINT16
:
tensor
=
backend
.
create_tensor
(
element
::
u16
,
m_shape
);
tensor
->
write
(
data
(),
0
,
sizeof
(
uint16_t
)
*
size
());
break
;
case
ONNXIFI_DATATYPE_UINT32
:
tensor
=
backend
.
create_tensor
(
element
::
u32
,
m_shape
);
tensor
->
write
(
data
(),
0
,
sizeof
(
uint32_t
)
*
size
());
break
;
case
ONNXIFI_DATATYPE_UINT64
:
tensor
=
backend
.
create_tensor
(
element
::
u64
,
m_shape
);
tensor
->
write
(
data
(),
0
,
sizeof
(
uint64_t
)
*
size
());
break
;
default
:
throw
status
::
unsupported_datatype
{};
}
return
tensor
;
}
void
Tensor
::
from_ng
(
const
runtime
::
Tensor
&
tensor
)
{
std
::
size_t
readSize
{
tensor
.
get_element_count
()};
switch
(
m_tensor
->
dataType
)
{
case
ONNXIFI_DATATYPE_FLOAT16
:
case
ONNXIFI_DATATYPE_FLOAT32
:
readSize
*=
sizeof
(
float
);
break
;
case
ONNXIFI_DATATYPE_FLOAT64
:
readSize
*=
sizeof
(
double
);
break
;
case
ONNXIFI_DATATYPE_INT8
:
readSize
*=
sizeof
(
int8_t
);
break
;
case
ONNXIFI_DATATYPE_INT16
:
readSize
*=
sizeof
(
int16_t
);
break
;
case
ONNXIFI_DATATYPE_INT32
:
readSize
*=
sizeof
(
int32_t
);
break
;
case
ONNXIFI_DATATYPE_INT64
:
readSize
*=
sizeof
(
int64_t
);
break
;
case
ONNXIFI_DATATYPE_UINT8
:
readSize
*=
sizeof
(
uint8_t
);
break
;
case
ONNXIFI_DATATYPE_UINT16
:
readSize
*=
sizeof
(
uint16_t
);
break
;
case
ONNXIFI_DATATYPE_UINT32
:
readSize
*=
sizeof
(
uint32_t
);
break
;
case
ONNXIFI_DATATYPE_UINT64
:
readSize
*=
sizeof
(
uint64_t
);
break
;
default
:
break
;
}
tensor
.
read
(
reinterpret_cast
<
void
*>
(
m_tensor
->
buffer
),
0
,
readSize
);
}
}
// namespace onnxifi
}
// namespace ngraph
src/ngraph/frontend/onnxifi/tensor.hpp
0 → 100644
View file @
2ebacf5e
//*****************************************************************************
// Copyright 2017-2018 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#pragma once
#include <memory>
#include <onnxifi.h>
#include "ngraph/runtime/backend.hpp"
#include "ngraph/runtime/tensor.hpp"
namespace
ngraph
{
namespace
onnxifi
{
/// \brief Wrapper for onnxTensorDescriptorV1 class
class
Tensor
{
public
:
Tensor
(
const
Tensor
&
)
=
default
;
Tensor
&
operator
=
(
const
Tensor
&
)
=
default
;
Tensor
(
Tensor
&&
)
=
default
;
Tensor
&
operator
=
(
Tensor
&&
)
=
default
;
Tensor
()
=
delete
;
virtual
~
Tensor
()
=
default
;
explicit
Tensor
(
const
::
onnxTensorDescriptorV1
&
tensor
);
/// \brief Convert to ngraph::runtime::Tensor
/// This function method converts ONNXIFI tensor to nGraph tensor.
/// \param backend the backend to use for nGraph tensor creation.
/// \returns Shared pointer to nGraph tensor.
std
::
shared_ptr
<
runtime
::
Tensor
>
to_ng
(
runtime
::
Backend
&
backend
)
const
;
/// \brief Copies data from ngraph::runtime::Tensor
/// This function method writes the content of nGraph tensor.
/// \param tensor nGraph tensor to copy from.
void
from_ng
(
const
runtime
::
Tensor
&
tensor
);
const
void
*
data
()
const
{
return
reinterpret_cast
<
const
void
*>
(
m_tensor
->
buffer
);
}
std
::
size_t
size
()
const
{
return
m_size
;
}
const
Shape
&
get_shape
()
const
{
return
m_shape
;
}
const
char
*
get_name
()
const
{
return
m_tensor
->
name
;
}
protected
:
const
::
onnxTensorDescriptorV1
*
m_tensor
;
Shape
m_shape
;
std
::
size_t
m_size
{
1
};
};
}
// namespace onnxifi
}
// namespace ngraph
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment