Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
N
ngraph
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
ngraph
Commits
2e295d27
Commit
2e295d27
authored
Mar 08, 2018
by
fenglei.tian
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
fix merge bug and apply clang format
parent
809dda4f
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
317 additions
and
354 deletions
+317
-354
gpu_emitter.cpp
src/ngraph/runtime/gpu/gpu_emitter.cpp
+299
-342
gpu_emitter.hpp
src/ngraph/runtime/gpu/gpu_emitter.hpp
+3
-2
gpu_external_function.cpp
src/ngraph/runtime/gpu/gpu_external_function.cpp
+15
-10
No files found.
src/ngraph/runtime/gpu/gpu_emitter.cpp
View file @
2e295d27
...
...
@@ -91,44 +91,47 @@
#include "ngraph/ops/sum.hpp"
#include "ngraph/ops/tan.hpp"
#include "ngraph/ops/tanh.hpp"
#include "ngraph/runtime/gpu/gpu_emitter.hpp"
#include "ngraph/runtime/gpu/gpu_cuda_kernel_emitters.hpp"
#include "ngraph/runtime/gpu/gpu_emitter.hpp"
#include "ngraph/runtime/gpu/gpu_kernel_emitters.hpp"
#include "ngraph/util.hpp"
using
namespace
std
;
using
namespace
ngraph
;
namespace
ngraph
{
}
namespace
runtime
{
namespace
gpu
{
template
<>
void
GPU_Emitter
::
EMITTER_DECL
(
ngraph
::
op
::
Abs
)
{
if
(
out
[
0
].
get_size
()
==
0
)
{
return
;
}
writer
<<
"{ // "
<<
node
->
get_name
()
<<
"
\n
"
;
writer
.
indent
++
;
writer
<<
"int count = "
<<
out
[
0
].
get_size
()
<<
";
\n
"
;
writer
<<
"ngraph::runtime::gpu::emit_abs((void*) "
<<
args
[
0
].
get_name
()
<<
", (void*) "
<<
out
[
0
].
get_name
()
<<
", count);
\n
"
;
writer
.
indent
--
;
writer
<<
"}
\n
"
;
}
{
if
(
out
[
0
].
get_size
()
==
0
)
{
return
;
}
writer
<<
"{ // "
<<
node
->
get_name
()
<<
"
\n
"
;
writer
.
indent
++
;
writer
<<
"int count = "
<<
out
[
0
].
get_size
()
<<
";
\n
"
;
writer
<<
"ngraph::runtime::gpu::emit_abs((void*) "
<<
args
[
0
].
get_name
()
<<
", (void*) "
<<
out
[
0
].
get_name
()
<<
", count);
\n
"
;
writer
.
indent
--
;
writer
<<
"}
\n
"
;
}
template
<>
void
GPU_Emitter
::
EMITTER_DECL
(
ngraph
::
op
::
Add
)
{
if
(
out
[
0
].
get_size
()
==
0
)
{
return
;
}
writer
<<
"{ // "
<<
node
->
get_name
()
<<
"
\n
"
;
writer
.
indent
++
;
writer
<<
"int count = "
<<
out
[
0
].
get_size
()
<<
";
\n
"
;
writer
+=
R"(
{
if
(
out
[
0
].
get_size
()
==
0
)
{
return
;
}
writer
<<
"{ // "
<<
node
->
get_name
()
<<
"
\n
"
;
writer
.
indent
++
;
writer
<<
"int count = "
<<
out
[
0
].
get_size
()
<<
";
\n
"
;
writer
+=
R"(
float alpha1 = 1.0, alpha2 = 1.0, beta = 0;
cudnnTensorDescriptor_t descriptor;
cudnnCreateTensorDescriptor(&descriptor);
...
...
@@ -148,145 +151,146 @@ cudnnSetOpTensorDescriptor(opTensorDesc,
CUDNN_NOT_PROPAGATE_NAN);
)"
;
writer
<<
"cudnnOpTensor(cudnn_handle,"
<<
"opTensorDesc,"
<<
"&alpha1,"
<<
"descriptor,"
<<
args
[
0
].
get_name
()
<<
","
<<
"&alpha2,"
<<
"descriptor,"
<<
args
[
1
].
get_name
()
<<
","
<<
"&beta,"
<<
"descriptor,"
<<
out
[
0
].
get_name
()
<<
");
\n
"
;
writer
.
indent
--
;
writer
<<
"}
\n
"
;
}
writer
<<
"cudnnOpTensor(cudnn_handle,"
<<
"opTensorDesc,"
<<
"&alpha1,"
<<
"descriptor,"
<<
args
[
0
].
get_name
()
<<
","
<<
"&alpha2,"
<<
"descriptor,"
<<
args
[
1
].
get_name
()
<<
","
<<
"&beta,"
<<
"descriptor,"
<<
out
[
0
].
get_name
()
<<
");
\n
"
;
writer
.
indent
--
;
writer
<<
"}
\n
"
;
}
template
<>
void
GPU_Emitter
::
EMITTER_DECL
(
ngraph
::
op
::
Dot
)
{
if
(
out
[
0
].
get_size
()
==
0
)
{
return
;
}
const
ngraph
::
op
::
Dot
*
dot
=
static_cast
<
const
ngraph
::
op
::
Dot
*>
(
n
);
const
Shape
&
arg0_shape
=
args
[
0
].
get_shape
();
const
Shape
&
arg1_shape
=
args
[
1
].
get_shape
();
if
(
arg0_shape
.
empty
()
||
arg1_shape
.
empty
())
{
auto
&
first
=
(
arg0_shape
.
empty
()
?
args
[
0
]
:
args
[
1
]);
auto
&
second
=
(
arg0_shape
.
empty
()
?
args
[
1
]
:
args
[
0
]);
writer
<<
"{ // "
<<
node
->
get_name
()
<<
"
\n
"
;
writer
.
indent
++
;
writer
<<
"int count = "
<<
second
.
get_size
()
<<
";
\n
"
;
writer
<<
"cublasScopy("
<<
"cublas_handle,"
<<
"count ,"
<<
second
.
get_name
()
<<
","
<<
"1,"
<<
out
[
0
].
get_name
()
<<
", 1);
\n
"
;
writer
<<
"cublasSscal("
<<
"cublas_handle,"
<<
"count ,"
<<
first
.
get_name
()
<<
","
<<
out
[
0
].
get_name
()
<<
", 1);
\n
"
;
writer
.
indent
--
;
writer
<<
"}
\n
"
;
return
;
}
//set output to 0 if input size is 0
if
(
args
[
0
].
get_size
()
==
0
||
args
[
1
].
get_size
()
==
0
)
{
writer
<<
"{ // "
<<
node
->
get_name
()
<<
"
\n
"
;
writer
.
indent
++
;
writer
<<
"runtime::gpu::cuda_memset("
<<
out
[
0
].
get_name
()
<<
", 0, "
<<
out
[
0
].
get_size
()
<<
" * sizeof(float));
\n
"
;
writer
.
indent
--
;
writer
<<
"}
\n
"
;
return
;
}
{
if
(
out
[
0
].
get_size
()
==
0
)
{
return
;
}
if
((
arg0_shape
.
size
()
==
1
)
&&
(
arg1_shape
.
size
()
==
1
))
{
writer
<<
"{ // "
<<
node
->
get_name
()
<<
"
\n
"
;
writer
.
indent
++
;
writer
<<
"cublasSdot("
<<
"cublas_handle,"
<<
arg0_shape
[
0
]
<<
","
<<
args
[
0
].
get_name
()
<<
","
<<
"1,"
<<
args
[
1
].
get_name
()
<<
","
<<
"1,"
<<
out
[
0
].
get_name
()
<<
");
\n
"
;
writer
.
indent
--
;
writer
<<
"}
\n
"
;
}
else
if
((
arg0_shape
.
size
()
==
2
)
&&
(
arg1_shape
.
size
()
==
1
))
{
writer
<<
"{ // "
<<
node
->
get_name
()
<<
"
\n
"
;
writer
.
indent
++
;
writer
<<
"const float alpha = 1.0;
\n
"
;
writer
<<
"const float beta = 0;
\n
"
;
writer
<<
"cublasSetPointerMode(cublas_handle, CUBLAS_POINTER_MODE_HOST);
\n
"
;
writer
<<
"cublasSgemv("
<<
"cublas_handle,"
<<
"CUBLAS_OP_T,"
<<
arg0_shape
[
0
]
<<
","
<<
arg0_shape
[
1
]
<<
","
<<
"&alpha,"
// Alpha
<<
args
[
0
].
get_name
()
<<
","
<<
arg0_shape
[
1
]
<<
","
<<
args
[
1
].
get_name
()
<<
","
<<
"1,"
<<
"&beta,"
// beta
<<
out
[
0
].
get_name
()
<<
","
<<
"1);
\n
"
;
writer
<<
"cublasSetPointerMode(cublas_handle, CUBLAS_POINTER_MODE_DEVICE);
\n
"
;
writer
.
indent
--
;
writer
<<
"}
\n
"
;
}
else
if
((
arg0_shape
.
size
()
==
2
)
&&
(
arg1_shape
.
size
()
==
2
))
{
// GEMM Call
if
(
arg0_shape
[
0
]
!=
out
[
0
].
get_shape
()[
0
]
||
// m
arg1_shape
[
1
]
!=
out
[
0
].
get_shape
()[
1
]
||
// n
arg0_shape
[
1
]
!=
arg1_shape
[
0
])
// k
{
throw
std
::
runtime_error
(
"input and output shape is not correct for dot;"
);
}
writer
<<
"{ // "
<<
node
->
get_name
()
<<
"
\n
"
;
writer
.
indent
++
;
writer
<<
"const float alpha = 1.0;
\n
"
;
writer
<<
"const float beta = 0.0;
\n
"
;
writer
<<
"int m = "
<<
arg0_shape
[
0
]
<<
";
\n
"
;
writer
<<
"int n = "
<<
arg1_shape
[
1
]
<<
";
\n
"
;
writer
<<
"int k = "
<<
arg0_shape
[
0
]
<<
";
\n
"
;
writer
<<
"cublasSetPointerMode(cublas_handle, CUBLAS_POINTER_MODE_HOST);
\n
"
;
writer
<<
"cublasSgemm("
<<
"cublas_handle,"
<<
"CUBLAS_OP_N,"
<<
"CUBLAS_OP_N,"
<<
"n,"
<<
"m,"
<<
"k,"
<<
"&alpha,"
// Alpha
<<
args
[
1
].
get_name
()
<<
","
<<
"n,"
<<
args
[
0
].
get_name
()
<<
","
<<
"k,"
<<
"&beta,"
// beta
<<
out
[
0
].
get_name
()
<<
","
<<
"n);
\n
"
;
writer
<<
"cublasSetPointerMode(cublas_handle, CUBLAS_POINTER_MODE_DEVICE);
\n
"
;
writer
.
indent
--
;
writer
<<
"}
\n
"
;
}
else
{
throw
std
::
runtime_error
(
node
->
get_name
()
+
" with more then 2D is not implemented."
);
}
}
const
ngraph
::
op
::
Dot
*
dot
=
static_cast
<
const
ngraph
::
op
::
Dot
*>
(
node
);
const
Shape
&
arg0_shape
=
args
[
0
].
get_shape
();
const
Shape
&
arg1_shape
=
args
[
1
].
get_shape
();
if
(
arg0_shape
.
empty
()
||
arg1_shape
.
empty
())
{
auto
&
first
=
(
arg0_shape
.
empty
()
?
args
[
0
]
:
args
[
1
]);
auto
&
second
=
(
arg0_shape
.
empty
()
?
args
[
1
]
:
args
[
0
]);
writer
<<
"{ // "
<<
node
->
get_name
()
<<
"
\n
"
;
writer
.
indent
++
;
writer
<<
"int count = "
<<
second
.
get_size
()
<<
";
\n
"
;
writer
<<
"cublasScopy("
<<
"cublas_handle,"
<<
"count ,"
<<
second
.
get_name
()
<<
","
<<
"1,"
<<
out
[
0
].
get_name
()
<<
", 1);
\n
"
;
writer
<<
"cublasSscal("
<<
"cublas_handle,"
<<
"count ,"
<<
first
.
get_name
()
<<
","
<<
out
[
0
].
get_name
()
<<
", 1);
\n
"
;
writer
.
indent
--
;
writer
<<
"}
\n
"
;
return
;
}
//set output to 0 if input size is 0
if
(
args
[
0
].
get_size
()
==
0
||
args
[
1
].
get_size
()
==
0
)
{
writer
<<
"{ // "
<<
node
->
get_name
()
<<
"
\n
"
;
writer
.
indent
++
;
writer
<<
"runtime::gpu::cuda_memset("
<<
out
[
0
].
get_name
()
<<
", 0, "
<<
out
[
0
].
get_size
()
<<
" * sizeof(float));
\n
"
;
writer
.
indent
--
;
writer
<<
"}
\n
"
;
return
;
}
if
((
arg0_shape
.
size
()
==
1
)
&&
(
arg1_shape
.
size
()
==
1
))
{
writer
<<
"{ // "
<<
node
->
get_name
()
<<
"
\n
"
;
writer
.
indent
++
;
writer
<<
"cublasSdot("
<<
"cublas_handle,"
<<
arg0_shape
[
0
]
<<
","
<<
args
[
0
].
get_name
()
<<
","
<<
"1,"
<<
args
[
1
].
get_name
()
<<
","
<<
"1,"
<<
out
[
0
].
get_name
()
<<
");
\n
"
;
writer
.
indent
--
;
writer
<<
"}
\n
"
;
}
else
if
((
arg0_shape
.
size
()
==
2
)
&&
(
arg1_shape
.
size
()
==
1
))
{
writer
<<
"{ // "
<<
node
->
get_name
()
<<
"
\n
"
;
writer
.
indent
++
;
writer
<<
"const float alpha = 1.0;
\n
"
;
writer
<<
"const float beta = 0;
\n
"
;
writer
<<
"cublasSetPointerMode(cublas_handle, CUBLAS_POINTER_MODE_HOST);
\n
"
;
writer
<<
"cublasSgemv("
<<
"cublas_handle,"
<<
"CUBLAS_OP_T,"
<<
arg0_shape
[
0
]
<<
","
<<
arg0_shape
[
1
]
<<
","
<<
"&alpha,"
// Alpha
<<
args
[
0
].
get_name
()
<<
","
<<
arg0_shape
[
1
]
<<
","
<<
args
[
1
].
get_name
()
<<
","
<<
"1,"
<<
"&beta,"
// beta
<<
out
[
0
].
get_name
()
<<
","
<<
"1);
\n
"
;
writer
<<
"cublasSetPointerMode(cublas_handle, CUBLAS_POINTER_MODE_DEVICE);
\n
"
;
writer
.
indent
--
;
writer
<<
"}
\n
"
;
}
else
if
((
arg0_shape
.
size
()
==
2
)
&&
(
arg1_shape
.
size
()
==
2
))
{
// GEMM Call
if
(
arg0_shape
[
0
]
!=
out
[
0
].
get_shape
()[
0
]
||
// m
arg1_shape
[
1
]
!=
out
[
0
].
get_shape
()[
1
]
||
// n
arg0_shape
[
1
]
!=
arg1_shape
[
0
])
// k
{
throw
std
::
runtime_error
(
"input and output shape is not correct for dot;"
);
}
writer
<<
"{ // "
<<
node
->
get_name
()
<<
"
\n
"
;
writer
.
indent
++
;
writer
<<
"const float alpha = 1.0;
\n
"
;
writer
<<
"const float beta = 0.0;
\n
"
;
writer
<<
"int m = "
<<
arg0_shape
[
0
]
<<
";
\n
"
;
writer
<<
"int n = "
<<
arg1_shape
[
1
]
<<
";
\n
"
;
writer
<<
"int k = "
<<
arg0_shape
[
0
]
<<
";
\n
"
;
writer
<<
"cublasSetPointerMode(cublas_handle, CUBLAS_POINTER_MODE_HOST);
\n
"
;
writer
<<
"cublasSgemm("
<<
"cublas_handle,"
<<
"CUBLAS_OP_N,"
<<
"CUBLAS_OP_N,"
<<
"n,"
<<
"m,"
<<
"k,"
<<
"&alpha,"
// Alpha
<<
args
[
1
].
get_name
()
<<
","
<<
"n,"
<<
args
[
0
].
get_name
()
<<
","
<<
"k,"
<<
"&beta,"
// beta
<<
out
[
0
].
get_name
()
<<
","
<<
"n);
\n
"
;
writer
<<
"cublasSetPointerMode(cublas_handle, CUBLAS_POINTER_MODE_DEVICE);
\n
"
;
writer
.
indent
--
;
writer
<<
"}
\n
"
;
}
else
{
throw
std
::
runtime_error
(
node
->
get_name
()
+
" with more then 2D is not implemented."
);
}
}
template
<>
void
GPU_Emitter
::
EMITTER_DECL
(
ngraph
::
op
::
Maximum
)
{
if
(
out
[
0
].
get_size
()
==
0
)
{
return
;
}
writer
<<
"{ // "
<<
node
->
get_name
()
<<
"
\n
"
;
writer
.
indent
++
;
writer
<<
"int count = "
<<
out
[
0
].
get_size
()
<<
";
\n
"
;
writer
+=
R"(
{
if
(
out
[
0
].
get_size
()
==
0
)
{
return
;
}
writer
<<
"{ // "
<<
node
->
get_name
()
<<
"
\n
"
;
writer
.
indent
++
;
writer
<<
"int count = "
<<
out
[
0
].
get_size
()
<<
";
\n
"
;
writer
+=
R"(
float alpha1 = 1.0, alpha2 = 1.0, beta = 0;
cudnnTensorDescriptor_t descriptor;
cudnnCreateTensorDescriptor(&descriptor);
...
...
@@ -320,15 +324,15 @@ cudnnSetOpTensorDescriptor(opTensorDesc,
template
<>
void
GPU_Emitter
::
EMITTER_DECL
(
ngraph
::
op
::
Minimum
)
{
if
(
out
[
0
].
get_size
()
==
0
)
{
return
;
}
writer
<<
"{ // "
<<
node
->
get_name
()
<<
"
\n
"
;
writer
.
indent
++
;
writer
<<
"int count = "
<<
out
[
0
].
get_size
()
<<
";
\n
"
;
writer
+=
R"(
{
if
(
out
[
0
].
get_size
()
==
0
)
{
return
;
}
writer
<<
"{ // "
<<
node
->
get_name
()
<<
"
\n
"
;
writer
.
indent
++
;
writer
<<
"int count = "
<<
out
[
0
].
get_size
()
<<
";
\n
"
;
writer
+=
R"(
float alpha1 = 1.0, alpha2 = 1.0, beta = 0;
cudnnTensorDescriptor_t descriptor;
cudnnCreateTensorDescriptor(&descriptor);
...
...
@@ -362,15 +366,15 @@ cudnnSetOpTensorDescriptor(opTensorDesc,
template
<>
void
GPU_Emitter
::
EMITTER_DECL
(
ngraph
::
op
::
Negative
)
{
if
(
out
[
0
].
get_size
()
==
0
)
{
return
;
}
writer
<<
"{ // "
<<
node
->
get_name
()
<<
"
\n
"
;
writer
.
indent
++
;
writer
<<
"int count = "
<<
out
[
0
].
get_size
()
<<
";
\n
"
;
writer
+=
R"(
{
if
(
out
[
0
].
get_size
()
==
0
)
{
return
;
}
writer
<<
"{ // "
<<
node
->
get_name
()
<<
"
\n
"
;
writer
.
indent
++
;
writer
<<
"int count = "
<<
out
[
0
].
get_size
()
<<
";
\n
"
;
writer
+=
R"(
float alpha1 = -1.0, alpha2 = 0, beta = 0;
cudnnTensorDescriptor_t descriptor;
cudnnCreateTensorDescriptor(&descriptor);
...
...
@@ -390,45 +394,25 @@ cudnnSetOpTensorDescriptor(opTensorDesc,
CUDNN_NOT_PROPAGATE_NAN);
)"
;
writer
<<
"cudnnOpTensor(cudnn_handle,"
<<
"opTensorDesc,"
<<
"&alpha1,"
<<
"descriptor,"
<<
args
[
0
].
get_name
()
<<
","
<<
"&alpha2,"
<<
"descriptor,"
<<
args
[
0
].
get_name
()
<<
","
<<
"&beta,"
<<
"descriptor,"
<<
out
[
0
].
get_name
()
<<
");
\n
"
;
writer
.
indent
--
;
writer
<<
"}
\n
"
;
}
template
<>
void
GPU_Emitter
::
EMITTER_DECL
(
ngraph
::
op
::
Broadcast
)
{
if
(
out
[
0
].
get_size
()
==
0
)
{
return
;
}
auto
broadcast
=
static_cast
<
const
ngraph
::
op
::
Broadcast
*>
(
n
);
auto
arg_shape
=
args
[
0
].
get_shape
();
auto
result_shape
=
out
[
0
].
get_shape
();
auto
&
axes
=
broadcast
->
get_broadcast_axes
();
//broadcast axes is empty, do a copy
if
(
axes
.
empty
())
{
writer
<<
"{ // "
<<
node
->
get_name
()
<<
"
\n
"
;
writer
.
indent
++
;
writer
<<
"runtime::gpu::cuda_memcpyDtD("
<<
out
[
0
].
get_name
()
<<
", "
<<
args
[
0
].
get_name
()
<<
", "
<<
out
[
0
].
get_size
()
<<
" * "
<<
out
[
0
].
get_element_type
().
size
()
<<
");
\n
"
;
writer
.
indent
--
;
writer
<<
"}
\n
"
;
return
;
}
writer
<<
"cudnnOpTensor(cudnn_handle,"
<<
"opTensorDesc,"
<<
"&alpha1,"
<<
"descriptor,"
<<
args
[
0
].
get_name
()
<<
","
<<
"&alpha2,"
<<
"descriptor,"
<<
args
[
0
].
get_name
()
<<
","
<<
"&beta,"
<<
"descriptor,"
<<
out
[
0
].
get_name
()
<<
");
\n
"
;
writer
.
indent
--
;
writer
<<
"}
\n
"
;
}
template
<>
void
GPU_Emitter
::
EMITTER_DECL
(
ngraph
::
op
::
Broadcast
)
{
if
(
out
[
0
].
get_size
()
==
0
)
{
return
;
}
auto
broadcast
=
static_cast
<
const
ngraph
::
op
::
Broadcast
*>
(
node
);
auto
arg_shape
=
args
[
0
].
get_shape
();
auto
result_shape
=
out
[
0
].
get_shape
();
...
...
@@ -490,109 +474,81 @@ cudnnSetOpTensorDescriptor(opTensorDesc,
throw
std
::
runtime_error
(
node
->
get_name
()
+
" is not implemented."
);
}
}
}
}
if
(
is_one_axes
)
{
int
repeat_times
=
1
;
for
(
int
i
=
0
;
i
<
axes_v
.
size
();
i
++
)
{
repeat_times
*=
result_shape
[
axes_v
[
i
]];
}
int
repeat_size
=
1
;
for
(
int
i
=
*
axes_v
.
rbegin
()
+
1
;
i
<
result_shape
.
size
();
i
++
)
{
repeat_size
*=
result_shape
[
i
];
}
writer
<<
"{ // "
<<
node
->
get_name
()
<<
"
\n
"
;
writer
.
indent
++
;
writer
<<
"runtime::gpu::emit_broadcast("
<<
args
[
0
].
get_name
()
<<
", "
<<
out
[
0
].
get_name
()
<<
", "
<<
repeat_size
<<
", "
<<
repeat_times
<<
", "
<<
out
[
0
].
get_size
()
<<
");
\n
"
;
writer
.
indent
--
;
writer
<<
"}
\n
"
;
}
else
{
throw
std
::
runtime_error
(
node
->
get_name
()
+
" is not implemented."
);
}
}
template
<>
void
GPU_Emitter
::
EMITTER_DECL
(
ngraph
::
op
::
Constant
)
{
}
{
}
template
<>
void
GPU_Emitter
::
EMITTER_DECL
(
ngraph
::
op
::
Reshape
)
{
if
(
out
[
0
].
get_size
()
==
0
)
{
return
;
}
auto
reshape
=
static_cast
<
const
op
::
Reshape
*>
(
n
);
writer
<<
"{ // "
<<
node
->
get_name
()
<<
"
\n
"
;
writer
.
indent
++
;
auto
arg_shape
=
args
[
0
].
get_shape
();
auto
arg_rank
=
arg_shape
.
size
();
{
if
(
out
[
0
].
get_size
()
==
0
)
{
return
;
}
auto
reshape
=
static_cast
<
const
op
::
Reshape
*>
(
node
);
writer
<<
"{ // "
<<
node
->
get_name
()
<<
"
\n
"
;
writer
.
indent
++
;
auto
arg_shape
=
args
[
0
].
get_shape
();
auto
arg_rank
=
arg_shape
.
size
();
auto
result_shape
=
out
[
0
].
get_shape
();
auto
&
result_element_type
=
out
[
0
].
get_element_type
();
auto
result_shape
=
out
[
0
].
get_shape
();
auto
&
result_element_type
=
out
[
0
].
get_element_type
();
auto
input_order
=
reshape
->
get_input_order
();
auto
input_order
=
reshape
->
get_input_order
();
bool
same_layout
=
is_sorted
(
input_order
.
begin
(),
input_order
.
end
());
bool
same_layout
=
is_sorted
(
input_order
.
begin
(),
input_order
.
end
());
size_t
result_shape_product
=
1
;
for
(
auto
i
:
result_shape
)
{
result_shape_product
*=
i
;
}
// If there is no layout change or we are just going from 1^n to 1^m or a zero-size tensor,
// we can just copy.
if
(
same_layout
||
result_shape_product
<
2
)
{
writer
<<
"{ // "
<<
node
->
get_name
()
<<
" 1
\n
"
;
writer
.
indent
++
;
writer
<<
"runtime::gpu::cuda_memcpyDtD("
<<
out
[
0
].
get_name
()
<<
", "
<<
args
[
0
].
get_name
()
<<
", "
<<
out
[
0
].
get_size
()
<<
" * "
<<
out
[
0
].
get_element_type
().
size
()
<<
");
\n
"
;
writer
.
indent
--
;
writer
<<
"}
\n
"
;
}
// If there *is* a layout change in the 2D case, we transpose the input.
else
if
(
arg_rank
==
2
)
{
// TODO Assert arg0_shape[0] == arg1_shape[0]?
writer
<<
"{ // "
<<
node
->
get_name
()
<<
"
\n
"
;
writer
.
indent
++
;
writer
<<
"const float alpha = 1.0;
\n
"
;
writer
<<
"const float beta = 0;
\n
"
;
writer
<<
"cublasSetPointerMode(cublas_handle, CUBLAS_POINTER_MODE_HOST);
\n
"
;
writer
<<
"cublasSgeam("
<<
"cublas_handle,"
<<
"CUBLAS_OP_T,"
<<
"CUBLAS_OP_T,"
<<
arg_shape
[
0
]
<<
","
<<
arg_shape
[
1
]
<<
","
<<
"&alpha,"
// Alpha
<<
args
[
0
].
get_name
()
<<
","
<<
arg_shape
[
1
]
<<
","
<<
"&beta,"
// beta
<<
args
[
0
].
get_name
()
<<
","
<<
arg_shape
[
1
]
<<
","
<<
out
[
0
].
get_name
()
<<
","
<<
result_shape
[
1
]
<<
");
\n
"
;
writer
<<
"cublasSetPointerMode(cublas_handle, CUBLAS_POINTER_MODE_DEVICE);
\n
"
;
writer
.
indent
--
;
writer
<<
"}
\n
"
;
}
// Other cases (reordering of axes for tensors with rank>2) are not handled yet.
else
{
throw
runtime_error
(
"Axis permutation in reshape is not implemented yet for tensors with rank>2"
);
}
writer
.
indent
--
;
writer
<<
"}
\n
"
;
}
size_t
result_shape_product
=
1
;
for
(
auto
i
:
result_shape
)
{
result_shape_product
*=
i
;
}
// If there is no layout change or we are just going from 1^n to 1^m or a zero-size tensor,
// we can just copy.
if
(
same_layout
||
result_shape_product
<
2
)
{
writer
<<
"{ // "
<<
node
->
get_name
()
<<
" 1
\n
"
;
writer
.
indent
++
;
writer
<<
"runtime::gpu::cuda_memcpyDtD("
<<
out
[
0
].
get_name
()
<<
", "
<<
args
[
0
].
get_name
()
<<
", "
<<
out
[
0
].
get_size
()
<<
" * "
<<
out
[
0
].
get_element_type
().
size
()
<<
");
\n
"
;
writer
.
indent
--
;
writer
<<
"}
\n
"
;
}
// If there *is* a layout change in the 2D case, we transpose the input.
else
if
(
arg_rank
==
2
)
{
// TODO Assert arg0_shape[0] == arg1_shape[0]?
writer
<<
"{ // "
<<
node
->
get_name
()
<<
"
\n
"
;
writer
.
indent
++
;
writer
<<
"const float alpha = 1.0;
\n
"
;
writer
<<
"const float beta = 0;
\n
"
;
writer
<<
"cublasSetPointerMode(cublas_handle, CUBLAS_POINTER_MODE_HOST);
\n
"
;
writer
<<
"cublasSgeam("
<<
"cublas_handle,"
<<
"CUBLAS_OP_T,"
<<
"CUBLAS_OP_T,"
<<
arg_shape
[
0
]
<<
","
<<
arg_shape
[
1
]
<<
","
<<
"&alpha,"
// Alpha
<<
args
[
0
].
get_name
()
<<
","
<<
arg_shape
[
1
]
<<
","
<<
"&beta,"
// beta
<<
args
[
0
].
get_name
()
<<
","
<<
arg_shape
[
1
]
<<
","
<<
out
[
0
].
get_name
()
<<
","
<<
result_shape
[
1
]
<<
");
\n
"
;
writer
<<
"cublasSetPointerMode(cublas_handle, CUBLAS_POINTER_MODE_DEVICE);
\n
"
;
writer
.
indent
--
;
writer
<<
"}
\n
"
;
}
// Other cases (reordering of axes for tensors with rank>2) are not handled yet.
else
{
throw
runtime_error
(
"Axis permutation in reshape is not implemented yet for tensors with "
"rank>2"
);
}
writer
.
indent
--
;
writer
<<
"}
\n
"
;
}
template
<>
void
GPU_Emitter
::
EMITTER_DECL
(
ngraph
::
op
::
FunctionCall
)
...
...
@@ -601,15 +557,15 @@ cudnnSetOpTensorDescriptor(opTensorDesc,
template
<>
void
GPU_Emitter
::
EMITTER_DECL
(
ngraph
::
op
::
Multiply
)
{
if
(
out
[
0
].
get_size
()
==
0
)
{
return
;
}
writer
<<
"{ // "
<<
node
->
get_name
()
<<
"
\n
"
;
writer
.
indent
++
;
writer
<<
"int count = "
<<
out
[
0
].
get_size
()
<<
";
\n
"
;
writer
+=
R"(
{
if
(
out
[
0
].
get_size
()
==
0
)
{
return
;
}
writer
<<
"{ // "
<<
node
->
get_name
()
<<
"
\n
"
;
writer
.
indent
++
;
writer
<<
"int count = "
<<
out
[
0
].
get_size
()
<<
";
\n
"
;
writer
+=
R"(
float alpha1 = 1.0, alpha2 = 1.0, beta = 0;
cudnnTensorDescriptor_t descriptor;
cudnnCreateTensorDescriptor(&descriptor);
...
...
@@ -629,29 +585,29 @@ cudnnSetOpTensorDescriptor(opTensorDesc,
CUDNN_NOT_PROPAGATE_NAN);
)"
;
writer
<<
"cudnnOpTensor(cudnn_handle,"
<<
"opTensorDesc,"
<<
"&alpha1,"
<<
"descriptor,"
<<
args
[
0
].
get_name
()
<<
","
<<
"&alpha2,"
<<
"descriptor,"
<<
args
[
1
].
get_name
()
<<
","
<<
"&beta,"
<<
"descriptor,"
<<
out
[
0
].
get_name
()
<<
");
\n
"
;
writer
.
indent
--
;
writer
<<
"}
\n
"
;
}
writer
<<
"cudnnOpTensor(cudnn_handle,"
<<
"opTensorDesc,"
<<
"&alpha1,"
<<
"descriptor,"
<<
args
[
0
].
get_name
()
<<
","
<<
"&alpha2,"
<<
"descriptor,"
<<
args
[
1
].
get_name
()
<<
","
<<
"&beta,"
<<
"descriptor,"
<<
out
[
0
].
get_name
()
<<
");
\n
"
;
writer
.
indent
--
;
writer
<<
"}
\n
"
;
}
v
template
<>
template
<>
void
GPU_Emitter
::
EMITTER_DECL
(
ngraph
::
op
::
Sqrt
)
{
if
(
out
[
0
].
get_size
()
==
0
)
{
return
;
}
writer
<<
"{ // "
<<
node
->
get_name
()
<<
"
\n
"
;
writer
.
indent
++
;
writer
<<
"int count = "
<<
out
[
0
].
get_size
()
<<
";
\n
"
;
writer
+=
R"(
{
if
(
out
[
0
].
get_size
()
==
0
)
{
return
;
}
writer
<<
"{ // "
<<
node
->
get_name
()
<<
"
\n
"
;
writer
.
indent
++
;
writer
<<
"int count = "
<<
out
[
0
].
get_size
()
<<
";
\n
"
;
writer
+=
R"(
float alpha1 = 1.0, alpha2 = 0, beta = 0;
cudnnTensorDescriptor_t descriptor;
cudnnCreateTensorDescriptor(&descriptor);
...
...
@@ -682,18 +638,19 @@ cudnnSetOpTensorDescriptor(opTensorDesc,
writer
.
indent
--
;
writer
<<
"}
\n
"
;
}
}
}
}
template
<>
void
GPU_Emitter
::
EMITTER_DECL
(
ngraph
::
op
::
Result
)
{
writer
<<
"{ //"
<<
node
->
get_name
()
<<
"
\n
"
;
writer
.
indent
++
;
writer
<<
"runtime::gpu::cuda_memcpyDtD("
<<
out
[
0
].
get_name
()
<<
", "
<<
args
[
0
].
get_name
()
<<
", "
<<
out
[
0
].
get_size
()
<<
" * "
<<
out
[
0
].
get_element_type
().
size
()
<<
");
\n
"
;
writer
.
indent
--
;
writer
<<
"}
\n
"
;
return
;
{
writer
<<
"{ //"
<<
node
->
get_name
()
<<
"
\n
"
;
writer
.
indent
++
;
writer
<<
"runtime::gpu::cuda_memcpyDtD("
<<
out
[
0
].
get_name
()
<<
", "
<<
args
[
0
].
get_name
()
<<
", "
<<
out
[
0
].
get_size
()
<<
" * "
<<
out
[
0
].
get_element_type
().
size
()
<<
");
\n
"
;
writer
.
indent
--
;
writer
<<
"}
\n
"
;
return
;
}
}
}
}
src/ngraph/runtime/gpu/gpu_emitter.hpp
View file @
2e295d27
...
...
@@ -45,8 +45,9 @@ namespace ngraph
const
ngraph
::
Node
*
node
,
const
std
::
vector
<
GPU_TensorViewWrapper
>&
args
,
const
std
::
vector
<
GPU_TensorViewWrapper
>&
out
)
{
throw
std
::
runtime_error
(
"Unimplemented op in GPU emitter for "
+
node
->
get_name
());
{
throw
std
::
runtime_error
(
"Unimplemented op in GPU emitter for "
+
node
->
get_name
());
}
static
void
nop
(
GPU_ExternalFunction
*
external_function
,
...
...
src/ngraph/runtime/gpu/gpu_external_function.cpp
View file @
2e295d27
...
...
@@ -187,7 +187,8 @@ static const ngraph::runtime::gpu::OpMap dispatcher{
{
TI
(
ngraph
::
op
::
Convert
),
&
ngraph
::
runtime
::
gpu
::
GPU_Emitter
::
emit
<
ngraph
::
op
::
Convert
>
},
{
TI
(
ngraph
::
op
::
Constant
),
&
ngraph
::
runtime
::
gpu
::
GPU_Emitter
::
emit
<
ngraph
::
op
::
Constant
>
},
{
TI
(
ngraph
::
op
::
Reshape
),
&
ngraph
::
runtime
::
gpu
::
GPU_Emitter
::
emit
<
ngraph
::
op
::
Reshape
>
},
{
TI
(
ngraph
::
op
::
FunctionCall
),
&
ngraph
::
runtime
::
gpu
::
GPU_Emitter
::
emit
<
ngraph
::
op
::
FunctionCall
>
},
{
TI
(
ngraph
::
op
::
FunctionCall
),
&
ngraph
::
runtime
::
gpu
::
GPU_Emitter
::
emit
<
ngraph
::
op
::
FunctionCall
>
},
{
TI
(
ngraph
::
op
::
Reduce
),
&
ngraph
::
runtime
::
gpu
::
GPU_Emitter
::
emit
<
ngraph
::
op
::
Reduce
>
},
{
TI
(
ngraph
::
op
::
Sign
),
&
ngraph
::
runtime
::
gpu
::
GPU_Emitter
::
emit
<
ngraph
::
op
::
Sign
>
},
{
TI
(
ngraph
::
op
::
Slice
),
&
ngraph
::
runtime
::
gpu
::
GPU_Emitter
::
emit
<
ngraph
::
op
::
Slice
>
},
...
...
@@ -202,12 +203,14 @@ static const ngraph::runtime::gpu::OpMap dispatcher{
{
TI
(
ngraph
::
op
::
Asin
),
&
ngraph
::
runtime
::
gpu
::
GPU_Emitter
::
emit
<
ngraph
::
op
::
Asin
>
},
{
TI
(
ngraph
::
op
::
Acos
),
&
ngraph
::
runtime
::
gpu
::
GPU_Emitter
::
emit
<
ngraph
::
op
::
Acos
>
},
{
TI
(
ngraph
::
op
::
Atan
),
&
ngraph
::
runtime
::
gpu
::
GPU_Emitter
::
emit
<
ngraph
::
op
::
Atan
>
},
{
TI
(
ngraph
::
op
::
ReplaceSlice
),
&
ngraph
::
runtime
::
gpu
::
GPU_Emitter
::
emit
<
ngraph
::
op
::
ReplaceSlice
>
},
{
TI
(
ngraph
::
op
::
ReplaceSlice
),
&
ngraph
::
runtime
::
gpu
::
GPU_Emitter
::
emit
<
ngraph
::
op
::
ReplaceSlice
>
},
{
TI
(
ngraph
::
op
::
OneHot
),
&
ngraph
::
runtime
::
gpu
::
GPU_Emitter
::
emit
<
ngraph
::
op
::
OneHot
>
},
{
TI
(
ngraph
::
op
::
Floor
),
&
ngraph
::
runtime
::
gpu
::
GPU_Emitter
::
emit
<
ngraph
::
op
::
Floor
>
},
{
TI
(
ngraph
::
op
::
Ceiling
),
&
ngraph
::
runtime
::
gpu
::
GPU_Emitter
::
emit
<
ngraph
::
op
::
Ceiling
>
},
{
TI
(
ngraph
::
op
::
Sqrt
),
&
ngraph
::
runtime
::
gpu
::
GPU_Emitter
::
emit
<
ngraph
::
op
::
Sqrt
>
},
{
TI
(
ngraph
::
op
::
Convolution
),
&
ngraph
::
runtime
::
gpu
::
GPU_Emitter
::
emit
<
ngraph
::
op
::
Convolution
>
},
{
TI
(
ngraph
::
op
::
Convolution
),
&
ngraph
::
runtime
::
gpu
::
GPU_Emitter
::
emit
<
ngraph
::
op
::
Convolution
>
},
{
TI
(
ngraph
::
op
::
ConvolutionBackpropFilters
),
&
ngraph
::
runtime
::
gpu
::
GPU_Emitter
::
emit
<
ngraph
::
op
::
ConvolutionBackpropFilters
>
},
{
TI
(
ngraph
::
op
::
ConvolutionBackpropData
),
...
...
@@ -216,7 +219,8 @@ static const ngraph::runtime::gpu::OpMap dispatcher{
{
TI
(
ngraph
::
op
::
MaxPool
),
&
ngraph
::
runtime
::
gpu
::
GPU_Emitter
::
emit
<
ngraph
::
op
::
MaxPool
>
},
{
TI
(
ngraph
::
op
::
Reverse
),
&
ngraph
::
runtime
::
gpu
::
GPU_Emitter
::
emit
<
ngraph
::
op
::
Reverse
>
},
{
TI
(
ngraph
::
op
::
Result
),
&
ngraph
::
runtime
::
gpu
::
GPU_Emitter
::
emit
<
ngraph
::
op
::
Result
>
},
{
TI
(
ngraph
::
op
::
ReduceWindow
),
&
ngraph
::
runtime
::
gpu
::
GPU_Emitter
::
emit
<
ngraph
::
op
::
ReduceWindow
>
},
{
TI
(
ngraph
::
op
::
ReduceWindow
),
&
ngraph
::
runtime
::
gpu
::
GPU_Emitter
::
emit
<
ngraph
::
op
::
ReduceWindow
>
},
{
TI
(
ngraph
::
op
::
SelectAndScatter
),
&
ngraph
::
runtime
::
gpu
::
GPU_Emitter
::
emit
<
ngraph
::
op
::
SelectAndScatter
>
},
{
TI
(
ngraph
::
op
::
AvgPool
),
&
ngraph
::
runtime
::
gpu
::
GPU_Emitter
::
emit
<
ngraph
::
op
::
AvgPool
>
},
...
...
@@ -232,7 +236,8 @@ static const ngraph::runtime::gpu::OpMap dispatcher{
{
TI
(
ngraph
::
op
::
Max
),
&
ngraph
::
runtime
::
gpu
::
GPU_Emitter
::
emit
<
ngraph
::
op
::
Max
>
},
{
TI
(
ngraph
::
op
::
Min
),
&
ngraph
::
runtime
::
gpu
::
GPU_Emitter
::
emit
<
ngraph
::
op
::
Min
>
},
{
TI
(
ngraph
::
op
::
Relu
),
&
ngraph
::
runtime
::
gpu
::
GPU_Emitter
::
emit
<
ngraph
::
op
::
Relu
>
},
{
TI
(
ngraph
::
op
::
ReluBackprop
),
&
ngraph
::
runtime
::
gpu
::
GPU_Emitter
::
emit
<
ngraph
::
op
::
ReluBackprop
>
},
{
TI
(
ngraph
::
op
::
ReluBackprop
),
&
ngraph
::
runtime
::
gpu
::
GPU_Emitter
::
emit
<
ngraph
::
op
::
ReluBackprop
>
},
{
TI
(
ngraph
::
op
::
Softmax
),
&
ngraph
::
runtime
::
gpu
::
GPU_Emitter
::
emit
<
ngraph
::
op
::
Softmax
>
},
};
...
...
@@ -564,8 +569,8 @@ using namespace std;
size_t
temp_pool_size
=
current_function
->
get_temporary_pool_size
();
writer
<<
"// Allocate the memory pool
\n
"
;
// TODO memory pool malloc.
writer
<<
"void* pool_base_ptr = ngraph::runtime::gpu::create_gpu_buffer("
<<
temp_pool_size
<<
");
\n
"
;
writer
<<
"void* pool_base_ptr = ngraph::runtime::gpu::create_gpu_buffer("
<<
temp_pool_size
<<
");
\n
"
;
// Add temporaries to the variable name map
for
(
shared_ptr
<
Node
>
node
:
current_function
->
get_ordered_ops
())
...
...
@@ -641,9 +646,9 @@ using namespace std;
{
if
(
contains
(
constants
,
tv
.
get
()))
{
writer
<<
"ngraph::runtime::gpu::cuda_memcpyHtD(outputs["
<<
output_index
<<
"], "
<<
tv
->
get_tensor
().
get_name
()
<<
", "
<<
tv
->
get_tensor
().
size
()
<<
");
\n
"
;
writer
<<
"ngraph::runtime::gpu::cuda_memcpyHtD(outputs["
<<
output_index
<<
"], "
<<
tv
->
get_tensor
().
get_name
()
<<
", "
<<
tv
->
get_tensor
().
size
()
<<
");
\n
"
;
}
else
{
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment