Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
N
ngraph
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
ngraph
Commits
233e4b1b
Unverified
Commit
233e4b1b
authored
Feb 21, 2018
by
Jayaram Bobba
Committed by
GitHub
Feb 21, 2018
Browse files
Options
Browse Files
Download
Plain Diff
Merge pull request #513 from NervanaSystems/jmenon/mkldnn-compile
MKLDNN Emitter
parents
96cabff0
e05a356e
Hide whitespace changes
Inline
Side-by-side
Showing
14 changed files
with
394 additions
and
86 deletions
+394
-86
CMakeLists.txt
src/ngraph/CMakeLists.txt
+2
-0
cpu_call_frame.cpp
src/ngraph/runtime/cpu/cpu_call_frame.cpp
+2
-0
cpu_emitter.cpp
src/ngraph/runtime/cpu/cpu_emitter.cpp
+44
-80
cpu_external_function.cpp
src/ngraph/runtime/cpu/cpu_external_function.cpp
+3
-0
cpu_external_function.hpp
src/ngraph/runtime/cpu/cpu_external_function.hpp
+8
-0
cpu_runtime_context.hpp
src/ngraph/runtime/cpu/cpu_runtime_context.hpp
+6
-0
cpu_tensor_view_wrapper.cpp
src/ngraph/runtime/cpu/cpu_tensor_view_wrapper.cpp
+6
-0
cpu_tensor_view_wrapper.hpp
src/ngraph/runtime/cpu/cpu_tensor_view_wrapper.hpp
+1
-0
mkldnn_emitter.cpp
src/ngraph/runtime/cpu/mkldnn_emitter.cpp
+137
-0
mkldnn_emitter.hpp
src/ngraph/runtime/cpu/mkldnn_emitter.hpp
+79
-0
mkldnn_invoke.cpp
src/ngraph/runtime/cpu/mkldnn_invoke.cpp
+38
-0
mkldnn_invoke.hpp
src/ngraph/runtime/cpu/mkldnn_invoke.hpp
+38
-0
mkldnn_utils.cpp
src/ngraph/runtime/cpu/mkldnn_utils.cpp
+24
-1
mkldnn_utils.hpp
src/ngraph/runtime/cpu/mkldnn_utils.hpp
+6
-5
No files found.
src/ngraph/CMakeLists.txt
View file @
233e4b1b
...
...
@@ -176,6 +176,8 @@ if (NGRAPH_CPU_ENABLE AND LLVM_INCLUDE_DIR AND
runtime/cpu/cpu_tensor_view_wrapper.cpp
runtime/cpu/cpu_layout_descriptor.cpp
runtime/cpu/cpu_tracing.cpp
runtime/cpu/mkldnn_emitter.cpp
runtime/cpu/mkldnn_invoke.cpp
runtime/cpu/mkldnn_utils.cpp
runtime/cpu/ops/convert_layout.cpp
runtime/cpu/ops/matmul_bias.cpp
...
...
src/ngraph/runtime/cpu/cpu_call_frame.cpp
View file @
233e4b1b
...
...
@@ -142,6 +142,8 @@ void runtime::cpu::CPU_CallFrame::setup_runtime_context()
{
ctx
->
op_durations
=
new
int64_t
[
m_external_function
->
get_op_attrs
().
size
()];
}
const
auto
&
mkldnn_emitter
=
m_external_function
->
get_mkldnn_emitter
();
ctx
->
mkldnn_primitives
=
mkldnn_emitter
->
get_mkldnn_primitives
().
data
();
}
void
runtime
::
cpu
::
CPU_CallFrame
::
cleanup_runtime_context
()
...
...
src/ngraph/runtime/cpu/cpu_emitter.cpp
View file @
233e4b1b
...
...
@@ -2036,95 +2036,59 @@ namespace ngraph
data_dilated
=
data_dilated
||
(
s
!=
1
);
}
// TODO(jmenon): MKLDNN streams should be static so we need to either implement
// codegen for statics or move primitive and stream construction out
// of the generated function and only generate code to run/rerun the stream
if
(
!
filter_dilated
&&
!
data_dilated
&&
arg0_rank
==
4
&&
arg1_rank
==
4
&&
if
(
!
data_dilated
&&
arg0_rank
==
4
&&
arg1_rank
==
4
&&
args
[
0
].
get_element_type
()
==
element
::
f32
)
{
const
string
&
et
=
get_mkldnn_data_type
(
args
[
0
].
get_element_type
().
c_type_string
());
writer
<<
"{
\n
"
;
writer
.
indent
++
;
writer
<<
"engine cpu_engine = engine(engine::cpu, 0);
\n
"
;
writer
<<
"memory::desc input_data_desc = memory::desc({"
<<
join
(
arg0_shape
)
<<
"}, "
<<
et
<<
", memory::format::nchw);
\n
"
;
writer
<<
"memory::desc weights_desc = memory::desc({"
<<
join
(
arg1_shape
)
<<
"}, "
<<
et
<<
", memory::format::oihw);
\n
"
;
writer
<<
"memory::desc result_desc = memory::desc({"
<<
join
(
result_shape
)
<<
"}, "
<<
et
<<
", memory::format::nchw);
\n
"
;
writer
<<
"memory input_data = memory({input_data_desc, cpu_engine}, "
<<
args
[
0
].
get_name
()
<<
");
\n
"
;
writer
<<
"memory weights = memory({weights_desc, cpu_engine}, "
<<
args
[
1
].
get_name
()
<<
");
\n
"
;
writer
<<
"memory result = memory({result_desc, cpu_engine}, "
<<
out
[
0
].
get_name
()
<<
");
\n
"
;
writer
<<
"convolution_forward conv = convolution_forward({"
<<
"{prop_kind::forward, algorithm::convolution_direct, input_data_desc, "
"weights_desc, result_desc, {"
<<
join
(
convolution
->
get_window_movement_strides
())
<<
"}, {"
<<
join
(
convolution
->
get_padding_below
())
<<
"}, {"
<<
join
(
convolution
->
get_padding_above
())
<<
"}, padding_kind::zero}, cpu_engine}, "
<<
"input_data, weights, result);
\n
"
;
writer
<<
"stream s = stream(stream::kind::eager);
\n
"
<<
"s.submit({conv}).wait();
\n
"
;
writer
.
indent
--
;
writer
<<
"}
\n
"
;
}
else
if
(
filter_dilated
&&
!
data_dilated
&&
arg0_rank
==
4
&&
arg1_rank
==
4
&&
args
[
0
].
get_element_type
()
==
element
::
f32
)
{
// For dilation, MKLDNN wants to know how many elements to insert between, not how far
// apart to space the elements like nGraph. So we have to subtract 1 from each pos.
Strides
window_dilation_strides_adjusted
;
auto
&
mkldnn_emitter
=
external_function
->
get_mkldnn_emitter
();
auto
input_data_desc
=
mkldnn_emitter
->
build_memory_descriptor
(
args
[
0
],
mkldnn
::
memory
::
format
::
nchw
);
auto
weights_desc
=
mkldnn_emitter
->
build_memory_descriptor
(
args
[
1
],
mkldnn
::
memory
::
format
::
oihw
);
auto
result_desc
=
mkldnn_emitter
->
build_memory_descriptor
(
out
[
0
],
mkldnn
::
memory
::
format
::
nchw
);
size_t
conv_index
=
0
;
for
(
size_t
s
:
convolution
->
get_window_dilation_strides
()
)
if
(
!
filter_dilated
)
{
window_dilation_strides_adjusted
.
push_back
(
s
-
1
);
conv_index
=
mkldnn_emitter
->
build_convolution_forward
(
input_data_desc
,
weights_desc
,
result_desc
,
convolution
->
get_window_movement_strides
(),
convolution
->
get_padding_below
(),
convolution
->
get_padding_above
());
}
else
{
// For dilation, MKLDNN wants to know how many elements to insert between, not how far
// apart to space the elements like nGraph. So we have to subtract 1 from each pos.
Strides
window_dilation_strides_adjusted
;
const
string
&
et
=
get_mkldnn_data_type
(
args
[
0
].
get_element_type
().
c_type_string
());
writer
<<
"{
\n
"
;
writer
.
indent
++
;
for
(
size_t
s
:
convolution
->
get_window_dilation_strides
())
{
window_dilation_strides_adjusted
.
push_back
(
s
-
1
);
}
writer
<<
"engine cpu_engine = engine(engine::cpu, 0);
\n
"
;
writer
<<
"memory::desc input_data_desc = memory::desc({"
<<
join
(
arg0_shape
)
<<
"}, "
<<
et
<<
", memory::format::nchw);
\n
"
;
writer
<<
"memory::desc weights_desc = memory::desc({"
<<
join
(
arg1_shape
)
<<
"}, "
<<
et
<<
", memory::format::oihw);
\n
"
;
writer
<<
"memory::desc result_desc = memory::desc({"
<<
join
(
result_shape
)
<<
"}, "
<<
et
<<
", memory::format::nchw);
\n
"
;
conv_index
=
mkldnn_emitter
->
build_convolution_forward
(
input_data_desc
,
weights_desc
,
result_desc
,
convolution
->
get_window_movement_strides
(),
window_dilation_strides_adjusted
,
convolution
->
get_padding_below
(),
convolution
->
get_padding_above
());
}
writer
<<
"memory input_data = memory({input_data_desc, cpu_engine}, "
<<
args
[
0
].
get_name
()
<<
");
\n
"
;
writer
<<
"memory weights = memory({weights_desc, cpu_engine}, "
<<
args
[
1
].
get_name
()
<<
");
\n
"
;
writer
<<
"memory result = memory({result_desc, cpu_engine}, "
<<
out
[
0
].
get_name
()
<<
");
\n
"
;
writer
<<
"convolution_forward conv = convolution_forward({"
<<
"{prop_kind::forward, algorithm::convolution_direct, input_data_desc, "
"weights_desc, result_desc, {"
<<
join
(
convolution
->
get_window_movement_strides
())
<<
"}, {"
<<
join
(
window_dilation_strides_adjusted
)
<<
"}, {"
<<
join
(
convolution
->
get_padding_below
())
<<
"}, {"
<<
join
(
convolution
->
get_padding_above
())
<<
"}, padding_kind::zero}, cpu_engine}, "
<<
"input_data, weights, result);
\n
"
;
auto
&
deps
=
mkldnn_emitter
->
get_primitive_deps
(
conv_index
);
writer
<<
"cpu::mkldnn_utils::set_memory_ptr(ctx, "
<<
to_string
(
deps
[
0
])
<<
", "
<<
args
[
0
].
get_name
()
<<
");
\n
"
;
writer
<<
"cpu::mkldnn_utils::set_memory_ptr(ctx, "
<<
to_string
(
deps
[
1
])
<<
", "
<<
args
[
1
].
get_name
()
<<
");
\n
"
;
writer
<<
"cpu::mkldnn_utils::set_memory_ptr(ctx, "
<<
to_string
(
deps
[
2
])
<<
", "
<<
out
[
0
].
get_name
()
<<
");
\n
"
;
writer
<<
"stream s = stream(stream::kind::eager);
\n
"
<<
"s.submit({conv}).wait();
\n
"
;
writer
.
indent
--
;
writer
<<
"}
\n
"
;
writer
<<
"cpu::mkldnn_utils::mkldnn_invoke_primitive(ctx, "
<<
to_string
(
conv_index
)
<<
");
\n
"
;
}
else
{
...
...
src/ngraph/runtime/cpu/cpu_external_function.cpp
View file @
233e4b1b
...
...
@@ -249,6 +249,8 @@ void runtime::cpu::CPU_ExternalFunction::compile()
string
function_name
=
m_function
->
get_name
();
m_mkldnn_emitter
.
reset
(
new
MKLDNNEmitter
(
shared_from_this
()));
ngraph
::
pass
::
Manager
pass_manager
;
pass_manager
.
register_pass
<
runtime
::
cpu
::
pass
::
CPUFusion
>
();
...
...
@@ -284,6 +286,7 @@ void runtime::cpu::CPU_ExternalFunction::compile()
#include "ngraph/runtime/cpu/cpu_eigen_utils.hpp"
#include "ngraph/runtime/cpu/cpu_kernels.hpp"
#include "ngraph/runtime/cpu/cpu_runtime_context.hpp"
#include "ngraph/runtime/cpu/mkldnn_invoke.hpp"
#include "ngraph/runtime/kernel/avg_pool.hpp"
#include "ngraph/runtime/kernel/broadcast.hpp"
#include "ngraph/runtime/kernel/concat.hpp"
...
...
src/ngraph/runtime/cpu/cpu_external_function.hpp
View file @
233e4b1b
...
...
@@ -31,6 +31,7 @@
#include "ngraph/runtime/cpu/cpu_call_frame.hpp"
#include "ngraph/runtime/cpu/cpu_layout_descriptor.hpp"
#include "ngraph/runtime/cpu/cpu_tensor_view_wrapper.hpp"
#include "ngraph/runtime/cpu/mkldnn_emitter.hpp"
#include "ngraph/runtime/external_function.hpp"
namespace
ngraph
...
...
@@ -80,6 +81,11 @@ namespace ngraph
const
LayoutDescriptorPtrs
&
get_result_layout_descriptors
();
const
std
::
vector
<
OpAttributes
>&
get_op_attrs
()
const
{
return
m_op_attrs
;
}
const
std
::
unique_ptr
<
MKLDNNEmitter
>&
get_mkldnn_emitter
()
const
{
return
m_mkldnn_emitter
;
}
protected
:
void
compile
();
...
...
@@ -115,6 +121,8 @@ namespace ngraph
LayoutDescriptorPtrs
parameter_layout_descriptors
;
LayoutDescriptorPtrs
result_layout_descriptors
;
std
::
vector
<
OpAttributes
>
m_op_attrs
;
std
::
unique_ptr
<
MKLDNNEmitter
>
m_mkldnn_emitter
;
};
}
}
...
...
src/ngraph/runtime/cpu/cpu_runtime_context.hpp
View file @
233e4b1b
...
...
@@ -17,6 +17,11 @@
#include <chrono>
#include <cstdint>
namespace
mkldnn
{
class
primitive
;
}
namespace
ngraph
{
namespace
runtime
...
...
@@ -31,6 +36,7 @@ namespace ngraph
struct
CPURuntimeContext
{
int64_t
*
op_durations
;
mkldnn
::
primitive
*
const
*
mkldnn_primitives
;
};
}
}
...
...
src/ngraph/runtime/cpu/cpu_tensor_view_wrapper.cpp
View file @
233e4b1b
...
...
@@ -69,3 +69,9 @@ bool runtime::cpu::TensorViewWrapper::is_output() const
{
return
m_tensor_view
->
get_tensor
().
is_output
();
}
const
std
::
shared_ptr
<
descriptor
::
TensorView
>
runtime
::
cpu
::
TensorViewWrapper
::
get_tensor_view
()
const
{
return
m_tensor_view
;
}
src/ngraph/runtime/cpu/cpu_tensor_view_wrapper.hpp
View file @
233e4b1b
...
...
@@ -45,6 +45,7 @@ public:
const
std
::
string
&
get_name
()
const
;
const
std
::
string
&
get_type
()
const
;
bool
is_output
()
const
;
const
std
::
shared_ptr
<
descriptor
::
TensorView
>
get_tensor_view
()
const
;
private
:
std
::
shared_ptr
<
descriptor
::
TensorView
>
m_tensor_view
;
...
...
src/ngraph/runtime/cpu/mkldnn_emitter.cpp
0 → 100644
View file @
233e4b1b
/*******************************************************************************
* Copyright 2018 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
#include <memory>
#include "mkldnn_emitter.hpp"
#include "ngraph/runtime/cpu/cpu_layout_descriptor.hpp"
#include "ngraph/runtime/cpu/cpu_tensor_view_wrapper.hpp"
#include "ngraph/runtime/cpu/mkldnn_utils.hpp"
using
namespace
ngraph
::
runtime
::
cpu
;
const
std
::
vector
<
mkldnn
::
primitive
*>&
MKLDNNEmitter
::
get_mkldnn_primitives
()
const
{
return
mkldnn_primitives
;
}
size_t
MKLDNNEmitter
::
insert_primitive
(
mkldnn
::
primitive
*
primitive
)
{
mkldnn_primitives
.
emplace_back
(
primitive
);
return
(
mkldnn_primitives
.
size
()
-
1
);
}
const
std
::
vector
<
size_t
>&
MKLDNNEmitter
::
get_primitive_deps
(
size_t
index
)
const
{
return
primitive_deps
.
at
(
index
);
}
mkldnn
::
memory
::
desc
MKLDNNEmitter
::
build_memory_descriptor
(
const
TensorViewWrapper
&
tvw
,
mkldnn
::
memory
::
format
fmt
)
const
{
return
mkldnn
::
memory
::
desc
(
mkldnn
::
memory
::
dims
(
tvw
.
get_shape
().
begin
(),
tvw
.
get_shape
().
end
()),
mkldnn_utils
::
GetDataType
(
tvw
.
get_element_type
()),
fmt
);
}
mkldnn
::
memory
::
desc
MKLDNNEmitter
::
build_memory_descriptor
(
const
TensorViewWrapper
&
tvw
)
const
{
auto
layout
=
std
::
static_pointer_cast
<
LayoutDescriptor
>
(
tvw
.
get_tensor_view
()
->
get_tensor_view_layout
());
return
build_memory_descriptor
(
tvw
,
layout
->
get_mkldnn_format
());
}
mkldnn
::
memory
MKLDNNEmitter
::
build_memory_primitive
(
const
TensorViewWrapper
&
tvw
)
const
{
return
mkldnn
::
memory
({
build_memory_descriptor
(
tvw
),
mkldnn_utils
::
global_cpu_engine
},
nullptr
);
}
size_t
MKLDNNEmitter
::
build_memory_primitive
(
const
mkldnn
::
memory
::
desc
&
desc
)
{
// The MKL-DNN C++ API forces proper initialization of a memory primitive
// with a non-null pointer (unlike the C API)
// Primitives are initialized at runtime so we use a known-invalid address here
// to bypass this check
return
insert_primitive
(
new
mkldnn
::
memory
({
desc
,
mkldnn_utils
::
global_cpu_engine
},
reinterpret_cast
<
void
*>
(
0x42
)));
}
size_t
MKLDNNEmitter
::
build_convolution_forward
(
const
mkldnn
::
memory
::
desc
&
input_data_desc
,
const
mkldnn
::
memory
::
desc
&
weights_desc
,
const
mkldnn
::
memory
::
desc
&
result_desc
,
const
ngraph
::
Strides
&
strides
,
const
ngraph
::
CoordinateDiff
&
padding_below
,
const
ngraph
::
CoordinateDiff
&
padding_above
)
{
size_t
input_data_index
=
build_memory_primitive
(
input_data_desc
);
size_t
weights_index
=
build_memory_primitive
(
weights_desc
);
size_t
result_index
=
build_memory_primitive
(
result_desc
);
size_t
conv_index
=
insert_primitive
(
new
mkldnn
::
convolution_forward
(
{{
mkldnn
::
prop_kind
::
forward
,
mkldnn
::
algorithm
::
convolution_direct
,
input_data_desc
,
weights_desc
,
result_desc
,
mkldnn
::
memory
::
dims
(
strides
.
begin
(),
strides
.
end
()),
mkldnn
::
memory
::
dims
(
padding_below
.
begin
(),
padding_below
.
end
()),
mkldnn
::
memory
::
dims
(
padding_above
.
begin
(),
padding_above
.
end
()),
mkldnn
::
padding_kind
::
zero
},
mkldnn_utils
::
global_cpu_engine
},
*
mkldnn_primitives
[
input_data_index
],
*
mkldnn_primitives
[
weights_index
],
*
mkldnn_primitives
[
result_index
]));
primitive_deps
[
conv_index
]
=
{
input_data_index
,
weights_index
,
result_index
};
return
conv_index
;
}
size_t
MKLDNNEmitter
::
build_convolution_forward
(
const
mkldnn
::
memory
::
desc
&
input_data_desc
,
const
mkldnn
::
memory
::
desc
&
weights_desc
,
const
mkldnn
::
memory
::
desc
&
result_desc
,
const
ngraph
::
Strides
&
strides
,
const
ngraph
::
Strides
&
dilation_strides
,
const
ngraph
::
CoordinateDiff
&
padding_below
,
const
ngraph
::
CoordinateDiff
&
padding_above
)
{
size_t
input_data_index
=
build_memory_primitive
(
input_data_desc
);
size_t
weights_index
=
build_memory_primitive
(
weights_desc
);
size_t
result_index
=
build_memory_primitive
(
result_desc
);
size_t
conv_index
=
insert_primitive
(
new
mkldnn
::
convolution_forward
(
{{
mkldnn
::
prop_kind
::
forward
,
mkldnn
::
algorithm
::
convolution_direct
,
input_data_desc
,
weights_desc
,
result_desc
,
mkldnn
::
memory
::
dims
(
strides
.
begin
(),
strides
.
end
()),
mkldnn
::
memory
::
dims
(
dilation_strides
.
begin
(),
dilation_strides
.
end
()),
mkldnn
::
memory
::
dims
(
padding_below
.
begin
(),
padding_below
.
end
()),
mkldnn
::
memory
::
dims
(
padding_above
.
begin
(),
padding_above
.
end
()),
mkldnn
::
padding_kind
::
zero
},
mkldnn_utils
::
global_cpu_engine
},
*
mkldnn_primitives
[
input_data_index
],
*
mkldnn_primitives
[
weights_index
],
*
mkldnn_primitives
[
result_index
]));
primitive_deps
[
conv_index
]
=
{
input_data_index
,
weights_index
,
result_index
};
return
conv_index
;
}
src/ngraph/runtime/cpu/mkldnn_emitter.hpp
0 → 100644
View file @
233e4b1b
/*******************************************************************************
* Copyright 2018 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
#pragma once
#include <memory>
#include <unordered_map>
#include <vector>
#include <mkldnn.hpp>
#include "ngraph/common.hpp"
namespace
ngraph
{
namespace
runtime
{
namespace
cpu
{
class
CPU_ExternalFunction
;
class
TensorViewWrapper
;
class
MKLDNNEmitter
{
public
:
MKLDNNEmitter
(
std
::
shared_ptr
<
CPU_ExternalFunction
>
ef
)
:
external_function
(
ef
)
{
}
const
std
::
vector
<
mkldnn
::
primitive
*>&
get_mkldnn_primitives
()
const
;
size_t
insert_primitive
(
mkldnn
::
primitive
*
primitive
);
const
std
::
vector
<
size_t
>&
get_primitive_deps
(
size_t
index
)
const
;
// TODO(jmenon): Get rid of TensorViewWrappers at some point
mkldnn
::
memory
::
desc
build_memory_descriptor
(
const
TensorViewWrapper
&
tvw
,
mkldnn
::
memory
::
format
fmt
)
const
;
mkldnn
::
memory
::
desc
build_memory_descriptor
(
const
TensorViewWrapper
&
tvw
)
const
;
mkldnn
::
memory
build_memory_primitive
(
const
TensorViewWrapper
&
tvw
)
const
;
size_t
build_memory_primitive
(
const
mkldnn
::
memory
::
desc
&
desc
);
size_t
build_convolution_forward
(
const
mkldnn
::
memory
::
desc
&
input_data_desc
,
const
mkldnn
::
memory
::
desc
&
weights_desc
,
const
mkldnn
::
memory
::
desc
&
result_desc
,
const
ngraph
::
Strides
&
strides
,
const
ngraph
::
CoordinateDiff
&
padding_below
,
const
ngraph
::
CoordinateDiff
&
padding_above
);
size_t
build_convolution_forward
(
const
mkldnn
::
memory
::
desc
&
input_data_desc
,
const
mkldnn
::
memory
::
desc
&
weights_desc
,
const
mkldnn
::
memory
::
desc
&
result_desc
,
const
ngraph
::
Strides
&
strides
,
const
ngraph
::
Strides
&
dilation_strides
,
const
ngraph
::
CoordinateDiff
&
padding_below
,
const
ngraph
::
CoordinateDiff
&
padding_above
);
private
:
std
::
shared_ptr
<
CPU_ExternalFunction
>
external_function
;
std
::
vector
<
mkldnn
::
primitive
*>
mkldnn_primitives
;
std
::
vector
<
mkldnn
::
stream
>
mkldnn_streams
;
std
::
unordered_map
<
size_t
,
std
::
vector
<
size_t
>>
primitive_deps
;
};
}
}
}
src/ngraph/runtime/cpu/mkldnn_invoke.cpp
0 → 100644
View file @
233e4b1b
/*******************************************************************************
* Copyright 2018 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
#include <mkldnn.hpp>
#include "mkldnn_invoke.hpp"
#include "ngraph/runtime/cpu/cpu_runtime_context.hpp"
#include "ngraph/runtime/cpu/mkldnn_utils.hpp"
mkldnn
::
engine
ngraph
::
runtime
::
cpu
::
mkldnn_utils
::
global_cpu_engine
(
mkldnn
::
engine
::
cpu
,
0
);
extern
"C"
void
ngraph
::
runtime
::
cpu
::
mkldnn_utils
::
set_memory_ptr
(
CPURuntimeContext
*
ctx
,
size_t
primitive_index
,
void
*
ptr
)
{
auto
primitive
=
static_cast
<
mkldnn
::
memory
*>
(
ctx
->
mkldnn_primitives
[
primitive_index
]);
primitive
->
set_data_handle
(
ptr
);
}
extern
"C"
void
ngraph
::
runtime
::
cpu
::
mkldnn_utils
::
mkldnn_invoke_primitive
(
CPURuntimeContext
*
ctx
,
size_t
primitive_index
)
{
mkldnn
::
stream
s
(
mkldnn
::
stream
::
kind
::
eager
);
s
.
submit
({
*
ctx
->
mkldnn_primitives
[
primitive_index
]}).
wait
();
}
src/ngraph/runtime/cpu/mkldnn_invoke.hpp
0 → 100644
View file @
233e4b1b
/*******************************************************************************
* Copyright 2018 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
#pragma once
#include <cstddef>
namespace
ngraph
{
namespace
runtime
{
namespace
cpu
{
struct
CPURuntimeContext
;
namespace
mkldnn_utils
{
extern
"C"
void
set_memory_ptr
(
CPURuntimeContext
*
ctx
,
size_t
primitive_index
,
void
*
ptr
);
extern
"C"
void
mkldnn_invoke_primitive
(
CPURuntimeContext
*
ctx
,
size_t
primitive_index
);
}
}
}
}
src/ngraph/runtime/cpu/mkldnn_utils.cpp
View file @
233e4b1b
...
...
@@ -17,6 +17,7 @@
#include <string>
#include <typeindex>
#include <typeinfo>
#include <unordered_map>
#include <unordered_set>
#include "ngraph/node.hpp"
...
...
@@ -37,7 +38,7 @@ namespace ngraph
{
#define TI(x) std::type_index(typeid(x))
const
std
::
unordered_set
<
std
::
type_index
>
s_op_registry
{
static
const
std
::
unordered_set
<
std
::
type_index
>
s_op_registry
{
TI
(
ngraph
::
op
::
AvgPool
),
TI
(
ngraph
::
op
::
AvgPoolBackprop
),
TI
(
ngraph
::
op
::
BatchNorm
),
...
...
@@ -47,6 +48,28 @@ namespace ngraph
TI
(
ngraph
::
op
::
MaxPool
),
TI
(
ngraph
::
op
::
MaxPoolBackprop
)};
static
const
std
::
unordered_map
<
std
::
string
,
const
mkldnn
::
memory
::
data_type
>
s_data_type_map
{{
"char"
,
mkldnn
::
memory
::
data_type
::
s8
},
{
"float"
,
mkldnn
::
memory
::
data_type
::
f32
},
{
"double"
,
mkldnn
::
memory
::
data_type
::
data_undef
},
{
"int8_t"
,
mkldnn
::
memory
::
data_type
::
s8
},
{
"int16_t"
,
mkldnn
::
memory
::
data_type
::
s16
},
{
"int32_t"
,
mkldnn
::
memory
::
data_type
::
s32
},
{
"int64_t"
,
mkldnn
::
memory
::
data_type
::
data_undef
},
{
"uint8_t"
,
mkldnn
::
memory
::
data_type
::
u8
},
{
"uint16_t"
,
mkldnn
::
memory
::
data_type
::
data_undef
},
{
"uint32_t"
,
mkldnn
::
memory
::
data_type
::
data_undef
},
{
"uint64_t"
,
mkldnn
::
memory
::
data_type
::
data_undef
}};
mkldnn
::
memory
::
data_type
GetDataType
(
const
ngraph
::
element
::
Type
&
et
)
{
auto
it
=
s_data_type_map
.
find
(
et
.
c_type_string
());
if
(
it
==
s_data_type_map
.
end
()
||
it
->
second
==
mkldnn
::
memory
::
data_type
::
data_undef
)
throw
ngraph_error
(
"No MKLDNN data type exists for the given element type"
);
return
it
->
second
;
}
bool
IsMKLDNNOp
(
ngraph
::
Node
&
op
)
{
return
(
s_op_registry
.
find
(
TI
(
op
))
!=
s_op_registry
.
end
());
...
...
src/ngraph/runtime/cpu/mkldnn_utils.hpp
View file @
233e4b1b
...
...
@@ -16,15 +16,11 @@
#pragma once
#include <string>
#include <typeindex>
#include <typeinfo>
#include <unordered_set>
#include <mkldnn.hpp>
#include "ngraph/node.hpp"
#include "ngraph/runtime/cpu/cpu_layout_descriptor.hpp"
#include "ngraph/types/element_type.hpp"
namespace
ngraph
{
...
...
@@ -34,7 +30,12 @@ namespace ngraph
{
namespace
mkldnn_utils
{
extern
mkldnn
::
engine
global_cpu_engine
;
mkldnn
::
memory
::
data_type
GetDataType
(
const
ngraph
::
element
::
Type
&
et
);
bool
IsMKLDNNOp
(
ngraph
::
Node
&
op
);
mkldnn
::
memory
::
format
CreateNativeDataFormat
(
const
ngraph
::
runtime
::
cpu
::
LayoutDescriptor
&
layout
);
}
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment