Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
N
ngraph
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
ngraph
Commits
2b0a5489
Unverified
Commit
2b0a5489
authored
Jan 24, 2018
by
Adam Procter
Committed by
GitHub
Jan 24, 2018
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Change convolution reference to work with f32 (#409)
parent
d87b0065
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
92 additions
and
73 deletions
+92
-73
convolution_test.in.cpp
test/convolution_test.in.cpp
+0
-0
generate_convolution_ref.py
test/ref_generators/generate_convolution_ref.py
+92
-72
update_reference.sh
test/update_reference.sh
+0
-1
No files found.
test/convolution_test.in.cpp
View file @
2b0a5489
This source diff could not be displayed because it is too large. You can
view the blob
instead.
test/ref_generators/generate_convolution_ref.py
View file @
2b0a5489
...
...
@@ -16,27 +16,22 @@
import
sys
import
numpy
as
np
import
math
import
random
from
operator
import
mul
#
Imposes the shape on the given 1-D array to produce a C-style-indexed n-D array
.
def
shaped_from_flat
(
shape
,
flat
):
total_elems
=
reduce
(
mul
,
shape
)
#
Generates an array of random floating point literals of the given length, from a fixed seed
.
def
random_array_float_literals
(
length
,
seed
=
8086
):
literals
=
[]
assert
(
len
(
flat
)
==
total_elems
)
random
.
seed
(
seed
)
arr
=
np
.
array
(
flat
)
arr
.
shape
=
shape
for
i
in
range
(
0
,
length
):
literal_n
=
random
.
randint
(
0
,
99
)
literal_sign
=
random
.
randint
(
0
,
1
)
literal_str
=
(
'-'
if
literal_sign
==
1
else
''
)
+
'.'
+
(
'
%02
d'
%
literal_n
)
literals
.
append
(
literal_str
)
return
arr
# Creates a linspaced array from 1 to n where n is the number of elements in the shape, then
# imposes the shape on the array to produce a C-style-indexed n-D array.
def
shaped_linspace
(
shape
):
total_elems
=
reduce
(
mul
,
shape
)
flat
=
np
.
linspace
(
1
,
total_elems
,
total_elems
)
return
shaped_from_flat
(
shape
,
flat
)
return
literals
# Elementwise addition on tuples.
def
tuple_plus
(
t1
,
t2
):
...
...
@@ -177,31 +172,48 @@ def shape_str(shape):
result
=
result
+
(
',
%
d'
%
d
)
return
result
def
scalar_str
(
x
):
result
=
(
'
%.1000
g'
%
x
)
# This next part is a bit stupid.
if
"."
not
in
result
and
"e"
not
in
result
:
result
=
result
+
".0f"
else
:
result
=
result
+
"f"
return
result
def
data_str
(
data
):
result
=
''
first
=
True
for
x
in
np
.
nditer
(
data
):
if
first
:
result
=
(
'
%.1000
g'
%
x
)
result
=
scalar_str
(
x
)
first
=
False
else
:
result
=
result
+
(
',
%.1000
g'
%
x
)
result
=
result
+
','
+
scalar_str
(
x
)
return
result
def
emit_test
(
t
,
f
):
test_name
,
input_batch_data
,
filter_data
,
move_strides
,
filter_dilation
,
below_pads
,
above_pads
,
image_dilation
,
bprop
=
t
test_name
,
input_batch_shape
,
filters_shape
,
move_strides
,
filter_dilation
,
below_pads
,
above_pads
,
image_dilation
,
bprop
=
t
input_batch_literals
=
random_array_float_literals
(
reduce
(
mul
,
input_batch_shape
))
filters_literals
=
random_array_float_literals
(
reduce
(
mul
,
filters_shape
))
input_batch_array
=
np
.
array
(
map
(
lambda
s
:
np
.
float32
(
s
),
input_batch_literals
))
input_batch_array
.
shape
=
input_batch_shape
filters_array
=
np
.
array
(
map
(
lambda
s
:
np
.
float32
(
s
),
filters_literals
))
filters_array
.
shape
=
filters_shape
print
(
"Generating convolution test '
%
s'..."
%
test_name
)
output_batch_data
=
convolution_ref
(
input_batch_
data
,
filter_data
,
move_strides
,
filter_dilation
,
below_pads
,
above_pads
,
image_dilation
)
output_batch_data
=
convolution_ref
(
input_batch_
array
,
filters_array
,
move_strides
,
filter_dilation
,
below_pads
,
above_pads
,
image_dilation
)
template
=
'''
TEST (${BACKEND_NAME},
%
s)
{
auto shape_a = Shape{
%
s};
auto A = make_shared<op::Parameter>(element::f
64
, shape_a);
auto A = make_shared<op::Parameter>(element::f
32
, shape_a);
auto shape_b = Shape{
%
s};
auto B = make_shared<op::Parameter>(element::f
64
, shape_b);
auto B = make_shared<op::Parameter>(element::f
32
, shape_b);
auto shape_r = Shape{
%
s};
auto make_graph = [A, B] {
return make_shared<Function>(make_shared<op::Convolution>(A, B,
...
...
@@ -219,81 +231,81 @@ TEST (${BACKEND_NAME}, %s)
auto cf = backend->make_call_frame(external);
// Create some tensors for input/output
auto a = backend->make_primary_tensor_view(element::f
64
, shape_a);
copy_data(a, vector<
double
>{
%
s});
auto b = backend->make_primary_tensor_view(element::f
64
, shape_b);
copy_data(b, vector<
double
>{
%
s});
auto result = backend->make_primary_tensor_view(element::f
64
, shape_r);
auto a = backend->make_primary_tensor_view(element::f
32
, shape_a);
copy_data(a, vector<
float
>{
%
s});
auto b = backend->make_primary_tensor_view(element::f
32
, shape_b);
copy_data(b, vector<
float
>{
%
s});
auto result = backend->make_primary_tensor_view(element::f
32
, shape_r);
vector<
double
> expected_result{
%
s};
vector<
float
> expected_result{
%
s};
cf->call({a, b}, {result});
EXPECT_TRUE(all_close
_d(vector<double>{expected_result}, read_vector<double
>(result)));
EXPECT_TRUE(all_close
<float>(vector<float>{expected_result}, read_vector<float
>(result)));
// only test backprop for certain cases as it takes significant compute resources
if(
%
s) {
EXPECT_TRUE(autodiff_numeric_compare<
double>(manager, backend, make_graph, {a, b}, .01, .01
));
EXPECT_TRUE(autodiff_numeric_compare<
float>(manager, backend, make_graph, {a, b}, .01f, .01f
));
}
}
'''
f
.
write
(
template
%
(
test_name
,
shape_str
(
input_batch_
data
.
shape
),
shape_str
(
filter
_data
.
shape
),
shape_str
(
input_batch_shape
),
shape_str
(
filter
s_
shape
),
shape_str
(
output_batch_data
.
shape
),
shape_str
(
move_strides
),
shape_str
(
filter_dilation
),
shape_str
(
below_pads
),
shape_str
(
above_pads
),
shape_str
(
image_dilation
),
data_str
(
input_batch_data
),
data_str
(
filter_data
),
","
.
join
(
map
(
lambda
s
:
s
+
"f"
,
input_batch_literals
)
),
","
.
join
(
map
(
lambda
s
:
s
+
"f"
,
filters_literals
)
),
data_str
(
output_batch_data
),
bprop
));
# filter image
# test name
input image batch filters stride dilation below-pads above-pads dilation
# test name
batch shape filts shape stride dilation below-pads above-pads dilation bprop?
tests
=
[
(
"convolution_2d_1image"
,
shaped_linspace
((
1
,
1
,
3
,
5
)),
shaped_linspace
((
2
,
1
,
2
,
2
)
),
(
1
,
1
),
(
1
,
1
),
(
0
,
0
),
(
0
,
0
),
(
1
,
1
),
"true"
),
(
"convolution_2d_1image_padded_1_1x1_1"
,
shaped_linspace
((
1
,
1
,
3
,
5
)),
shaped_linspace
((
2
,
1
,
2
,
2
)
),
(
1
,
1
),
(
1
,
1
),
(
1
,
1
),
(
1
,
1
),
(
1
,
1
),
"true"
),
(
"convolution_2d_1image_padded_2_3x4_5"
,
shaped_linspace
((
1
,
1
,
3
,
5
)),
shaped_linspace
((
2
,
1
,
2
,
2
)
),
(
1
,
1
),
(
1
,
1
),
(
2
,
3
),
(
4
,
5
),
(
1
,
1
),
"true"
),
(
"convolution_2d_2images"
,
shaped_linspace
((
2
,
1
,
3
,
5
)),
shaped_linspace
((
2
,
1
,
2
,
2
)
),
(
1
,
1
),
(
1
,
1
),
(
0
,
0
),
(
0
,
0
),
(
1
,
1
),
"true"
),
(
"convolution_2d_2images_strided"
,
shaped_linspace
((
2
,
1
,
3
,
5
)),
shaped_linspace
((
2
,
1
,
2
,
2
)
),
(
2
,
2
),
(
1
,
1
),
(
0
,
0
),
(
0
,
0
),
(
1
,
1
),
"true"
),
(
"convolution_2d_2images_strided_padded"
,
shaped_linspace
((
2
,
1
,
3
,
5
)),
shaped_linspace
((
2
,
1
,
2
,
2
)
),
(
2
,
2
),
(
1
,
1
),
(
4
,
2
),
(
5
,
7
),
(
1
,
1
),
"true"
),
(
"convolution_2d_1image"
,
(
1
,
1
,
3
,
5
),
(
2
,
1
,
2
,
2
),
(
1
,
1
),
(
1
,
1
),
(
0
,
0
),
(
0
,
0
),
(
1
,
1
),
"true"
),
(
"convolution_2d_1image_padded_1_1x1_1"
,
(
1
,
1
,
3
,
5
),
(
2
,
1
,
2
,
2
),
(
1
,
1
),
(
1
,
1
),
(
1
,
1
),
(
1
,
1
),
(
1
,
1
),
"true"
),
(
"convolution_2d_1image_padded_2_3x4_5"
,
(
1
,
1
,
3
,
5
),
(
2
,
1
,
2
,
2
),
(
1
,
1
),
(
1
,
1
),
(
2
,
3
),
(
4
,
5
),
(
1
,
1
),
"true"
),
(
"convolution_2d_2images"
,
(
2
,
1
,
3
,
5
),
(
2
,
1
,
2
,
2
),
(
1
,
1
),
(
1
,
1
),
(
0
,
0
),
(
0
,
0
),
(
1
,
1
),
"true"
),
(
"convolution_2d_2images_strided"
,
(
2
,
1
,
3
,
5
),
(
2
,
1
,
2
,
2
),
(
2
,
2
),
(
1
,
1
),
(
0
,
0
),
(
0
,
0
),
(
1
,
1
),
"true"
),
(
"convolution_2d_2images_strided_padded"
,
(
2
,
1
,
3
,
5
),
(
2
,
1
,
2
,
2
),
(
2
,
2
),
(
1
,
1
),
(
4
,
2
),
(
5
,
7
),
(
1
,
1
),
"true"
),
(
"convolution_2d_2images_strided_padded_same"
,
shaped_linspace
((
2
,
1
,
3
,
5
)),
shaped_linspace
((
2
,
1
,
2
,
2
)
),
(
2
,
2
),
(
1
,
1
),
(
2
,
2
),
(
2
,
2
),
(
1
,
1
),
"true"
),
(
"convolution_2d_2images_dilated"
,
shaped_linspace
((
2
,
1
,
3
,
5
)),
shaped_linspace
((
2
,
1
,
2
,
2
)
),
(
1
,
1
),
(
2
,
2
),
(
0
,
0
),
(
0
,
0
),
(
1
,
1
),
"true"
),
(
"convolution_2d_2images_dilated_padded"
,
shaped_linspace
((
2
,
1
,
3
,
5
)),
shaped_linspace
((
2
,
1
,
2
,
2
)
),
(
1
,
1
),
(
2
,
2
),
(
4
,
2
),
(
5
,
7
),
(
1
,
1
),
"true"
),
(
"convolution_3d_2images"
,
shaped_linspace
((
2
,
1
,
3
,
5
,
8
)),
shaped_linspace
((
2
,
1
,
2
,
2
,
3
)
),
(
1
,
1
,
1
),
(
1
,
1
,
1
),
(
0
,
0
,
0
),
(
0
,
0
,
0
),
(
1
,
1
,
1
),
"true"
),
(
"convolution_4d_2images"
,
shaped_linspace
((
2
,
1
,
3
,
5
,
8
,
7
)),
shaped_linspace
((
2
,
1
,
2
,
2
,
3
,
1
)
),(
1
,
1
,
1
,
1
),(
1
,
1
,
1
,
1
),(
0
,
0
,
0
,
0
),
(
0
,
0
,
0
,
0
),
(
1
,
1
,
1
,
1
),
"false"
),
(
"convolution_4d_4images"
,
shaped_linspace
((
4
,
3
,
3
,
5
,
8
,
7
)),
shaped_linspace
((
4
,
3
,
2
,
2
,
3
,
1
)
),(
1
,
1
,
1
,
1
),(
1
,
1
,
1
,
1
),(
0
,
0
,
0
,
0
),
(
0
,
0
,
0
,
0
),
(
1
,
1
,
1
,
1
),
"false"
),
(
"convolution_4d_4images_padded_neg"
,
shaped_linspace
((
4
,
3
,
3
,
5
,
8
,
7
)),
shaped_linspace
((
4
,
3
,
2
,
2
,
3
,
1
)
),(
1
,
1
,
1
,
1
),(
1
,
1
,
1
,
1
),(
-
1
,
2
,
-
3
,
2
),(
1
,
0
,
0
,
-
3
),
(
1
,
1
,
1
,
1
),
"false"
),
(
"convolution_4d_4images_strided"
,
shaped_linspace
((
4
,
3
,
3
,
5
,
8
,
7
)),
shaped_linspace
((
4
,
3
,
2
,
2
,
3
,
1
)
),(
2
,
1
,
3
,
2
),(
1
,
1
,
1
,
1
),(
0
,
0
,
0
,
0
),
(
0
,
0
,
0
,
0
),
(
1
,
1
,
1
,
1
),
"false"
),
(
"convolution_4d_4images_dilated"
,
shaped_linspace
((
4
,
3
,
3
,
5
,
8
,
7
)),
shaped_linspace
((
4
,
3
,
2
,
2
,
3
,
1
)
),(
1
,
1
,
1
,
1
),(
2
,
1
,
3
,
2
),(
0
,
0
,
0
,
0
),
(
0
,
0
,
0
,
0
),
(
1
,
1
,
1
,
1
),
"false"
),
(
"convolution_4d_4images_strided_dilated"
,
shaped_linspace
((
4
,
3
,
8
,
8
,
8
,
8
)),
shaped_linspace
((
4
,
3
,
2
,
2
,
3
,
1
)
),(
3
,
2
,
2
,
3
),(
2
,
1
,
3
,
2
),(
0
,
0
,
0
,
0
),
(
0
,
0
,
0
,
0
),
(
1
,
1
,
1
,
1
),
"false"
),
(
2
,
1
,
3
,
5
),
(
2
,
1
,
2
,
2
),
(
2
,
2
),
(
1
,
1
),
(
2
,
2
),
(
2
,
2
),
(
1
,
1
),
"true"
),
(
"convolution_2d_2images_dilated"
,
(
2
,
1
,
3
,
5
),
(
2
,
1
,
2
,
2
),
(
1
,
1
),
(
2
,
2
),
(
0
,
0
),
(
0
,
0
),
(
1
,
1
),
"true"
),
(
"convolution_2d_2images_dilated_padded"
,
(
2
,
1
,
3
,
5
),
(
2
,
1
,
2
,
2
),
(
1
,
1
),
(
2
,
2
),
(
4
,
2
),
(
5
,
7
),
(
1
,
1
),
"true"
),
(
"convolution_3d_2images"
,
(
2
,
1
,
3
,
5
,
8
),
(
2
,
1
,
2
,
2
,
3
),
(
1
,
1
,
1
),
(
1
,
1
,
1
),
(
0
,
0
,
0
),
(
0
,
0
,
0
),
(
1
,
1
,
1
),
"true"
),
(
"convolution_4d_2images"
,
(
2
,
1
,
3
,
5
,
8
,
7
),(
2
,
1
,
2
,
2
,
3
,
1
),(
1
,
1
,
1
,
1
),(
1
,
1
,
1
,
1
),(
0
,
0
,
0
,
0
),
(
0
,
0
,
0
,
0
),
(
1
,
1
,
1
,
1
),
"false"
),
(
"convolution_4d_4images"
,
(
4
,
3
,
3
,
5
,
8
,
7
),(
4
,
3
,
2
,
2
,
3
,
1
),(
1
,
1
,
1
,
1
),(
1
,
1
,
1
,
1
),(
0
,
0
,
0
,
0
),
(
0
,
0
,
0
,
0
),
(
1
,
1
,
1
,
1
),
"false"
),
(
"convolution_4d_4images_padded_neg"
,
(
4
,
3
,
3
,
5
,
8
,
7
),(
4
,
3
,
2
,
2
,
3
,
1
),(
1
,
1
,
1
,
1
),(
1
,
1
,
1
,
1
),(
-
1
,
2
,
-
3
,
2
),(
1
,
0
,
0
,
-
3
),
(
1
,
1
,
1
,
1
),
"false"
),
(
"convolution_4d_4images_strided"
,
(
4
,
3
,
3
,
5
,
8
,
7
),(
4
,
3
,
2
,
2
,
3
,
1
),(
2
,
1
,
3
,
2
),(
1
,
1
,
1
,
1
),(
0
,
0
,
0
,
0
),
(
0
,
0
,
0
,
0
),
(
1
,
1
,
1
,
1
),
"false"
),
(
"convolution_4d_4images_dilated"
,
(
4
,
3
,
3
,
5
,
8
,
7
),(
4
,
3
,
2
,
2
,
3
,
1
),(
1
,
1
,
1
,
1
),(
2
,
1
,
3
,
2
),(
0
,
0
,
0
,
0
),
(
0
,
0
,
0
,
0
),
(
1
,
1
,
1
,
1
),
"false"
),
(
"convolution_4d_4images_strided_dilated"
,
(
4
,
3
,
8
,
8
,
8
,
8
),(
4
,
3
,
2
,
2
,
3
,
1
),(
3
,
2
,
2
,
3
),(
2
,
1
,
3
,
2
),(
0
,
0
,
0
,
0
),
(
0
,
0
,
0
,
0
),
(
1
,
1
,
1
,
1
),
"false"
),
(
"convolution_4d_4images_strided_dilated_padded"
,
shaped_linspace
((
4
,
3
,
8
,
8
,
8
,
8
)),
shaped_linspace
((
4
,
3
,
2
,
2
,
3
,
1
)
),(
3
,
2
,
2
,
3
),(
2
,
1
,
3
,
2
),(
2
,
4
,
6
,
8
),
(
1
,
3
,
5
,
7
),
(
1
,
1
,
1
,
1
),
"false"
),
(
4
,
3
,
8
,
8
,
8
,
8
),(
4
,
3
,
2
,
2
,
3
,
1
),(
3
,
2
,
2
,
3
),(
2
,
1
,
3
,
2
),(
2
,
4
,
6
,
8
),
(
1
,
3
,
5
,
7
),
(
1
,
1
,
1
,
1
),
"false"
),
(
"convolution_4d_4images_strided_dilated_padded_neg"
,
shaped_linspace
((
4
,
3
,
8
,
8
,
8
,
8
)),
shaped_linspace
((
4
,
3
,
2
,
2
,
3
,
1
)
),(
3
,
2
,
2
,
3
),(
2
,
1
,
3
,
2
),(
-
2
,
4
,
0
,
5
),
(
1
,
3
,
-
1
,
-
4
),(
1
,
1
,
1
,
1
),
"false"
),
(
4
,
3
,
8
,
8
,
8
,
8
),(
4
,
3
,
2
,
2
,
3
,
1
),(
3
,
2
,
2
,
3
),(
2
,
1
,
3
,
2
),(
-
2
,
4
,
0
,
5
),
(
1
,
3
,
-
1
,
-
4
),(
1
,
1
,
1
,
1
),
"false"
),
(
"convolution_4d_4images_strided_dilated_padded_same"
,
shaped_linspace
((
4
,
3
,
8
,
8
,
8
,
8
)),
shaped_linspace
((
4
,
3
,
2
,
2
,
3
,
1
)
),(
3
,
2
,
2
,
3
),(
2
,
1
,
3
,
2
),(
3
,
3
,
3
,
3
),
(
3
,
3
,
3
,
3
),
(
1
,
1
,
1
,
1
),
"false"
),
(
"convolution_2d_1image_1o1i_img_dilated"
,
shaped_linspace
((
1
,
1
,
3
,
5
)),
shaped_linspace
((
1
,
1
,
2
,
2
)
),
(
1
,
1
),
(
1
,
1
),
(
0
,
0
),
(
0
,
0
),
(
2
,
2
),
"true"
),
(
"convolution_2d_1image_2o1i_img_dilated"
,
shaped_linspace
((
1
,
1
,
3
,
5
)),
shaped_linspace
((
2
,
1
,
2
,
2
)
),
(
1
,
1
),
(
1
,
1
),
(
0
,
0
),
(
0
,
0
),
(
2
,
2
),
"true"
),
(
"convolution_2d_1image_2o2i_img_dilated"
,
shaped_linspace
((
1
,
2
,
3
,
5
)),
shaped_linspace
((
2
,
2
,
2
,
2
)
),
(
1
,
1
),
(
1
,
1
),
(
0
,
0
),
(
0
,
0
),
(
2
,
2
),
"true"
),
(
"convolution_2d_1image_5o3i_img_dilated"
,
shaped_linspace
((
1
,
3
,
3
,
5
)),
shaped_linspace
((
5
,
3
,
2
,
2
)
),
(
1
,
1
),
(
1
,
1
),
(
0
,
0
),
(
0
,
0
),
(
2
,
2
),
"true"
),
(
"convolution_2d_8image_5o3i_img_dilated"
,
shaped_linspace
((
8
,
3
,
3
,
5
)),
shaped_linspace
((
5
,
3
,
2
,
2
)
),
(
1
,
1
),
(
1
,
1
),
(
0
,
0
),
(
0
,
0
),
(
2
,
2
),
"true"
),
(
4
,
3
,
8
,
8
,
8
,
8
),(
4
,
3
,
2
,
2
,
3
,
1
),(
3
,
2
,
2
,
3
),(
2
,
1
,
3
,
2
),(
3
,
3
,
3
,
3
),
(
3
,
3
,
3
,
3
),
(
1
,
1
,
1
,
1
),
"false"
),
(
"convolution_2d_1image_1o1i_img_dilated"
,
(
1
,
1
,
3
,
5
),
(
1
,
1
,
2
,
2
),
(
1
,
1
),
(
1
,
1
),
(
0
,
0
),
(
0
,
0
),
(
2
,
2
),
"true"
),
(
"convolution_2d_1image_2o1i_img_dilated"
,
(
1
,
1
,
3
,
5
),
(
2
,
1
,
2
,
2
),
(
1
,
1
),
(
1
,
1
),
(
0
,
0
),
(
0
,
0
),
(
2
,
2
),
"true"
),
(
"convolution_2d_1image_2o2i_img_dilated"
,
(
1
,
2
,
3
,
5
),
(
2
,
2
,
2
,
2
),
(
1
,
1
),
(
1
,
1
),
(
0
,
0
),
(
0
,
0
),
(
2
,
2
),
"true"
),
(
"convolution_2d_1image_5o3i_img_dilated"
,
(
1
,
3
,
3
,
5
),
(
5
,
3
,
2
,
2
),
(
1
,
1
),
(
1
,
1
),
(
0
,
0
),
(
0
,
0
),
(
2
,
2
),
"true"
),
(
"convolution_2d_8image_5o3i_img_dilated"
,
(
8
,
3
,
3
,
5
),
(
5
,
3
,
2
,
2
),
(
1
,
1
),
(
1
,
1
),
(
0
,
0
),
(
0
,
0
),
(
2
,
2
),
"true"
),
(
"convolution_2d_8image_large_5o3i_img_dilated"
,
shaped_linspace
((
8
,
3
,
16
,
16
)),
shaped_linspace
((
5
,
3
,
2
,
2
)
),
(
1
,
1
),
(
1
,
1
),
(
0
,
0
),
(
0
,
0
),
(
2
,
2
),
"false"
),
(
8
,
3
,
16
,
16
),
(
5
,
3
,
2
,
2
),
(
1
,
1
),
(
1
,
1
),
(
0
,
0
),
(
0
,
0
),
(
2
,
2
),
"false"
),
(
"convolution_2d_8image_large_5o3i_uneven_filter_img_dilated"
,
shaped_linspace
((
8
,
3
,
16
,
16
)),
shaped_linspace
((
5
,
3
,
2
,
3
)
),
(
1
,
1
),
(
1
,
1
),
(
0
,
0
),
(
0
,
0
),
(
2
,
2
),
"false"
),
(
8
,
3
,
16
,
16
),
(
5
,
3
,
2
,
3
),
(
1
,
1
),
(
1
,
1
),
(
0
,
0
),
(
0
,
0
),
(
2
,
2
),
"false"
),
(
"convolution_2d_8image_large_5o3i_uneven_filter_uneven_img_dilation_img_dilated"
,
shaped_linspace
((
8
,
3
,
16
,
16
)),
shaped_linspace
((
5
,
3
,
2
,
3
)
),
(
1
,
1
),
(
1
,
1
),
(
0
,
0
),
(
0
,
0
),
(
2
,
3
),
"false"
),
(
8
,
3
,
16
,
16
),
(
5
,
3
,
2
,
3
),
(
1
,
1
),
(
1
,
1
),
(
0
,
0
),
(
0
,
0
),
(
2
,
3
),
"false"
),
(
"convolution_3d_2image_large_5o3i_uneven_filter_uneven_img_dilation_img_dilated"
,
shaped_linspace
((
2
,
3
,
8
,
8
,
8
)),
shaped_linspace
((
5
,
3
,
2
,
3
,
4
)
),
(
1
,
1
,
1
),
(
1
,
1
,
1
),
(
0
,
0
,
0
),
(
0
,
0
,
0
),
(
2
,
3
,
2
),
"false"
),
(
2
,
3
,
8
,
8
,
8
),
(
5
,
3
,
2
,
3
,
4
),
(
1
,
1
,
1
),
(
1
,
1
,
1
),
(
0
,
0
,
0
),
(
0
,
0
,
0
),
(
2
,
3
,
2
),
"false"
),
(
"convolution_3d_1image_large_5o3i_padded_uneven_filter_uneven_img_dilation_img_dilated"
,
shaped_linspace
((
1
,
3
,
8
,
8
,
8
)),
shaped_linspace
((
5
,
3
,
2
,
3
,
4
)
),
(
1
,
1
,
1
),
(
1
,
1
,
1
),
(
2
,
1
,
2
),
(
1
,
2
,
3
),
(
2
,
3
,
2
),
"false"
),
(
1
,
3
,
8
,
8
,
8
),
(
5
,
3
,
2
,
3
,
4
),
(
1
,
1
,
1
),
(
1
,
1
,
1
),
(
2
,
1
,
2
),
(
1
,
2
,
3
),
(
2
,
3
,
2
),
"false"
),
(
"convolution_3d_2image_large_5o3i_padded_strided_uneven_filter_uneven_img_dilation_img_dilated"
,
shaped_linspace
((
2
,
3
,
8
,
8
,
8
)),
shaped_linspace
((
5
,
3
,
2
,
3
,
4
)
),
(
2
,
3
,
2
),
(
1
,
1
,
1
),
(
2
,
1
,
2
),
(
1
,
2
,
3
),
(
2
,
3
,
2
),
"false"
),
(
2
,
3
,
8
,
8
,
8
),
(
5
,
3
,
2
,
3
,
4
),
(
2
,
3
,
2
),
(
1
,
1
,
1
),
(
2
,
1
,
2
),
(
1
,
2
,
3
),
(
2
,
3
,
2
),
"false"
),
(
"convolution_3d_2image_large_5o3i_padded_strided_uneven_filter_uneven_img_dilation_filter_dilated_img_dilated"
,
shaped_linspace
((
2
,
3
,
8
,
8
,
8
)),
shaped_linspace
((
5
,
3
,
2
,
3
,
4
)
),
(
2
,
3
,
2
),
(
3
,
2
,
2
),
(
2
,
1
,
2
),
(
1
,
2
,
3
),
(
2
,
3
,
2
),
"false"
),
(
2
,
3
,
8
,
8
,
8
),
(
5
,
3
,
2
,
3
,
4
),
(
2
,
3
,
2
),
(
3
,
2
,
2
),
(
2
,
1
,
2
),
(
1
,
2
,
3
),
(
2
,
3
,
2
),
"false"
),
]
def
main
():
...
...
@@ -301,6 +313,8 @@ def main():
f
=
open
(
sys
.
argv
[
1
],
'w'
)
f
.
write
(
'''
// clang-format off
// ----------------------------------------------------------------------------
// Copyright 2017 Nervana Systems Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
...
...
@@ -322,8 +336,7 @@ def main():
// If you want to add new tests, you should edit test/ref_generators/generate_convolution_ref.py
// and regenerate this file.
//
// To regenerate (NOTE: this script will run apply-code-format.sh and reformat all source files
// in your tree):
// To regenerate:
//
// $ cd <ngraph source dir>/test
// $ ./update_reference.sh
...
...
@@ -342,10 +355,11 @@ def main():
using namespace std;
using namespace ngraph;
static bool all_close_d(const std::vector<double>& a,
const std::vector<double>& b,
double rtol = 1e-5,
double atol = 1e-8)
template<typename T>
static bool all_close(const std::vector<T>& a,
const std::vector<T>& b,
T rtol = T(1e-4),
T atol = T(1e-7))
{
assert(a.size() == b.size());
...
...
@@ -362,8 +376,14 @@ static bool all_close_d(const std::vector<double>& a,
}
'''
)
for
t
in
tests
:
emit_test
(
t
,
f
)
f
.
write
(
'''
// clang-format on
'''
)
f
.
close
()
if
__name__
==
"__main__"
:
...
...
test/update_reference.sh
View file @
2b0a5489
#!/bin/bash
declare
THIS_SCRIPT_DIR
=
"
$(
cd
"
$(
dirname
"
${
BASH_SOURCE
[0]
}
"
)
"
&&
pwd
)
"
python
${
THIS_SCRIPT_DIR
}
/ref_generators/generate_convolution_ref.py
${
THIS_SCRIPT_DIR
}
/convolution_test.in.cpp
${
THIS_SCRIPT_DIR
}
/../maint/apply-code-format.sh
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment